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Abstract—In optical wireless communications, a broadcast
channel (BC) employing intensity modulation and direct detection
(IM/DD) is often modeled as a peak-constrained BC. A closed-
form expression for its capacity region of the peak-constrained
BC is not known. This paper presents an analytical capacity
inner bound for the peak-constrained Gaussian BC achieved by
a class of discrete input distribution, specifically, the evenly-
spaced discrete uniform distribution (ESDU). In contrast to
the continuous input distribution that provides the benchmark,
ESDU is more promising in the application of peak-constrained
Gaussian channels. The newly obtained capacity inner bound is
easily-computable and is numerically shown to be tighter than the
benchmark. Besides, we remark the newly developed analytical
upper bound for the ESDU rate, which is tight in all tested
settings.

I. INTRODUCTION

Optical wireless communication (OWC) has witnessed an

increased research attention over the past decade, owing to

the advent of LiFi [1] in addition to emerging applications

of free-space optics, visible light communications, and ultra-

violet wireless communications [2]–[4]. This renewed interest

in optical wireless communications led to increasing efforts in

studying the capacity achieved in an OWC system using inten-

sity modulation and direct detection (IM/DD), often modeled

as a peak-constrained Gaussian channels with a single user

[5]–[7]. Driven by the growing interests in applying OWC

in practice [8]–[10], recent developments in this area have

led to new results for peak-constrained multi-user channels,

including the multiple-access channel [11], the interference

channel [12], and the broadcast channel (BC) [13], which

can model the uplink and the downlink scenarios in OWC.

However, the study on the capacity of the peak-constrained

multi-user channels is hindered by a major challenge.

For a peak-constrained Gaussian channel, it is known that

the capacity is achieved by a discrete input distribution [14].

However, analyzing the entropy of the mixture of a Gaus-

sian and a discrete distribution is rather challenging. As a

consequence, the current literature resorts to either evaluating

capacity numerically [6], or to bounding it using continuous

distributions such as uniform, truncated-exponential, or trun-

cated Gaussian (TG) distributions leading to analytical results

that exhibit a large gap to capacity [5], [13] (see [15] for a

survey on the topic). Moreover, although it is known that a

discrete uniform distribution over an evenly-spaced alphabet

(ESDU) provides a good approximation of the capacity of

the peak-constrained Gaussian channel [6], there is no closed-

form expression for the rate achieved by a general ESDU (or

a good rate bound thereon). Consequently, the effectiveness

of ESDU in the peak-constrained Gaussian channel is only

known through numerical results for specific settings [6].

Due to the challenge in analyzing discrete channel input,

the study on the capacity of the peak-constrained Gaussian

BC has been hindered for a long time, as observed in the

current literature. The earliest study we find in the literature

on the capacity of the peak-constrained Gaussian BC is [13],

which developed capacity inner bounds and outer bounds.

After [13], little new knowledge about the capacity of the

peak-constrained Gaussian BC appears in the literature, despite

the importance of the peak-constrained Gaussian BC for OWC.

The recent literature on the peak-constrained BC tends to

accept the disadvantage of continuous input distributions in

terms of rate in exchange for the advantage of having simple

achievable rate expressions. For example, the recent work [8],

[10], [16] are all based on analytical single-user capacity lower

bounds that are derived for continuous input distributions

and thus have inherited their large gap to capacity. This

highlights the importance of deriving simple analytical results

for the achievable rates of discrete input distributions towards

developing tighter capacity bounds for the peak-constrained

Gaussian BC.

In this paper, we aim to address this challenge. We propose

to adopt ESDU in the peak-constrained Gaussian BC and study

its achievable rate. More specifically, analytical results are

derived for the peak-constrained Gaussian point-to-point (P2P)

channel based on ESDU input, leading to an upper and a lower

bound on its achievable rate, which are then used to obtain

an analytical inner bound for the peak-constrained Gaussian

BC. This ESDU-based BC inner bound is then examined

numerically in comparison with the benchmark inner bound

from [13] which is based on a TG distribution, and is shown to

achieve a larger rate region. Besides, the numerical results also

show that the obtained ESDU rate upper bound is remarkably

tight in all tested settings.

