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Abstract—The classic trilateration technique can localize each
target based on its distances to three anchors with known
coordinates. Usually, this technique requires all the anchors and
targets, e.g., the satellites and the mobile phones in Global
Navigation Satellite System (GNSS), to actively transmit/receive
radio signals such that the delay of the one-way radio signal
propagated between each anchor and each target can be measured.
Excitingly, this paper will show that the trilateration technique can
be generalized to the scenario where one of the three anchors and
all the targets merely reflect the radio signals passively as in radar
networks, even if the propagation delay between the passive IRS
and the passive targets is difficult to be measured directly, and the
data association issue for multi-sensor multi-target tracking arises.
Specifically, we consider device-free sensing in a cellular network
consisting of two base stations (BSs), one passive intelligent
reflecting surface (IRS), and multiple passive targets, to realize
integrated sensing and communication (ISAC). The two BSs
transmit the orthogonal frequency division multiplexing (OFDM)
signals in the downlink and estimate the locations of the targets
based on their reflected signals via/not via the IRS. We propose
an efficient trilateration-based strategy that can first estimate the
distances of each target to the two BSs and the IRS and then
localize the targets. Numerical results show that the considered
networked sensing architecture with heterogenous anchors can
outperform its counterpart with three BSs.

I. INTRODUCTION

Recently, there is a trend in both academia and industry

to achieve integrated sensing and communication (ISAC) in

the future 6G cellular network via utilizing a common radio

spectrum and the same hardware platform [1], [2]. As a result,

when a new 6G technology appears, we should not only

evaluate its effectiveness in communication, but also understand

its potential role in sensing. For communication, recently, there

has been a flurry of research activities in using intelligent

reflecting surface (IRS) to enhance network throughput in the

6G era [3]. One interesting question thus arises: is IRS also

beneficial for sensing? The main contribution of this paper is

to provide an affirm answer to the above question.

Compared to the large body of research in IRS-assisted

communication, the investigation of IRS-assisted sensing is still

in its infancy. Along this line, the basic idea is to view each

IRS as an anchor with known location and localize the targets

based on their relative position to the IRSs and the base stations

(BSs). Specifically, under the device-based sensing setup, where

the targets can transmit/receive radio signals actively such that

their location can be estimated based on the one-way radio

signals to/from the anchors, the IRS-assisted sensing has been

studied for the time-of-arrival (TOA) approach, the angle-of-

arrival (AOA) or angle-of-departure (AOD) approach, as well as

the received-signal-strength (RSS) approach [4]–[8]. However,

in most ISAC applications, we need to perform device-free

sensing, where the targets just reflect the signals passively to

the anchors such that we have to localize them based on the

round-trip signals. Recently, [9] showed that the BSs in the

cellular network can collaboratively perform networked sensing

to localize the passive targets based on the trilateration method,

where each target is localized via its distances to multiple BSs.

Compared to device-based sensing, the main challenge here lies

in data association [10]: since all the targets reflect the same

signals to the BSs, it is non-trivial to match each estimated

distance to the right target. Interestingly, it was shown in [9]

that when all the anchors are active BSs, the data association

issue can be effectively resolved. However, how to perform

trilateration-based device-free sensing if some BSs are replaced

by the passive IRSs is still an open problem in the literature.

In this paper, we consider device-free sensing in a cellular

network consisting of two BSs, one IRS, and several passive

targets close to the IRS, as shown in Fig. 1. In the down-

link, the two BSs transmit the orthogonal frequency division

multiplexing (OFDM) signals to the mobile users, which will

be reflected by the targets back to the BSs via/not via the

IRS. A two-phase protocol is utilized to localize the targets

based on their reflected signals. In the first phase, we apply the

OFDM channel estimation technique to obtain the delay (thus

the range) of each BS-target link and BS-IRS-target-BS link;

while in the second phase, the data association and the target

location are estimated based on the above range information.

