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Abstract—Diffusion models (DM) can gradually learn to re-
move noise, which have been widely used in artificial intelligence
generated content (AIGC) in recent years. The property of DM
for removing noise leads us to wonder whether DM can be ap-
plied to wireless communications to help the receiver eliminate
the channel noise. To address this, we propose channel denoising
diffusion models (CDDM) for wireless communications in this
paper. CDDM can be applied as a new physical layer module
after the channel equalization to learn the distribution of the
channel input signal, and then utilizes this learned knowledge to
remove the channel noise. We design corresponding training and
sampling algorithms for the forward diffusion process and the
reverse sampling process of CDDM. Moreover, we apply CDDM
to a semantic communications system based on joint source-
channel coding (JSCC). Experimental results demonstrate that
CDDM can further reduce the mean square error (MSE) after
minimum mean square error (MMSE) equalizer, and the joint
CDDM and JSCC system achieves better performance than the
JSCC system and the traditional JPEG2000 with low-density
parity-check (LDPC) code approach.

I. INTRODUCTION

In machine learning, diffusion models (DM) [1]–[3] have
achieved unprecedented success in artificial intelligence gen-
erated content (AIGC) recently, including multimodal image
generation and edition [4], [5], text, and video generation
[6], [7]. DM gradually adds Gaussian noise to the available
training data in the forward diffusion process until the data
becomes all noise. Then, in the reverse sampling process,
it learns to recover the data from the noise, as shown in
Fig. 1. Generally, given a data distribution x0 ∼ q(x0), the
forward diffusion process can generate the t-th sample of xt
by sampling a Gaussian vector ε ∼ N (0, I) as following

xt =
√
ᾱtx0 +

√
1− ᾱtε, (1)

where ᾱt =
∏t
i=1αi and αi ∈ (0, 1) is a hyperparameter.

In wireless communications, it is well known that the
received signal y is a noisy and distorted version of the
transmitted signal x, e.g., we have the following for the
additive white Gaussian noise (AWGN) channel

y = x+ n, (2)

where n is a white Gaussian noise.
Interestingly, compared to (1) and (2), we can find that

the design approach of DM and wireless communications
systems are similar. DM can gradually learn to remove noise,
while the receiver in the wireless communications system is
to recover the transmitted signal from the received signal.
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Figure 1: The forward diffusion process with transition kernel
q(xt|xt−1) and the reverse sampling process with learnable transi-
tion kernel pθ(xt−1|xt) of diffusion model in [2].

Clearly, can DM be applied to the wireless communica-
tions system to help the receiver remove noise? To the
best of our knowledge, there have been no related works in
the literature that address this question.

Motivated by this, we propose channel denoising diffusion
models (CDDM) for wireless communications in this paper.
CDDM can be applied as a new module after channel
equalization to predict the channel noise and eliminate it,
thereby enhancing the performance. We design the forward
diffusion process based on the conditional distribution of the
received signal after channel equalization (or without channel
equalization) under Rayleigh fading channel (or AWGN
channel). We design the corresponding training algorithm
that solely relies on the forward diffusion process without
any requirement of the received signal. The forward diffusion
process also prompts us to design a sampling algorithm to
achieve channel noise elimination.

Furthermore, we apply the CDDM to a semantic communi-
cations system based on joint source-channel coding (JSCC)
technique for wireless image transmission, where the signal
after CDDM is fed into the JSCC decoder to recover the
image. We test the mean square error (MSE) between the
transmitted signal and the received signal after CDDM, and
find that compared to the system without CDDM, the system
with CDDM has smaller MSE performance both for Rayleigh
fading channel and AWGN channel. This fact indicates that
the proposed CDDM can effectively reduce the impact of
channel noise through learning. The experimental results
show that the joint CDDM and JSCC method outperforms
both the JSCC method and the traditional JPEG2000 with
low-density parity-check (LDPC) code approach in terms of
the peak signal-to-noise ratio (PSNR) of the images.
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Figure 2: Architecture of the joint CDDM and JSCC system.

A. Related Works

Compared to the prosperous researches of DM in AIGC,
there are few works of DM in wireless communications so
far. In [8], DM is used to generate the wireless channel for a
end-to-end communications system, and has almost the same
performance as the channel-aware case. In [9], DM with an
adapted diffusion process is proposed for the decoding of
algebraic block codes.

In recent years, semantic communications [10], [11] have
emerged as a new paradigmatic approach, characterized by its
core idea of JSCC [12]–[15], which considers the source and
channel processes integrally based on deep neural network
[12]. Most studies on JSCC have designed specific JSCC
frameworks for different data modals and achieved better
performance compared with traditional wireless transmission
schemes. In [13], a novel JSCC method based on attention
mechanisms is proposed, which can automatically adapt to
various channel conditions. [14] introduces an adaptive deep
learning based JSCC architecture for semantic communica-
tions. In [15], the Swin Transformer [16] is integrated into
the deep JSCC framework to improve the performance of
wireless image transmission. In summary, there have been
no publications in literature regarding the joint design of DM
and JSCC over wireless communications.