The rest of the paper is organized as follows. Sec. II

describes the channel model and the objective. The achievable

rate analysis of the ESDU and the main results of the paper

are given in Sec. III. Then Sec. IV numerically examines
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the obtained results. Finally, Sec. V concludes this paper and

introduces possible future extensions.

Notations: Throughout the paper, we use R+ to denote

the set of nonnegative real numbers, I(·; ·) to denote the

mutual information between two random variables, and H(·)
and h(·) to denote the entropy and differential entropy of a

random variable, respectively. We also use H(p) to denote

the binary entropy function, i.e., for p ∈ [0, 1], H(p) =
−p log(p) − (1 − p) log(1 − p). We use log(·) to denote the

base-2 logarithm, P[·] to denote the probability of a random

event, PX to denote the probability distribution of X , and

E[·] and V[·] to denote the expectation and the variance of a

random variable, respectively. We write X ∼ Unif([a, b]) to

indicate that a continuous random variable, X , is uniformly

distributed on the interval [a, b], and X ∼ Unif(X ) to indicate

that a discrete random variable, X , is uniformly distributed

on the alphabet X . Specifically, we write X ∼ ESDU(A,K)
to indicate that a discrete random variable, X , is uniformly

distributed over the set { iA
K−1}

K−1
i=0 , an alphabet with K ele-

ments spanning [0, A] with a spacing of A
K−1 , or equivalently,

ESDU(A,K) = Unif
(

{ iA
K−1}K−1

i=0

)

. Finally, X ∼ N (µ, σ2)
defines a Gaussian random variable with mean µ and vari-

ance σ2 and Q(x) =
∫∞
x

1√
2π

e−
x2

2 dx is the standard Gaussian

tail function.

II. CHANNEL MODEL AND OBJECTIVE

Consider a two-user OWC BC employing an IM/DD

scheme. This can be modeled as a peak-constrained Gaussian

BC, defined through the input output relations

Yi = X + Zi, i = 1, 2, (1)

where the transmitter broadcasts X to receivers 1 and 2

through independent noisy transmission links, and receiver i
receives Yi = X+Zi, where the additive noise at the receiver

is Gaussian, i.e., Zi ∼ N (0, σ2
i ). Without loss of generality

(WLOG), we suppose σ1 < σ2. The transmit signal satisfies

nonnegativity and peak constraints so as X ∈ [0, A].

Using this channel, the transmitter wants to send messages

M1 and M2 with rates R1 and R2 to receivers 1 and 2,

respectively. Achievable rate pairs (R1, R2) and the capacity

region of this BC are defined in the standard Shannon sense,

see [17, Ch. 5]. Note that this BC belongs to the family

of degraded BCs, since given Z̃2 ∼ N (0, σ2
2 − σ2

1) and

Ỹ2 = Y1 + Z̃2, PY2|X = PỸ2|X and X − Y1 − Ỹ2 forms a

Markov chain.

Thus, the capacity region of this two-user BC is the set of

rate pairs (R1, R2) that satisfy [17, Chap. 5]

0 ≤ R1 ≤ I(X ;Y1|U), (2a)

0 ≤ R2 ≤ I(U ;Y2), (2b)

for some PU,X , where U is an auxiliary random variable

that conveys the message to receiver 2. This region can

be achieved through superposition coding with successive

interference cancellation (SC-SIC).

The main challenge is to determine U and X such that the

peak constraint is satisfied. The objective of this work is to

provide an analytical lower bound on this capacity region when

X follows a discrete distribution. To this end, we propose a

transmission scheme that combines SC-SIC and an ESDU, and

analyze its achievable rate to obtain a closed-form expression.

Details are given next.