The key observation of the proposed scheme is that the distance

between a target and the IRS can be obtained from either the

link from BS 1 to the IRS to the target to BS 1 or that from

BS 2 to the IRS to the target to BS 2. As a result, if some

matching solution results in significant difference in estimating

the distance between some target and the IRS based on the

above two approaches, this solution cannot be the true data

association solution. Such a property enables a powerful data

association algorithm in this paper. In practice, as compared

to the BSs, the low-cost IRSs can be deployed with a much

higher density such that each target can be sensed by covered by

multiple anchors. As a result, our theoretical results show that

networked sensing with both active anchors (BSs) and passive

anchors (IRSs) is a promising solution in future 6G network.
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Fig. 1. System model of an IRS-assisted ISAC cellular network.

II. SYSTEM MODEL

We consider an IRS-assisted OFDM-based ISAC system as

illustrated in Fig. 1, which consists of two BSs, one IRS

equipped with I passive elements, U mobile communication

users to be served, and K targets to be localized. The number

of OFDM sub-carriers is denoted by N , and the sub-carrier

spacing is denoted by ∆f Hz, thus the overall channel band-

width is B = N∆f Hz. Moreover, let N1 and N2 denote the

sets of sub-carriers allocated to BS 1 and BS 2, respectively,

where N1

⋂N2 = ∅ and N1

⋃N2 = {1, . . . , N}.

Since IRS-assisted communication has been widely studied

in the literature, this paper focuses on IRS-assisted sensing

to realize ISAC in the considered OFDM-based system. Let

(xA
m, yA

m) and (xI, yI) in meter denote the locations of the

m-th BS (m = 1, 2) and the IRS in the two-dimensional

(2D) Cartesian coordinate system, respectively, which are fixed

and known. Therefore, BS 1, BS 2, as well as the IRS can

serve as three anchors for sensing the environment. Moreover,

let (xT
k, y

T
k) in meter denote the location of the k-th target,

k = 1, . . . ,K . Define

dAT
m,k =

√

(xT
k − xA

m)2 + (yT
k − yA

m)2, (1)

dAI
m =

√

(xI − xA
m)2 + (yI − yA

m)2, (2)

dIT
k =

√

(xT
k − xI)2 + (yT

k − yI)2, ∀m, k, (3)

in meter as the distance between BS m and target k, the distance

between BS m and the IRS, and the distance between the IRS

and target k, respectively.

To estimate the target locations (xT
k, y

T
k)’s, the two BSs

first send out downlink OFDM communication signals, and

then collaboratively localize the targets based on their reflected

signals as well as the IRS’s reflected signals. Specifically, we let

Q denote the number of OFDM symbols in one resource block

(RB), e.g., Q = 7 in 4G LTE systems, and focus our study

on the transmission in one RB. In each q-th OFDM symbol,

let s
(q)
m,n denote the information symbol sent from the m-th BS

at the n-th sub-carrier, with E[|s(q)m,n|2] = 1 if n ∈ Nm and

s
(q)
m,n = 0 if n /∈ Nm. We further let s

(q)
m = [s

(q)
m,1, . . . , s

(q)
m,N ]T

denote the information symbols from the m-th BS over all the

N sub-carriers in the q-th OFDM symbol. Let pm denote the

common transmit power at BS m at all sub-carriers. Thus, the

time-domain downlink OFDM signal transmitted by the m-th

BS in the q-th OFDM symbol is given by

χ(q)
m = [χ

(q)
m,1, . . . , χ

(q)
m,N ]T = WH√

pms(q)m , ∀m, q, (4)

where χ
(q)
m,n denotes the n-th sample transmitted by the m-th

BS in the q-th OFDM symbol, and W ∈ CN×N denotes the

N ×N discrete Fourier transform (DFT) matrix.

