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Abstract—Quantum states of light being transmitted via re-
alistic free-space channels often suffer erasure errors due to
several factors such as coupling inefficiencies between transmitter
and receiver. In this work, an error correction code capable of
protecting a single-mode quantum state against erasures is pre-
sented. Our three-mode code protects a single-mode Continuous
Variable (CV) state via a bipartite CV entangled state. In realistic
deployments, it can almost completely reverse a single erasure
on the encoded state, and for two erasures can it improve the
fidelities of received states relative to direct transmission. The
bipartite entangled state used in the encoding can be Gaussian or
non-Gaussian, with the latter further enhancing the performance
of the code. Our new code is the simplest code known that
protects a single mode against erasures and should prove useful
in the construction of practical CV quantum networks that rely
on free-space optics.

Keywords—Continuous variable quantum information, quan-
tum communications, quantum error correction.

I. INTRODUCTION

Continuous variable (CV) quantum information, encoded
in the quadrature variables of electromagnetic signals, may
offer several advantages over discrete variable (DV) quantum
information in the context of reliable-state transfer over free
space [1], [2]. The free-space transmission of CV quantum
states using weak laser pulses via satellites in low-Earth-
orbit (LEO), could potentially represent a viable path toward
achieving global quantum communications [3]–[5].

However, Quantum information is fragile by nature - the
unavoidable interaction between quantum systems and their
environment introduces errors to the quantum states. Correc-
tion of these errors requires the use of additional quantum
resources to construct a larger quantum system in which
the deterministic identification and correction of the errors is
possible [6]. Attempts at error correction in many contexts for
CV states have been attempted, e.g. [7]–[15]. Here we focus on
a type of error that can affect CV states in practical scenarios,
especially with the advent of new communications platforms
such as quantum communications via satellite; erasure chan-
nels.

In the context of free-space quantum communications, the
erasure channel corresponds to the beam being completely
lost during transmission. This can happen as a consequence
of the beam wandering effects caused by the turbulence in
the atmosphere [16]–[18]. The uplink transmission of quantum

states from the ground to a LEO satellite is an example where
erasures are prominent due to the prevailing beam wandering
[15].

To achieve the correction of erasures on quantum states a
new quantum erasure code is presented. The code considers
a single-mode quantum state as an input and encodes it with
a bipartite entangled state. Our code is different from erasure
codes previously constructed. The most similar code to that
presented here is the code of [19], [20] in which two input
states are protected through the use of four transmission
channels. In contrast, our code protects fewer states (one)
but with the benefit of reduced complexity (use of three
transmission channels). As such, our code offers a pathway to
more pragmatic deployments. In addition, due to its relative
simplicity, it becomes possible to optimize faster the free
parameters of our code relative to other codes - an issue
of particular importance when multiple erasures occur on
the encoded state. The novel contributions of this work are
summarized as follows:
• We present an erasure code for CV states and analyze in

detail its performance.
• A detailed optimization procedure is presented for our

code when erasures are present. Additionally, perfor-
mance with a simpler deployment where this optimization
is neglected is compared.

• The use of Gaussian and non-Gaussian states for the
input entangled state is considered and their performance
is compared. It is shown that, in combination with the
optimization process, the use of non-Gaussian states
further increases the performance of the code.

In section II we introduce our code and analyze its perfor-
mance via the Wigner Characteristic Function (CF) formalism.
We present detailed results from the code which detail its
performance under different combinations of erasures and
different assumptions regarding the input entangled state used
for encoding in section III. Finally, we draw our conclusions
in section IV.

II. ERASURE ERROR CORRECTION CODE

The Wigner CF formalism will be used to study the error
correction code presented here. This is motivated by the results
presented in [21] that show that the output state of CV
quantum teleportation can be easily computed from the CFs
of the quantum states involved in the protocol. In this workThis work has been acceped for publication in GLOBECOM 2022.
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a similar result is obtained, the CF of the output state after
error correction corresponds to a product of the CFs of the
input state and the entangled state.