II. CHANNEL DENOISING DIFFUSION MODEL

In this section, we describe the proposed CDDM which
is placed after the channel equalization as shown in Fig. 2.
CDDM is trained using a specialized noise schedule adapted
to the wireless channel, which enables it to effectively elim-
inate channel noise through a designed sampling algorithm.

A. Conditional Distribution of the received signals

Let x ∈ R2k be the real-valued symbols. Here, k is
the number of channel uses. xc ∈ Ck are the complex-
valued symbols which can be transmitted through the wireless
channel, and the i-th transmitted symbol of xc can be
expressed as xc,i = xi + jxi+k, for i = 1, ..., k.

Thus, the i-th received symbol of the received signal yc is

yc,i = hc,ixc,i + nc,i (3)

where hc,i ∈ CN(0, 1) are independent and identically
distributed (i.i.d.) Rayleigh fading gains, xc,i has a power

constraint E[|xc,i|2] ≤ 1, and nc,i ∈ CN(0, 2σ2) are i.i.d.
AWGN samples.

In this paper, we use minimum mean square error (MMSE)
as an equalizer. yc is then addressed by equalization as
yeq ∈ Ck, following a normalization-reshape module out-
puting a real vector yr ∈ R2k. We consider that the receiver
can obtain the channel state hc = [hc,1, ..., hc,k] through
channel estimation. Therefore, we can have the conditional
distribution of yr with known x and hc, which can be
formulated to instruct the forward diffusion and reverse
sampling processes of CDDM.

Proposition 1. With MMSE, the conditional distribution of
yr with known x and hc under Rayleigh fading channel is

p(yr|x,hc) ∼ N (yr;
1√

1 + σ2
Wsx,

σ2

1 + σ2
W2

n) (4)

where Hr = diag(hr), hr =

[
|hc|
|hc|

]
∈ R2k, and

Ws = H2
r(H2

r + 2σ2I)−1,Wn = Hr(H
2
r + 2σ2I)−1. (5)

Proof: Based on the defination, Ws and Wn are
diagonal matrix, where the i-th and (i + k)-th diagonal
element are

Ws,i = Ws,i+k =
|hc,i|2

|hc,i|2 + 2σ2
,

Wn,i = Wn,i+k =
|hc,i|

|hc,i|2 + 2σ2
. (6)

The i-th output of MMSE yeq,i can be expressed as

yeq,i =
|hc,i|2xc,i + hHc,inc,i

|hc,i|2 + 2σ2
. (7)

Based on (6), we have

|hc,i|2xc,i
|hc,i|2 + 2σ2

= Ws,ixc,i. (8)

With the resampling trick, the conditional distributions of
real part and imaginary part of

hH
c,inc,i

|hc,i|2+2σ2 are

p(Re(
hHc,inc,i

|hc,i|2 + 2σ2
)|hc,i) ∼ N (0, σ2(

|hc,i|
|hc,i|2 + 2σ2

)2)

= N (0, σ2W 2
n,i), (9)
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Figure 3: The forward diffusion process and reverse sampling process of the proposed CDDM.

p(Im(
hHc,inc,i

|hc,i|2 + 2σ2
)|hc,i) ∼ N (0, σ2W 2

n,i). (10)

Accordingly, we can rewrite yr as

yr =
1√

1 + σ2
(Wsx + nr), (11)

and the distribution p(nr|hc) is N (0, σ2W2
n).

Therefore, we have

p(yr|x,hc) ∼ N (yr;
1√

1 + σ2
Wsx,

σ2

1 + σ2
W2

n). (12)

Similarly, we have the following proposition for AWGN
channel.

Proposition 2. Under AWGN channel, the conditional dis-
tribution of yr with known x is

p(yr|x) ∼ N (yr;
1√

1 + σ2
Wsx,

σ2

1 + σ2
W2

n) (13)

where Ws becomes I2k and Wn becomes I2k under AWGN
channel.

Proposition 1 an Proposition 2 demonstrate that the chan-
nel noise after equalization and normalization-reshape can
be re-sampled using ε ∼ N (0, I2k). Additionally, the noise
coefficient matrix Wn is related to the modulo form of hc.
As a result, yr can be re-parametered as

yr =
1√

1 + σ2
Wsx +

σ√
1 + σ2

Wnε. (14)

Therefore, the proposed CDDM is trained to obtain εθ(·),
which is an estimation of ε. Here, θ is model parameters.
By using εθ(·) and Wn, a sampling algorithm is proposed
to obtain y with the aim to recover Wsx, which will be
described in Section II-C. The whole strcuture of the CDDM
forward diffusion and reverse sampling process is illustrated
in Fig. 3.