Similar to the works focusing on the classic trilateration-

based localization theory [9], [11], [12], we assume that there

only exists line-of-sight (LoS) links in the BS-target channels,

BS-IRS channels, and IRS-target channels. Thus, each BS m
receives the reflected signals at its allocated sub-carriers Nm

via three types of links: the links from BS m via targets to BS

m, the link from BS m via the IRS to BS m, and the links

from BS m via the IRS and targets to BS m.1 Note that these

links automatically form a multi-path environment. Specifically,

define

hATA
m =[hATA

m,1 , . . . , hATA
m,L ]T , (5)

h
AIA
m,i =[hAIA

m,i,1, . . . , h
AIA
m,i,L]

T , (6)

hAITA
m,i =[hAITA

m,i,1 , . . . , h
AITA
m,i,L]

T , ∀m, i, (7)

as the L-tap baseband equivalent multi-path channels for the

links from BS m via targets to BS m, the cascaded links from

BS m via IRS reflecting element i to BS m, and the cascaded

links from BS m via IRS element i and targets to BS m,

respectively, where L denotes the maximum number of paths

determined by the delay spread. Note that hATA
m,l 6= 0 holds if

and only if there exists a target k̄m,l such that the delay of the

propagation path from BS m via target k̄m,l to BS m is within

l − 1 OFDM samples and l OFDM samples, i.e.,

(l − 1)c0
2N∆f

≤ dAT
m,k̄m,l

≤ lc0
2N∆f

, (8)

where c0 denotes the speed of light in meter/second. Moreover,

hAIA
m,i,l 6= 0, ∀i, holds if and only if the distance between BS m

and the IRS satisfies

(l − 1)c0
2N∆f

≤ dAI
m ≤ lc0

2N∆f
. (9)

Lastly, hAITA
m,i,l 6= 0, ∀i, holds if and only if there exists a target

k̂m,l satisfying

(l − 1)c0
N∆f

≤ dAITA
m,k̂m,l

≤ lc0
N∆f

, (10)

where

dAITA
m,k̂m,l

= dAI
m + dIT

k̂m,l
+ dAT

m,k̂m,l
, (11)

in meter denotes the range (length) of the path from BS m via

the IRS and target k̂m,l to BS m.

Moreover, denote φ
(q)
i ∈ C as the reflection coefficient of

the i-th IRS reflecting element in the q-th OFDM symbol

1The other links involving more reflections, e.g., the links from BS m via
the IRS, targets, and the IRS again to BS m, are ignored since they are too
weak as compared to the above links.



duration, with |φ(q)
i | = 1, ∀i, q, due to the passiveness of the

IRS. The overall L-tap multi-path channel of BS m for the q-th

OFDM symbol contributed by all the targets and the IRS can

be expressed as

h(q)
m = [h

(q)
m,1, . . . , h

(q)
m,L]

T

= hATA
m +

I
∑

i=1

φ
(q)
i (hAIA

m,i + hAITA
m,i ), ∀m, q. (12)

Thus, in the q-th OFDM symbol duration, the signals received

by BS m at its allocated sub-carriers Nm is given by

y(q)
m = [y

(q)
m,Nm(1), . . . , y

(q)
m,Nm(|Nm|)]

T

=
√
pmdiag(s̃(q)m )Emh(q)

m +z(q)
m , ∀m, q, (13)

where s̃(q)m = [s
(q)
m,Nm(1), . . . , s

(q)
m,Nm(|Nm|)]

T ∈ C|Nm|×1 is

the collection of information symbols sent by BS m at all

its allocated sub-carriers in the q-th OFDM symbol, Em ∈
C|Nm|×L with the (n, l)-th element given by Em,n,l =

e−
j2π(Nm(n)−1)(l−1)

N , and z
(q)
m ∼ CN (0, σ2I) denotes the re-

ceiver noise at BS m in the q-th OFDM symbol duration.

III. TWO-PHASE LOCALIZATION PROTOCOL

In this paper, we propose a two-phase protocol to localize

the K targets based on the received signals given in (13). In

the first phase, the delay (thus the range) of each BS-target-BS

link and each BS-IRS-target-BS link will be estimated based

on the signals received by the two BSs; while in the second

phase, the location of each target can be estimated based on

the above range information using the trilateration method.