The CF of any n-mode quantum state ρ̂ is defined as

χ(λ1, λ2, ..., λn) = Tr
{
ρ̂D̂(λ1)D̂(λ2)...D̂(λn)

}
, (1)

where λi ∈ C. Here, D̂ is the displacement operator,

D̂(λi) = eλj â
†
j−λ

∗
j âj , (2)

where âj and â†j are the annihilation and creation operators of
mode j, and ∗ represents the complex conjugate. Conveniently,
linear optics operations can be expressed in the CF formalism
by simply transforming the arguments of the CF, whilst leaving
the functions themselves unchanged. Relevant CFs for this
work include the vacuum state, |0〉, expressed as

χ|0〉(λ) = exp

[
−|λ|

2

2

]
, (3)

and the coherent state, |α〉 = D̂(α) |0〉, expressed as

χ|α〉(λ) = exp

[
−|λ|

2

2
+ (λα∗ − λ∗α)

]
. (4)

The other important CFs we will utilize involve those of the
different entangled states used in the encoding, which we
present later.

In Fig. 1 our error correction code is presented. The
resources required for the implementation and optimization of
this code include entangled-bipartite states, linear-optics oper-
ations, and classical processing. The deployment of our error
correction scheme can be divided into four steps: encoding,
decoding, syndrome measurements, and correction.

As shown in Fig. 1, Alice starts with a single-mode quantum
state, which we will refer to as the “quantum signal,” that she
wishes to transmit through the channel to Bob, and prepares
an entangled bipartite state. The initial CF corresponds to a
product of the CFs of the quantum signal, χs(λ1), and the
entangled state, χAB(λ2, λ3). The encoding of the quantum
signal is done via a balanced beam splitter (BS1), described
by a transformation of the CF arguments as follows [10],

χs

(
λ1 + λ2√

2

)
χAB

(
λ1 − λ2√

2
, λ3

)
. (5)

Thereafter, the encoded state is transmitted from Alice to
Bob through the channel. In general, the erasure channel acting
on a single-mode state, ρ, returns the state,

ρ′ = (1− Pe)ρ+ Pe |0〉 〈0| , (6)

with Pe being the probability of an erasure. If the three modes
of the encoded state were sent concomitantly through the
channel the result would be either an unchanged state or a
three-mode vacuum state from which no information can be
recovered. Therefore, a mechanism that transmits each mode
independently must be used. An example of such a mechanism
would be one that time multiplexes each mode using delay
lines. When the three modes are sent independently through
the channel the result is a mixed state corresponding to all of

the eight combinations of modes erased,

ρch =

8∑
j=1

Pjρj , (7)

with Pj corresponding to the probability of each combina-
tion of modes erased. These range from (1 − Pe)

3 to P 3
e ,

corresponding to zero erasures, and erasures in every mode,
respectively. At this point, the CF of the three mode state,
now defined as χx

ch(λ1, λ2, λ3), will depend on the modes x
that suffer an erasure. This means that for the erased modes
their arguments in the CF in Eq. 5 will be set to zero [22],
while vacuum CFs are added as a product with arguments
corresponding to the erased modes. For example, if mode 2′

has an erasure the corresponding CF is

χ{2}ch (λ1, λ2, λ3) = χs

(
λ1√

2

)
χAB

(
λ1√

2
, λ3

)
χ|0〉(λ2).

(8)

Bob monitors and identifies which of the modes suffered an
erasure during transmission via the channel, and will use that
information in combination with the syndrome measurement
to apply the correction. Note, our erasure code implementation
resembles that utilized in the context of secret sharing [23].
Apart from the application context, a key difference in our
implementation is the use of the erasure monitoring function
and its mapping to an erasure correction protocol. We can
consider this mapping to be the following: for any monitoring
measurement that indicates a non-unity channel transmissivity,
we set that channel to be in ‘erasure’. This logic is then used
to set the gains needed to adjust the output quantum state.