III. PROPOSED SCHEME AND ACHIEVABLE RATE

We propose to adopt SC-SIC in the two-user BC (1) while

designing X so that X ∼ ESDU(A,K) for some K ≥ 2. The

construction of X is as follows. Given some integers K1 ≥ 1
and K2 ≥ 1 such that K = K1K2 ≥ 2, define independent

ESDU random variables X1 ∼ ESDU
( (K1−1)A

K−1 ,K1

)

and

X2 ∼ ESDU
( (K2−1)K1A

K−1 ,K2

)

. The random variables X1 and

X2 will be used to encode M1 and M2, respectively, using an

independent and identically distributed (i.i.d.) random code,

i.e., the codeword for Mi is an i.i.d. sequence of realizations

of Xi. Finally, the transmit signal is constructed by adding the

codewords, and hence X = X1 +X2.

For decoding, receiver 2 decodes M2 from its received

signal, while receiver 1 decodes M2 to obtain X2, subtracts

its contribution from the received signal, and finally then M1.

The achievable rate region is the convex hull of the union over

Ki ≥ 1 of sets of rate pairs (R1, R2) ∈ R
2
+ that satisfy

R1 ≤ I(X1;X1 + Z1), (3a)

R2 ≤ I(X2;Y2) (3b)

= I(X ;Y2)− I(X1;X1 + Z2), (3c)

where (3c) follows since I(X2;Y2) = I(X1, X2;Y2) −
I(X1;Y2|X2) = I(X ;Y2)− I(X1;Y2|X2).

In order to simplify the evaluation of this achievable rate

region, we aim to express the mutual information terms in

(3a) and (3c) in closed form. To this end, we need some

preliminaries, which are presented in the following subsection.

A. Useful P2P Rate Bounds

Here we present bounds on the rate that can be achieved

in a peak-constrained Gaussian P2P channel using an ESDU

input distribution. We start by recalling capacity bounds for

the peak-constrained Gaussian P2P channel with a continuous

uniform input distribution which will be useful afterwards.

Lemma 1 (Continuous uniform distribution rate). Given

X ∼ Unif([0, A]) and Z ∼ N (0, σ2), we have C(A, σ) ≤
I(X ;X + Z) ≤ E(A, σ) where

E(A, σ) , min
{

C(A, σ),
1

2
log

(

1 +
A2

12σ2

)}

, (4)

and C(A, σ) and C(A, σ) are the lower and upper bounds on

I(X ;X + Z) given in [5], [7] as

C(A, σ) =
1

2
log

(

1 +
A2

2πeσ2

)

, (5)

C(A, σ) = min

{

1

2
log

(

1 +
A2

4σ2

)

, log
(

1 +
A√
2πeσ

)

}

. (6)



Proof: The proof is given in Appendix A.

Note that C(A, σ) and C(A, σ) are also the lower and upper

bound for the capacity of the peak-constrained Gaussian P2P

channel as shown in [5], [7].

Next, we provide lower and upper bounds on the achievable

rate of an ESDU input in the following lemmas.

Lemma 2 (ESDU rate lower bound). Given X ∼
ESDU(A,K) and Z ∼ N (0, σ2), we have I(X ;X + Z) ≥
F(A,K, σ) where

F(A,K, σ) = max
i∈{1,2,3}

Fi(A,K, σ), (7)

wherein

F1(A,K, σ) = log(K)−H(ξA,K)− ξA,K log(K − 1), (8)

with ξA,K ,
2(K−1)

K
Q
(

A
2(K−1)σ

)

, and

F2(A,K, σ) = C
( KA

K − 1
, σ

)

− E

( A

K − 1
, σ

)

, (9)

with E as defined in (4), and

F3(A,K, σ) = − log

(

∑

i,j∈[1,K]

√

e/2

K2
e
− (i−j)2A2

4(K−1)2σ2

)

(10)

Proof: The proof is given in Appendix B.

Remark 1. Regarding the three components of F(A,K, σ),
F1(A,K, σ) is tighter than the other when K is small so that
A

K−1 is large, and F2(A,K, σ) and F3(A,K, σ) are tighter

when K is large so that A
K−1 is small.

As an additional remark, for an ESDU input, the new

analytical lower bound F(A,K, σ) is tighter than the Ozarow-

Wyner-B bound [18] [19, eq. (9)], which is defined as

ROWB(A,K, σ) , log(K) − 1
2 log

(

2πe
12

)

− 1
2 log

(

1 +

12(K−1)2σ2

A2

)

. The proof is given below. Denote ∆ = A
K−1 .