Specifically, range estimation in the first phase (Phase I)

is performed based on the following philosophy. Note that

hATA
m,l 6= 0 (or hAITA

m,i,l 6= 0, ∀i) holds if and only if (8) (or

(10)) is true for some target k̄m,l (or k̃m,l). In a broadband

communication system with a very large bandwidth B = N∆f ,

the left-hand side and the right-hand side of (8) or (10) are

approximately the same. Therefore, we can first estimate the

non-zero coefficients of the L-tap multi-path channels based

on the received signal (13), and then estimate the range of an

BS-target path and that of an BS-IRS-target-BS path accurately

based on (8) and (10), respectively.

Next, in the second phase (Phase II), we localize the targets

based on the trilateration method. According to (11), for a target

k, its distance to the IRS can be obtained from

dIT
k =dAITA

1,k − dAI
1 − dAT

1,k=dAITA
2,k − dAI

2 − dAT
2,k, ∀k. (14)

Note that dAI
1 and dAI

2 are known because the locations of

the BSs and the IRS are known, while dAT
1,k and dAT

2,k can be

estimated in Phase I. As a result, the distance between the IRS

and each target can be obtained based on (14). Theoretically

speaking, the location of each target k can be estimated

based on the trilateration method with the knowledge about

its distances to BS 1, BS 2, and the IRS. However, in practice,

the main challenge for the above localization approach lies in

the data association issue arising from device-free sensing [9].

Specifically, as shown in (13), at the sub-carriers allocated to

each BS m, all the targets reflect the same signal, i.e., the

signal sent by BS m, back to this BS. Consequently, if there

exists an l such that hATA
m,l 6= 0 or hAITA

m,i,l 6= 0, we do not

directly know which target contributes to this BS-target-BS

or BS-IRS-target-BS link, i.e., k̄m,l in (8) and k̂m,l in (10)

are unknown. This indicates that although each BS can obtain

rich range information in Phase I based on (8) and (10), it

does not know how to match each range to the right target for

localization. Therefore, in Phase II, we have to first perform

data association to estimate k̄m,l’s in (8) and k̂m,l’s in (10),

and then localize each target based on its matched distances to

BS 1, BS 2, and the IRS.

It is worth noting that in our paper, the key for the data

association algorithm design is (14): for the right data associ-

ation solution, (14) should hold for all the targets. Here, the

IRS, whose reflected signals contribute to the received signals

of both of the two BSs at their assigned sub-carriers as shown

in (13), is the core anchor for determining the data association

solution. This is because different from the active anchors, i.e.,

the two BSs, the distance from the IRS to any target k can be

calculated based on two approaches: dITk = dAITA
1,k −dAI

1 −dAT
1,k

via the path involving BS 1, or dITk = dAITA
2,k − dAI

2 − dAT
2,k via

the path involving BS 2. Therefore, given any data association

solution, if there exists at least a target whose estimated distance

to the IRS obtained from the path involving BS 1 is quite

different from that obtained from the path involving BS 2, then

this data association solution is wrong. This property enables a

low-complexity and accurate data association algorithm as will

be shown later in the paper.

In the following, we introduce each phase of the proposed

protocol in more details.

IV. PHASE I: RANGE ESTIMATION

In this section, we introduce the range estimation method in

Phase I under the two-phase localization protocol. As discussed

in Section III, in this phase, we should first estimate the non-

zero components in the L-tap multi-path channels h(q)
m ’s. From

the compatibility perspective, the sensing function should be

achieved in cellular networks without changing the communi-

cation protocols too much. For IRS-assisted communication,

the on/off protocol is widely advocated in the literature [3],

[13]. Under this protocol, in each OFDM RB, the IRS is off

in the first OFDM symbol period such that the direct channels

between the BSs and the mobile users can be estimated, while

the IRS is on in the remaining OFDM symbol period such that

the IRS-related channels can be estimated and the data can be

decoded based on the estimated channels. In the following, we

introduce how to estimate the non-zero components in h(q)
m ’s

for sensing based on the above on/off protocol.