As the modes are received by Bob, he applies corresponding
delays such that by the time he has received all the modes, they
are all temporally coincident. To decode the quantum state, he
applies BS2 that transforms the arguments as,

χx
ch

(
λ1 + λ2√

2
,
λ1 − λ2√

2
, λ3

)
. (9)

In the case when the channel acts as an identity (no erasures)
the application of BS2 effectively cancels the effects of BS1.

During the final step, syndrome measurements are per-
formed. To this end, BS3 is applied, giving a CF for the three
mode state as

χx
BS3(λ1, λ2, λ3) = (10)

χx
ch

(
λ1 + λ2√

2
,
λ1√

2
− λ2 + λ3

2
,
λ2 − λ3√

2

)
.

Now dual homodyne measurements are performed on modes
2′′ and 3′′ (see Fig. 1). To compute the result after the mea-
surements it is convenient to represent the complex arguments
in the phase-space representation, by using two distinct real
numbers, xj= 1√

2
(λj + λ∗j ) and pj=

i√
2
(λ∗j − λj). Then, for

the pair of measurement results x̃ and p̃ the output CF (on



Fig. 1. The code to correct the erasures introduced by the quantum erasure channel. The code protects a single-mode quantum state against erasures by
combining it with an entangled bipartite state. The encoding and decoding are made using beam splitters. Delay lines are introduced such that each mode is
sent independently through the channel. The syndrome measurement corresponds to a dual homodyne measurement. Using the syndrome result a correction
is applied to the remaining mode of the state to recover the original state. The error code is optimized by monitoring another (classical) beam in the same
channels (red BSs) and preparing the entangled state accordingly. Dashed lines represent the transmission of classical information.

mode 1′′) is obtained by the integration [21],

χx
m(x, p) =

P(x̃, p̃)−1

(2π)2

∫
dx2dp3χx

BS3 (x, p, x2, 0, 0, p3)

× e−ix̃p3+ip̃x2 , (11)

with P(x̃, p̃) the probability distribution of any pair of mea-
surement results, given by

P(x̃, p̃) =
1

(2π)2

∫
dx2dp3χx

BS3 (0, 0, x2, 0, 0, p3)

×e−ix̃p3+ip̃x2 . (12)

The extra exponential term in Eq. 11 indicates that the
collapsed state after the measurement requires a corrective
displacement to be recovered. The corrective displacement is,

Ûcorr(x̃, p̃) = exp
[√

2x̃pgp − i
√

2p̃xgx

]
, (13)

where (gx, gp) are the gains of the correction. Here the
correction includes a factor of

√
2 to compensate for the global

factor that appears in the arguments of χx
ch in Eq. 10.

Finally, since the output CF will depend on a specific set
of measurement results, the mean output over all possible
measurement outcomes weighted with the corresponding prob-
ability distribution must be considered, that is

χx
out(x, p) =

∫
dx̃dp̃P(x̃, p̃)χx

m(x, p)ei
√
2x̃pgp−i

√
2p̃xgx

=
1

(2π)2

∫
dx̃dp̃dx2dp3χx

BS3(x, p, x2, 0, 0, p3)

× eix̃(
√
2pgp−p3)−ip̃(

√
2xgx−x2). (14)

At this point the definition of the Dirac delta function,
1
2π

∫∫
eiβx−iβαf(α)dβdα =

∫
δ(x− α)f(α)dα, can be used

twice to finally obtain

χx
out(x, p) =

∫
dx2dp3δ(p3 −

√
2gpp)δ(x2 −

√
2gxx)

× χx
BS3(x, p, x2, 0, 0, p3). (15)

Therefore, the resulting CF will correspond to a product of the
initial CFs with a transformation of the parameters that will
depend on the specific erasures x plus a vacuum contribution.
The resulting expressions for χx

out are summarized in Table I.
The CF of the output state depends on the erasures, which can
be divided into two cases:

1) Single erasure: If there is only a single erasure on
the encoded state, the signal is recovered by maximizing
the amount of entanglement in |ρAB〉, with perfect recovery
corresponding to the limit of infinite entanglement. To this end,
see that under the correct choice of (gx, gp) (e.g. if erasure on
mode 2′, then gx=gp=1) the CF is reduced to a product of
the CFs of the quantum signal and the entangled state. The
signal is recovered since V→∞ implies that χAB(λ, λ∗)→1.
When the erasure is on mode 3′, the signal can always be
recovered fully independently of the entanglement used by
setting gx=gp=0.