Then, we have,

F(A,K, σ)

≥ C(K∆, σ)− E(∆, σ) (11a)

≥ 1

2
log

(

1 +
K2∆2

2πeσ2

)

− 1

2
log

(

1 +
∆2

12σ2

)

(11b)

= ROWB(A,K, σ) +
1

2
log

(

1 +
2πeσ2

K2∆2

)

(11c)

≥ ROWB(A,K, σ). (11d)

Lemma 3 (ESDU rate upper bound). Given X ∼
ESDU(A,K) and Z ∼ N (0, σ2), we have I(X ;X + Z) ≤
G(A,K, σ) where

G(A,K, σ) = min
{

H(K), C(A, σ),G′(A,K, σ)
}

, (12)

wherein

G′(A,K, σ) =
1

2
log

(

22E(
KA
K−1 ,σ) − A2

2πe(K − 1)2σ2

)

, (13)

and E is defined in (4).

Proof: The proof is given in Appendix C.

Remark 2. In general, G(A,K, σ) combines the bounds

H(K) which is a good upper bound when K is small so that
A

K−1 is large, G′(A,K, σ) which is good when K is large so

that A
K−1 is small, and C(A, σ) which is good overall but is

a capacity upper bound (not specific for an ESDU distributed

input). This conclusion is examined in Fig. 1.

Now we are ready to present the main results of the paper

on the achievable rate region of a peak-constrained Gaussian

BC.

B. BC Achievable Rate Region

The new achievable rate region achieved using an ESDU in

a peak-constrained Gaussian BC is given next.

Theorem 1 (A computable BC capacity inner bound). Given

a peak-constrained Gaussian BC as defined in Sec. II, and

given any Ki ≥ 1, i = 1, 2, rate pairs (R1, R2) ∈ R
2
+ that

satisfy

R1 ≤ F

( (K1 − 1)A

K1K2 − 1
,K1, σ1

)

(14a)

R2 ≤ F(A,K1K2, σ2)− G

((K1 − 1)A

K1K2 − 1
,K1, σ2

)

, (14b)

are achievable, where F and G are defined in (7) and (12),

respectively.

Proof: The proof is obtained based on (3) while using

Lemmas 2 and 3 to lower-bound I(X1;X1+Z1) and I(X ;Y2)
and to upper-bound I(X1;X1 +Z2), respectively, where both

X1 and X follow the ESDU distribution.

To assess the above inner bound, we use the following

capacity outer bound [13].

Theorem 2 (BC capacity outer bound). An achievable rate

pair (R1, R2) ∈ R
2
+ in a peak-constrained Gaussian BC as

defined in Sec. II satisfies (R1, R2) ∈ G , G1 ∩G2, where G1

is in the convex hull of the union over ρ ∈ [0, 1] of rate pairs

(R1, R2) ∈ R
+ satisfying

R1 ≤ 1

2
log

(

1 +
σ2
2(e

2C(ρA,σ2) − 1)

σ2
1

)

, (15a)

R2 ≤ C(A, σ2)− C(ρA, σ2) (15b)

and where

G2 ,

{

(R1, R2) ∈ R
+

∣

∣

∣

∣

∣

Ri ≤ C(A, σi), i = 1, 2,
R1 +R2 ≤ C(A, σ1)

}

(16)

Proof: The proof of the outer bound G1 is given in

[13]. The proof of the outer bound G2 follows due to the

degradedness property [17, Sec. 5.4], implying that the sum

rate cannot not be larger than the capacity of the less noisy

link (from the transmitter to receiver 1).

IV. NUMERICAL RESULTS

In this section, we numerically examine the obtained results.

The lower and upper bounds for the ESDU rate in Lemma 2

and 3 are shown first, followed by the achievable rate region

of the BC. Without loss of generality, we set σ = σ1 = 1
throughout the simulations.