Specifically, the IRS is off in the first OFDM symbol period

of a RB, i.e., φ
(1)
i = 0, ∀i. According to (13), the signal

received at BS m at all its assigned sub-carriers of the first

OFDM symbol is given as

y(1)
m =

√
pmdiag(s̃(1)m )EmhATA

m + z(1)
m , m = 1, 2, (15)



which is merely contributed by the BS-target-BS links. Note

that many coefficients in hATA
m ’s are zero. As a result, we can

estimate each hATA
m based on the LASSO technique by solving

the following problem

min
hATA

m

0.5
∥

∥

∥
y(1)
m −√

pmdiag(s̃(1)m )EmhATA
m

∥

∥

∥

2

F
+ρ

∥

∥

∥
hATA
m

∥

∥

∥

1
, (16)

where ρ ≥ 0 is a given coefficient.

Let h̄
ATA
m = [h̄ATA

m,1 , . . . , h̄ATA
m,L ]T denote the optimal solution

to the above convex problem, m = 1, 2. Based on h̄
ATA
m ’s, we

need to estimate the support of each hATA
m so as to obtain the

range of each BS-target link as shown in (8). In this paper,

we adopt a threshold-based strategy to achieve the above goal.

Specifically, with some given threshold δ1 > 0, define ΦI
m =

{l|‖h̄ATA
m,l ‖2 ≥ δ1}, m = 1, 2. Then, for any l ∈ ΦI

m, we declare

that hATA
m,l 6= 0 and there exists a target k̄m,l whose distance

to BS m, i.e., dAT
m,k̄m,l

, satisfies (8). In this case, we estimate

dAT
m,k̄m,l

as the middle point of the range shown in (8), i.e.,

d̄AT
m,k̄m,l

=
(l − 1)c0
2N∆f

+
c0

4N∆f
, if l ∈ ΦI

m. (17)

To summarize, after the “off” state of Phase I, each BS m will

have a set consisting of the estimated distances between the

targets and it, which is denoted by

DAT
m = {d̄AT

m,k̄m,l
|∀l ∈ ΦI

m}, m = 1, 2. (18)

In the remaining OFDM symbol period of a RB, the

IRS is on. Define ȳ
(q)
m = [diag(s̃(q)m )]−1ȳ

(q)
m and z̄

(q)
m =

[diag(s̃(q)m )]−1z̄
(q)
m , m = 1, 2 and q = 2, . . . , Q, as the

effective received signal and noise at BS m for the q-th OFDM

symbol, respectively, where the effective received signal and

noise at each assigned sub-carrier is normalized by the signal

transmitted at this sub-carrier. According to (13), the collection

of the effective received signals at BS m for the remaining

Q− 1 OFDM symbols is given as

Ȳ
(2:Q)
m = [ȳ(2)

m , . . . , ȳ(Q)
m ]T

=
√
pmEmH(2:Q)

m + Z̄
(2:Q)
m , m = 1, 2, (19)

where H(2:Q)
m = [h(2)

m , . . . ,h(Q)
m ] and Z̄

(2:Q)
m =

[z̄
(2)
m , . . . , z̄

(Q)
m ].

Note that both H
(2:Q)
1 and H

(2:Q)
2 are row-sparse matrices,

i.e., gm,l = 0 for many l, where gm,l = [h
(2)
m,l, . . . , h

(Q)
m,l ]

T

denotes the l-th row of H(2:Q)
m . This is because if there is

no path causing a delay of l OFDM samples in the second

OFDM symbol period, then such a path does not exist in the

remaining OFDM symbol period. Based on the row-sparsity

property, H(2:Q)
m ’s can be estimated based on the group LASSO

technique by solving the following problem

min
H

(2:Q)
m

0.5
∥

∥

∥
Ȳ

(2:Q)
m −√

pmEmH(2:Q)
m

∥

∥

∥

2

F
+β

∑

l∈Φm

∥

∥gm,l

∥

∥

2
, (20)

where β ≥ 0 is given. Let H̄
(2:Q)
m = [ḡm,1, . . . , ḡm,L]