2) Two erasures: When two modes suffer an erasure, any
amount of entanglement in |ρAB〉 will ultimately become
added noise in the output state. This can be seen from the fact
that the CF of the entangled state χAB has one mode traced
out, meaning that the entangled state has now been reduced
to a thermal state. Remarkably, some information from the
signal can still be recovered in this case if the entangled state
is instead replaced by two vacuum states [19].

Ultimately, in a realistic scenario, there might be a single
or two erasures. In such a scenario there is an optimal amount



of entanglement in the state |ρAB〉, that depends on Pe, that
will balance the trade-off between recovering the signal when
there is a single erasure, and reducing the noise when there
are two erasures.

A. Optimizing the correction

As discussed, the correction Ûcorr and the characteristics of
the entangled state used during encoding can be optimized to
enhance the effectiveness of the code. The process of opti-
mizing the error correction code involves two distinct steps.
One step is optimizing the entangled state, while the other
is optimizing the parameters in the correction, (gx, gp), for
each of the mode-erasure combinations. Note that the optimal
values (gx, gp), do not depend on the erasure probability Pe,
however, they do depend on the entangled state. On the other
hand, the optimal properties of the entangled state do depend
on Pe. Thus, full optimization of the code requires a nested
optimization problem. This nested optimization problem can
be avoided if Alice and Bob prepare beforehand a dictionary
with the optimal values (gx, gp) as a function of the properties
of the entangled state. In this case, the optimization process
is as follows. First, Alice monitors the erasure channel to
determine the value of Pe. Using this value she then prepares
an optimal entangled state. Alice shares the properties of the
entangled state with Bob via a classical channel. After Bob has
received the three modes of the code he identifies the erasures
on the encoded state and performs syndrome measurements.
With these three pieces of information (the entangled state
properties, the erasures, and the syndrome), he then uses the
dictionary to obtain the optimal values of (gx, gp) and utilizes
them in the correction.

B. Entangled resources

In CV quantum protocols, the two-mode squeezed vacuum
state (TMSV) represents the most accessible bipartite entan-
gled state. States such as the TMSV state are commonly
referred to as Gaussian since they can be described fully by
the first two statistical moments of the quadratures [1]. The

CF of a TMSV state can be conveniently written using the
following Bogoliuvov transformation [10]:

Ŝ12(%)D̂(λ1)D̂(λ2)Ŝ†12(%) = D̂(λ′1)D̂(λ′2), (16)

λ′j = cosh(r)λj + eiφ sinh(r)λ∗k j, k = 1, 2; j 6= k.

where Ŝ12 is the two-mode squeezing operator with %=reiφ,
throughout this work, the value φ=π is set. The squeezing
magnitude r is directly proportional to the entanglement of
the TMSV state, which can be quantified by the variance V ,
which relates to the squeezing as V= cosh(2r). Using the
transformation in Eq. 16 the CF of a TMSV can be written
as,

χTMSV(λA, λB) = exp

[
−1

2

(
|λ′A|2 + |λ′B|2

)]
. (17)

In contrast to Gaussian states, non-Gaussian states cannot be
fully described using statistical moments, instead, they require
a full description in the form of a density operator or a Wigner
function. In this work, a non-Gaussian entangled state that is
obtained by the application of the squeezing operator to a Bell
state is considered. The normalized CF of a squeezed Bell (SB)
state is [10],

χSB(λA, λB) = (cos2(δ) + sin2(δ))−1/2

× exp

[
−1

2

(
|λ′A|2 + |λ′B|2

)] [
cos2(δ) + 2 cos(δ) sin(δ)

×<{λ′Aλ′B}+ sin2(δ)(1− |λ′A|2)(1− |λ′B|2)
]
, (18)

where <{z} is the real part of z, and Eq. 16 is used. The
optimization of the properties of the entangled state, mentioned
in Section II.A, is done in terms of the amount of entanglement
of the states, that is, on the variance V for both TMSV and
SB states. Additionally, in the SB state, the parameter δ is also
optimized.