A. The Lower and the Upper Bounds of ESDU Rate

Let X ∼ ESDU(A,K) be the input of a peak-constrained

Gaussian P2P channel with a peak constraint A, and with

output X + Z where Z ∼ N (0, σ2). The achievable rate

I(X ;X + Z) is lower- and upper-bounded as in Lemmas

2 and 3, respectively. To plot these bounds, we let K =
max

{

2, ⌈ A
∆0

⌉+1
}

and we consider ∆0 = 0.5iσ, i = 1, . . . , 20
in our simulation. Fig. 1 shows the comparison between the

lower bound, the upper bound, and I(X ;X+Z), under some

representative settings. We also plot C(A, σ) and C(A, σ) as

a benchmark, and plot H(X) to examine Remark 2. It can be

seen in Fig. 1 that I(X ;X + Z) always lies in between the

obtained ESDU bounds, where the upper bound remains very

close to I(X ;X + Z) in all tested settings.

B. ESDU-based BC Capacity Bounds

Fig. 2 shows the inner bounds (IB) in (3), its computable

form (14) stated in Theorem 1, a benchmark inner bound

from [13] based on a TG distribution, and the outer bound

(OB) stated in Theorem 2, under various values of A
σ1

and σ2

σ1
.

To plot the rate region (14), we vary ∆0 within {0.5iσ1|i =
1, . . . , 20}. Then, for each ∆0, we let K = max

{

2, ⌈ A
∆0

⌉+1
}

and K1 in {0, . . . ,K}. For each K1, we choose K2 to be the

smallest integer such that ∆ = A
K1K2−1 ≤ ∆0. The same

procedure is used for evaluating (3), except that ∆0 here is

within {iσ1|i = 1, . . . , 10} for the sake of less computation

time. It can be seen from Fig. 2 that the ESDU-based inner

bound (3) always outperforms the TG-based one, and the gap

between the inner bound (3) and its simplified form (14) is

within 0.2 bits in all tested cases. The gap is mainly attributed

to the relatively loose ESDU lower bound as shown in Fig.

1. As an observation, it is also worth to note that the settings

of K and K1 given in this simulation can help to achieve the

rate pairs close to the boundary of the IB (14) under each

∆0, which is more significant around the maximum sum-rate

point. This can be seen from the rate pairs associated with

each ∆0, where the case ∆0 = 3σ1 is provided as an example

in Fig. 2.

V. CONCLUSIONS AND OPEN QUESTIONS

We studied the achievable rate region of an evenly-spaced

discrete distribution (ESDU) in a peak-constraint Gaussian

broadcast channel (BC). To this end, we derived new lower

and upper bounds for the ESDU rate achieved in a Gaussian

channel, i.e., I(X ;X + Z) with X following a ESDU distri-

bution and a Gaussian noise Z . We provided numerical results

to examine the analytical results. The ESDU-based BC inner

bound is shown to outperform the benchmark inner bound in

the literature, which is based on a truncated Guassian (TG)

distribution. Besides, the obtained ESDU rate upper bound

for the P2P channel is remarkably tight in all tested settings.

Future work can target tightening the lower bound on ESDU

rate, which can help to close the gap between the approx-

imation and the actual ESDU inner bound. Moreover, the

work can be extended to consider non-uniform distributions

over an evenly-spaced alphabet (such as geometric distribution

[6], [20]) which is useful for peak- and average-constrained

channels that model Li-Fi applications.

APPENDIX A

PROOF OF LEMMA 1

Firstly, the lower bound I(X ;X + Z) ≥ C(A, σ) follows

from [5, Thm. 5]. C(A, σ) is the combination of the capacity

upper bounds of the [0, A]-peak-constrained Gaussian channel

in [5, Thm. 5] and [7, (12)], so that it is direct to obtain

I(X ;X +Z) ≤ C(A, σ) It remains to prove the upper bound

I(X ;X + Z) ≤ 1
2 log

(

1 + A2

12σ2

)

. We have

I(X ;X + Z) = h(X + Z)− h(Z) (17a)

≤ 1

2
log

(

2πeV[X + Z]
)

− 1

2
log

(

2πeσ2
)

=
1

2
log

(

1 +
A2

12σ2

)

, (17b)

where the inequality follows since the Gaussian distribution

maximizes the differential entropy under a variance constraint,

and the last equality follows since V[X+Z] = V[X ]+V[Z] =
A2

12 + σ2. This ends the proof.