T

denote the optimal solution to the above convex problem,

m = 1, 2. Similar to Phase I, given some threshold δ2, define

ΩII
m = {l|‖ḡm,l‖2 ≥ δ2}, m = 1, 2. Then, if l ∈ ΩII

m, we

declare that h
(q)
m,l 6= 0, ∀q ≥ 2. According to (12), each

h
(q)
m,l is contributed by either the BS-target-BS link, or the

BS-IRS-BS link, or the BS-IRS-target-BS link. Define lAIA
m

as the delay (in terms of OFDM samples) corresponding to

the BS m to IRS to BS m link that satisfies (14), m = 1, 2,

and Φm = ΦI
m

⋃{lAIA
m }, m = 1, 2. As a result, for each

l ∈ ΩII
m/Ωm, we declare that hAITA

m,i,1 6= 0, ∀i, and there exists

a target k̂m,l satisfying (10). In this case, we estimate dAITA
m,k̂m,l

as the middle point of the range shown in (10), i.e.,

d̄AITA
m,k̂m,l

=
(l − 1)c0
2N∆f

+
c0

4N∆f
, if l ∈ ΦII

m/Φm. (21)

To summarize, after the “on” state of Phase I, each BS m will

have another distance set

DAITA
m = {d̄AITA

m,k̂m,l
|∀l ∈ ΦII

m/Φm}, m = 1, 2. (22)

As a result, after Phase I, the network has four range sets of

the targets, i.e., DAT
1 , DAT

2 , DAITA
1 , and DAITA

2 .

V. PHASE II: DATA ASSOCIATION AND LOCALIZATION

In Phase II, we need to localize the K targets based on the

knowledge about DAT
1 , DAT

2 , DAITA
1 , and DAITA

2 obtained in

Phase I. As discussed in Section III, the main challenge for

localization lies in data association, i.e., we do not directly

know how to match each element in the above sets to the right

target. For convenience, define λm,k ∈ {1, . . . ,K} such that

the estimated distance between BS m and target k, i.e., d̄AT
m,k

shown in (17), is the λm,k-th largest element in DAT
m , ∀m, k.

Moreover, define µm,k ∈ {1, . . . ,K} such that the estimated

distance of the path from BS m to IRS to target k to BS m,

i.e., d̄AITA
m,k shown in (21), is the µm,k-th largest element in

DAITA
m , ∀m, k. In other words, we have d̄AT

m,k = DAT
m (λm,k)

and d̄AITA
m,k = DAITA

m (µm,k), ∀m, k, where given any set A,

A(a) denotes the a-th largest element in A. Note that a feasible

data association solution should satisfy

{λm,1, . . . , λm,K} = {1, . . . ,K}, m = 1, 2, (23)

{µm,1, . . . , µm,K} = {1, . . . ,K}, m = 1, 2. (24)

Given the data association, the distance between the IRS and

target k estimated by the link from BS m to the IRS to target

k to BS m can be expressed as

d̄IT,m
k = d̄AITA

m,k − d̄AT
m,k − dAI

m

= DAITA
m (µm,k)−DAT

m (λm,k)−dAI
m , m = 1, 2. (25)

Thus, we have two estimations of dITk , i.e., d̄IT,1
k via BS 1 and

d̄IT,2
k via BS 2, which should be close to each other.

Define X1 = {λm,k, µm,k|∀m, k} and X2 =
{(xT

k , y
T
k )|∀m, k} as the set of the data association solution

and the set of the location solution, respectively. With the

estimated distances from each target to BS 1, to BS 2, and to



the IRS, X1 and X2 should be jointly estimated based on the

following relation

DAT
m (λm,k) =

√

(xT
k − xA

m)2 + (yT
k − yA

m)2 + ǫm,k, (26)

DAITA
m (µm,k)−DAT

m (λm,k)− dAI
m

=
√

(xT
k − xI)2 + (yT

k − yI)2 + ςm,k, ∀m, k, (27)

(23), (24),

where ǫm,k denotes the error for estimating dAT
m,k, and ςm,k

denotes the error for estimating dITk via the link from BS m to

the IRS to target k to BS m. In the literature of localization,

it is usually assumed that ǫm,k ∈ CN (0, σ̂2
m,k) and ςm,k ∈

CN (0, σ̃2
m,k), ∀m, k [11], [12].