C. Fidelity of error correction

To quantify the effectiveness of the error correction the
fidelity of transmitted coherent states is used. The fidelity cor-
responds to a measurement of the closeness between the initial
coherent states and the output states. In the CF formalism this

Table I - Output state CF
Erasure on mode χx

out

none χs(x, p)

1′ χs

(
1−gx

2
x,

1−gp
2

p
)
χAB

(
− 1−gx

2
x,− 1−gp

2
p, gxx,−gpp

)
χ|0〉

(
1+gx√

2
x,

1+gp√
2

p
)

2′ χs

(
1+gx

2
x,

1+gp
2

p
)
χAB

(
1+gx

2
x,

1+gp
2

p, gxx,−gpp
)
χ|0〉

(
1−gx√

2
x,

1−gp√
2

p
)

3′ χs(x, p)χAB (gxx, gpp, 0, 0)χ|0〉 (gxx,−gpp)

1′ & 2′ χAB (0, 0, gxx,−gpp)χ|0〉
(

1+gx√
2

x,
1+gp√

2
p
)
χ|0〉

(
1−gx√

2
x,

1−gp√
2

p
)

1′ & 3′ χs

(
1−gx

2
x,

1−gp
2

p
)
χAB

(
− 1−gx

2
x,− 1−gp

2
p, 0, 0

)
χ|0〉

(
1+gx√

2
x,

1+gp√
2

p
)
χ|0〉

(
1+gx√

2
x,

1−gp√
2

p
)

2′ & 3′ χs

(
1+gx

2
x,

1+gp
2

p
)
χAB

(
1+gx

2
x,

1+gp
2

p, 0, 0
)
χ|0〉

(
1−gx√

2
x,

1−gp√
2

p
)
χ|0〉 (gxx,−gpp)

1′ & 2′ & 3′ χ|0〉(x, p)



is computed as,

F(α) =
1

π

∫
d2λχ|α〉(λ)χout(−λ). (19)

Note that in this case, the fidelity will be dependent on the
value of α. Therefore, to accurately assess the effectiveness of
the error correction code, a mean fidelity over an ensemble of
coherent states must be considered. The ensemble is specified
by the following distribution,

P (α) =
1

σπ
exp

[
−|α|

2

σ

]
, (20)

with σ the variance of the distribution. Therefore, the mean
fidelity over the ensemble will be used, defined as

F̄ =

∫
dα2P (α)F(α). (21)

III. RESULTS

The fidelities are computed using Table I, in combination
with Eq. 19. The mean fidelities over the distribution of coher-
ent states are computed using Eq. 21, where the value σ=10 is
fixed throughout this work. In the calculations presented here,
the value of V has the upper limit of Vmax=9.

To understand the output of the code, the fidelities corre-
sponding to each case of the mode-erasure combinations are
shown in Fig. 2. The fidelities are presented as a function
of V of the entangled states, while for the SB state, the
parameter δ is optimized for each value of V . In each case,
the parameters (gx, gp) are optimized. While in principle for
any given coherent state the optimal values of (gx, gp) are not
equal, we find that when the optimization is done over the
distribution of states given by Eq. 20 the optimal values of
both parameters coincide, that is gx=gp=gopt. See that the
fidelities for the cases when modes 1′ or 2′ suffer an erasure
tend to unity as V increases. The particular case when mode
3′ is lost is not shown in the figure, since the fidelity is always
1 when gopt=0, as discussed above.