APPENDIX B

PROOF OF LEMMA 2

We first prove that I(X ;X + Z) ≥ F1(A,K, σ). Let X̂ be

the nearest-neighbor estimator of X from X+Z . Then, using

Fano’s inequality, we have

I(X ;X + Z) = H(X)−H(X |X + Z) (18a)

≥ H(X)−H
(

P(X̂ 6= X)
)

− P(X̂ 6= X) log(K − 1). (18b)

To calculate P(X̂ 6= X), let ∆ = A
K−1 and

p0 = P(X̂ 6= X |X = 0) = Q

( ∆

2σ

)

. (19)

Note that P(X̂ 6= X |X = A) = p0, and for x ∈ X \ {0, A}
we have P(X̂ 6= X |X = x) = 2p0. Thus,

P(X̂ 6= X) =
∑

x∈X
P(X̂ 6= X |X = x)P(X = x) (20a)

=
2(K − 1)p0

K
= ξA,K . (20b)

By substituting (20b) into (18b), we obtain I(X ;X + Z) ≥
F1(A,K, σ).

Then, we prove that I(X ;X + Z) ≥ F2(A,K, σ). Define

an independent random variable U ∼ Unif
(

[0,∆)
)

. We have

I(X ;X + Z)

= h(X + Z)− h(Z) (21a)

= h(X + U + Z|U)− h(Z) (21b)

= I(X + U ;X + U + Z)− I(U ;X + U + Z) (21c)

≥ I(X + U ;X + U + Z)− I(U ;U + Z) (21d)

≥ C
(

K∆, σ
)

− E(∆, σ), (21e)
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Fig. 1. The lower and upper bounds on the rate I(X;X + Z) achieved by an ESDU input distribution in a peak-constrained Gaussian P2P channel.

where the first inequality follows since I(U ;U+Z)−I(U ;X+
U + Z) = I(X ;U |X + U + Z) ≥ 0, and the second

inequality follows since X+U and U are continuous uniform

distribution where X + U ∼ Unif([0, A + ∆]), so that

Lemma 1 applies. By substituting ∆ = A
K−1 , we obtain

I(X ;X + Z) ≥ F2(A,K, σ).
Finally, I(X ;X+Z) ≥ F3(A,K, σ) is obtained by applying

Jensen’s inequality in h(X +Z), as shown in [19, eq. (18b)].

APPENDIX C

PROOF OF LEMMA 3

The proof of I(X ;X + Z) ≤ min{H(X), C(A, σ)} is

trivial. Next we prove that I(X ;X + Z) ≤ G′(A,K, σ).
Define ∆ = A

K−1 and define an independent random variable

U ∼ Unif
(

[0,∆)
)

. We start similar to (21c) to write

I(X ;X + Z) = I(X + U ;X + U + Z)− I(U ;X + U + Z).

Then we continue as follows

I(X ;X + Z) (22a)

= I(X + U ;X + U + Z)− h(X + U + Z) + h(X + Z)

≤ I(X + U ;X + U + Z) (22b)

− 1

2
log

(

22h(U) + 22h(X+Z)
)

+ h(X + Z)

= I(X + U ;X + U + Z)− 1

2
log

(

1 +
22h(U)

22h(X+Z)

)

(22c)

= I(X + U ;X + U + Z)− 1

2
log

(

1 +
22h(U)

2πeσ222I(X;X+Z)

)

where the inequality follows by applying the entropy

power inequality to lower bound h(X + U + Z) with
1
2 log

(

22h(U) + 22h(X+Z)
)

. After some manipulations, this

leads to

I(X ;X + Z) ≤ 1

2
log

(

22I(X+U ;X+U+Z) − 22h(U)

2πeσ2

)

(23a)

≤ 1

2
log

(

22E(A+∆,σ) − 22h(U)

2πeσ2

)

(23b)

where the second inequality follows since X + U ∼
Unif([0, A+∆]) so that I(X+U ;X+U+Z) ≤ E(A+∆, σ)
from Lemma 1. This ends the proof.
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