One straightforward method to estimate X1 and X2 is to

perform exhaustive search over all the feasible data association

solutions that satisfy (23) and (24). In particular, given any

feasible data association solution X1, the location of each target

k can be obtained by solving the following maximum likelihood

(ML) problem [11], [12]

min
xT
k
,yT

k

2
∑

m=1

(f̂m,k(λm,k, x
T
k , y

T
k ) + f̃m,k(λm,k, µ̄m,k, x

T
k , y

T
k )),

(28)

where

f̂m,k(λm,k, x
T
k , y

T
k )

=
(DAT

m (λm,k)−
√

(xT
k − xA

m)2 + (yT
k − yA

m)2)2

σ̂2
m,k

, (29)

f̃m,k(λm,k, µm,k, x
T
k , y

T
k )

=
(DAITA

m (µm,k)−DAT
m (λm,k)−dAI

m −
√

(xT
k−xI)2+(yT

k−yI)2)2

σ̃2
m,k

.

(30)

Similar to [11], [12], we can apply the Gauss-Newton algorithm

to solve the above non-convex problem. Let (xT,∗
k , yT,∗

k ) denote

the obtained location of target k corresponding to the given

feasible data association solution X1. Then, the optimal data

association solution can be obtained via exhaustive search by

solving the following problem

min
X1

K
∑

k=1

2
∑

m=1

(f̂m,k(λm,k, x
T,∗
k , yT,∗

k )

+ f̃m,k(λm,k, µm,k, x
T,∗
k , yT,∗

k )) (31)

s.t. (23), (24).

Given the optimal data association solution, the solution to

problem (28) can be used as the final location estimation.

However, there are two issues about the performance and

complexity of this approach. First, problem (28) is a non-convex

problem, and it is likely that the Gauss-Newton algorithm

will result in a sub-optimal solution. Given the optimal data

association, if we obtain a poor localization solution to the

non-convex problem (28), then this data association solution

maybe is not the optimal solution to problem (31). In this

case, we will obtain a wrong data association solution and the

corresponding localization solution is also wrong. Second, the

number of feasible data association solutions that satisfy (23)

and (24) is large, and it is of prohibitive complexity to solve the

complicated problem (28) given any feasible data association

solution, as required by problem (31). In the following, we

provide an approach that can greatly reduce the number of times

to solve the non-convex and complicated problem (28).

Specifically, with the knowledge about DAT
1 , DAT

2 , DAITA
1 ,

and DAITA
2 , there are two ways to calculate the distance

between the IRS and any target k: based on the link from BS

1 to the IRS to target k to BS 1, i.e., setting m = 1 in (25),

and based on the link from BS 2 to the IRS to target k to BS

2, i.e., setting m = 2 in (25). It is worth noting that these two

estimations, i.e., d̄IT,1
k and d̄IT,2

k , should be very close to each

other, ∀k. As a result, the true data association solution should

satisfy

|DAITA
1 (µ1,k)−DAT

1 (λ1,k)−DAITA
2 (µ2,k) +DAT

2 (λ2,k)|
≤τk, ∀k, (32)

where τk > 0’s are some given thresholds.

Next, define Y = {X1|(23), (24), (32) hold} as the

set of feasible data association solutions. Note that Y can

be obtained with low complexity, because given any data

association solution, if there exists a k such that (32) dose not

hold, then this solution is not in the set Y . As a result, we can

jointly estimate the data association solution and the location

solution as follows. First, given any DAT
1 , DAT

2 , DAITA
1 , and

DAITA
2 , we obtain the set Y . Then, given any data association

solution X1 ∈ Y , we use the Gauss-Newton algorithm to solve

problem (28) for obtaining the corresponding location solution

(xT,∗
k , yT,∗

k )’s. Last, the optimal data association solution is

obtained by solving the following problem

min
X1

K
∑

k=1

2
∑

m=1

(f̂m,k(λm,k, x
T,∗
k , yT,∗

k )

+ f̃m,k(λm,k, µm,k, x
T,∗
k , yT,∗

k )) (33)

s.t. (23), (24), (32).