Remarkably, in the cases where two modes are erased a
higher fidelity than the classical limit of 0.5 can still be
obtained if the entangled state is replaced by a vacuum, as
discussed above. The combinations of modes erased that re-
duce the output to the vacuum state are omitted (simultaneous
erasures in modes 1′ and 2′, and simultaneous erasures in all
the modes).

In a realistic scenario, where any number of erasures may
affect the encoded state, the optimal value Vopt must be used
to maximize the total fidelity obtained. The total fidelity is
obtained from the individual fidelities corresponding to each
combination of modes erased, weighted by their respective
probability of occurrence, as

Ftotal = (1− Pe)3 + Pe(1− Pe)2(F1 + F2 + 1) (22)

+ P 2
e (1− Pe)(F13 + F23 + F|0〉) + P 3

eF|0〉
where Fx, corresponding to the mean fidelity (Eq. 21) with
x representing the erased modes, and F|0〉 corresponds to
the mean fidelity between input states and the vacuum. In
Fig. 3 the fidelities after the error correction are presented.

Fig. 2. Fidelities corresponding to each possible combination of modes erased
on the encoded state during transmission (see Table I). The fidelities are
computed using a TMSV and a SB quantum state in the encoding. The optimal
correction parameter gopt is used in the calculations of the fidelities.

Fig. 3. Fidelites obtained for coherent states transmitted through an erasure
channel using the error correction code, with TMSV and SB states used as
the entangled state. (inset) The optimal value of V used in both entangled
states.

The results are compared with the fidelities obtained via direct
transmission through the channel. The fidelity is optimized
following the procedure discussed in Section II.A. We see that
the error correction code increases the fidelity of transmitted
coherent states for erasure error rates up to 70%. Moreover,
using the non-Gaussian state improves the fidelities over those
acquired using the TMSV state. Remarkably, once optimized,
the non-Gaussian state requires a lower amount of entangle-
ment (lower value of V ) compared to the TMSV (Fig. 3 inset).
This could prove advantageous in a scenario where the ability
to produce highly-squeezed states is limited.



Fig. 4. Total fidelities obtained for the post-selection protocol. A TMSV state
is used as the entangled state. For comparison, the total fidelities obtained
using the optimized protocol with a TMSV state are also presented.

A. Optimization vs post-selection

It is also worth considering a simpler protocol that does
not involve optimizing the system. A valid protocol would be
to post-select the output states to only use those that present
only a single erasure, or no erasure at all. In this case, no
optimization of the entangled state is required, since the best
strategy to recover the signal is to maximize V within device
limitations.

To perform a fair comparison between the post-selection and
the optimization protocol, the mean fidelities are compared.
This means that in the post-selection protocol the mean fidelity
obtained is weighted by the probability that at most only
one erasure occurs, psuccess=(1 − Pe)3 + 3Pe(1 − Pe)2. The
results are presented in Fig. 4. The fidelities shown in this
figure are computed for the post-processing protocol using a
TMSV state with different values of V . The fidelities obtained
from the post-selection protocol do not exceed the fidelity
obtained by the optimized protocol. Nonetheless, we see that
for low erasure rates the results of the post-selection protocol
are considerably closer to those obtained from the optimized
protocol. This means that in a practical implementation of the
erasure code the post-selection protocol could still be used
effectively if the erasure rate is low.

IV. CONCLUSIONS

The error correction code studied in this paper represents
a practical solution to erasures that could be implemented in
future implementations - especially satellite-based implemen-
tations in which erasures (and partial erasures) are not un-
common. We showed that there existed several free parameters
associated with our erasure code that could be optimized. After
such optimization, the fidelities of transmitted coherent states
over the erasure channel showed a considerable increase over
direct transmission. A simpler protocol was investigated in

which the parameters of the code were not optimized, instead,
the results were post-selected to consider only when a single
(or no) erasure occurs. For low error rates, the post-selected
protocol provided similar performance to the optimized proto-
col while being considerably less complex. Our erasure code
was further enhanced by considering non-Gaussian states in
the encoding process. Typically, enhancements in the fidelity
of 20% were found if non-Gaussian states were used in the
encoding process.
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