Given the optimal data association solution, the solution to

problem (28) can be used as the final estimation of the

location of each target. Because not too many data association

solutions can satisfy (32) in practice, we only need to perform

exhaustive search over a very small set in problem (33). As a

result, the complexity of the proposed algorithm is very low.

Moreover, since data association under the proposed scheme

relies more on the simple criterion (32), rather than the solution

to the non-convex problem (28) that may be sub-optimal, the

data association and localization accuracy is expected to be

improved significantly.

VI. DISCUSSION: 2 BSS PLUS 1 IRS V.S. 3 BSS

Recently, [9] proposed a device-free sensing architecture

based on the trilateration technique, where all the anchors are
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Fig. 2. Localization performance comparison: the setup with 2 BSs and 1 IRS
considered in this paper versus the setup with 3 BSs considered in [9].

active BSs. Interestingly, the results in this paper show that two

active BSs and one more passive IRS are sufficient to enable

device-free sensing based on the trilateration technique. There

are several advantages to deploy two BSs and one IRS for

localization as compare to deploying three BSs. First, the IRS

is of lower cost and can be deployed at more sites compared

to the BS. Second, the distance between an BS and a target

can be merely measured by estimating the delay of the BS-

target path, while the distance between the IRS and a target

can be measured by two ways as shown in (25), because the

signals reflected by the IRS can be received by both BSs at

their assigned sub-carriers, as shown in (13). This redundant

information enables a low-complexity and high-quality data

association algorithm that does not significantly rely on the

solution to the non-convex problem (28). However, there are

also limitations for the IRS-enabled localization. For example,

this architecture can only localize the targets that are close to

the IRS such that their reflected signals via the IRS is strong

enough to be detected by the BSs.

VII. NUMERICAL RESULTS

In this section, we provide numerical results to verify the

effectiveness of the proposed two-phase localization protocol.

It is assumed that BS 1 and BS 2 are localized at (−100, 0) in

meter and (100, 0) in meter, respectively, and the IRS is located

at (0, 40) in meter. All the targets are randomly localized within

a circle whose center is the IRS site and radius is 50 meters.

Moreover, the channel bandwidth is 400 MHz, and the number

of OFDM symbols in a RB is Q = 7. Last, the identical

transmit power of the BSs is 39 dBm, and the power spectrum

density of the noise at the BSs is −174 dBm/Hz.

Fig. 2 shows the localization error probability achieved by

our proposed two-phase protocol in the considered network

with 2 BSs and 1 IRS. Here, an error event for localizing a

target is defined as the case that the estimated location is not

lying within a radius of 1 meter from the true target location.

For performance comparison, we consider the cellular network

consisting of 3 BSs as the benchmark, where the localization

can be performed by utilizing the scheme proposed in [9].

It is observed that because the data association is based on

the simple criterion (32) rather than the solution to the non-

convex problem (28) as in [9], our proposed scheme can achieve

lower localization error probability over the benchmark scheme.

Moreover, numerical results also verify that our proposed

algorithm is of lower complexity. For example, when K = 7,

the average CUP running time of the benchmark scheme is

about 0.09 s for each realization, while that of the proposed

scheme is about 0.01 s.

VIII. CONCLUSIONS

In this paper, we considered the trilateration-based device-

free sensing in a cellular network consisting of two BSs, one

IRS, and multiple passive targets. Compared to the device-based

sensing counterpart with three active anchors and multiple

active targets, there are two main challenges in the considered

network. First, it is difficult to measure the distance between the

passive IRS and each passive target because both of them can-

not estimate the delay for the signal propagated between them.

Second, it is non-trivial to match each estimated range to the

right target. Our results showed that the above challenges can

be efficiently tackled based on the advanced signal processing

techniques. As a result, it is concluded that the trilateration-

based technique can be generalized to the case when some of

the anchors and all the targets are passive.
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