B. Training Algorithm of CDDM

For the forward process of the proposed CDDM, the
original source x0 is

x0 = Wsx. (15)

Let T be the hyperparameter. Similar to (1), for all t ∈
{1, 2, ..., T}, we define

xt =
√
αtxt−1 +

√
1− αtWnε, (16)

and then it can be re-parametered as

xt =
√
ᾱtx0 +

√
1− ᾱtWnε (17)

such that the distribution q(xt|x0,hr) is

q(xt|x0,hr) ∼ N (xt;
√
ᾱtx0, (1− ᾱt)W2

n). (18)

Based on (4) and (18), if ᾱm = 1
1+σ2 , the Kullback-Leibler

(KL) divergence is

DKL(q(xm|x0,hr)||p(yr|x0,hc)) = 0, (19)

for t = m. This indicates that CDDM can be trained on
xm instead of yr. xm is defined by m steps as (16) such
that the predicted distribution by CDDM in reverse process
can be decomposed into m small steps and each of them is
pθ(xt−1|xt,hr) for t ∈ {1, 2, ...,m}.

The goal of CDDM is to recover x0 by learning the distri-
bution of x0 and removing the channel noise. Therefore, the
training of CDDM is performed by optimizing the variational
bound on negative log likehood L. The variational bound of
L is form by x0:m and yr, which is given by

L = E [− log pθ(x0|hr)] ≤ Eq[− log(
pθ(x0:m,yr|hr)

q(x1:m,yr|x0,hr)
)]

= Eq [DKL(q(yr|x0,hr)||p(yr|hr))︸ ︷︷ ︸
Ly

− log pθ(x0|x1,hr)︸ ︷︷ ︸
L0

+DKL(q(xm|yr,x0,hr)||pθ(xm|yr,hr))︸ ︷︷ ︸
Lm

+

m∑
t=1

DKL(q(xt−1|xt,x0,hr)||pθ(xt−1|xt,hr))︸ ︷︷ ︸
Lt−1

], (20)

where Lm instructs to select the hyperparameter m. In this
paper, we select m by

argmin
m

2σ2 − 1− ᾱm
ᾱm

. (21)

Similar to the process in [2], Lt−1 can be calculated
in closed-form using the Rao-Blackwellized method. The
optimization object of Lt−1 can be simplified by adopting
re-parameterization and re-weighting methods as following

Ex0,ε(||Wnε−Wnεθ(xt,hr, t)||22), (22)



Algorithm 1 Training algorithm of CDDM
Input: Training set S, hyper-parameter T and ᾱt.
Output: The trained CDDM.
1: while the training stop condition is not met do
2: Randomly sample x from S
3: Randomly sample t from Uniform({1, ..., T})
4: Sapmle |hc| and compute Hr, Ws and Wn

5: Randomly sample ε from N (0, I2k)
6: Take gradient descent step according to (16) and (24)

∇θ(||ε− εθ(
√
ᾱtWsx +

√
1− ᾱtWnε)||22)

7: end while

where εθ(xt,hr, t) is the output of CDDM. Moreover, (22)
can be re-weighted by ignoring the noise coefficient matrix
Wn as following

Ex0,ε(||ε− εθ(
√
ᾱtx0 +

√
1− ᾱtWnε)||22). (23)

Finally, to optimize (23) for all t ∈ {1, 2, ..., T}, the loss
function of the proposed CDDM is expressed as follows

LCDDM (θ) = Ex0,ε,t(||ε− εθ(
√
ᾱtx0 +

√
1− ᾱtWnε)||22).

(24)

The training procedures of the proposed CDDM are sum-
marized in Algorithm 1.

C. Sampling Algorithm of CDDM

To reduce the time consumption of sampling process, (20)
implies that selecting m according to (21) and setting xm =
yr is a promising way. By utilizing the received signal yr,
only m steps are needed to be excuted. For each time step
t ∈ {1, 2, ...,m}, the trained CDDM outputs εθ(xt,hr, t),
which attempts to predict ε from xt without knowledge of
x0. A sampling algorithm is required to sample xt−1. The
process is excuted for m times such that x0 can be computed
out finally.

We first define the sampling process f(xt−1) with the
knowledge of ε as following

f(xt−1) = q(xt−1|xt,x0,hr). (25)

Applying Bayes rule, the distribution can be expressed as
a Gaussian distribution

q(xt−1|xt,x0,hr)

∼ N (xt−1;
√
ᾱt−1x0 +

√
1− ᾱt−1

xt −
√
ᾱtx0√

1− ᾱt
, 0), (26)

where x0 is acquired by re-writing (17) as following

x0 =
1√
ᾱt

(xt −
√

1− ᾱtWnε). (27)

However, only εθ(xt,hr, t) is available for sampling. x0

is derived through an estimation process by replacing ε with
εθ(xt,hr, t) as following

x̂0 =
1√
ᾱt

(xt −
√

1− ᾱtWnεθ(xt,hr, t)). (28)

As a result, the sampling process is replaced with

fθ(xt−1) = pθ(xt−1|xt, x̂0,hr). (29)

Algorithm 2 Sampling algorithm of CDDM
Input: yr,hr,hyperparameter m
Output: y
1: xm = yr

2: for t = m, ..., 2 do
3: z = Wnεθ(xt,hr, t)

4: xt−1 =
√
ᾱt−1(xt−

√
1−ᾱtz√
ᾱt

) +
√

1− ᾱt−1z
5: end for
6: t = 1
7: z = Wnεθ(x1,hr, 1)

8: y = x1−
√

1−ᾱ1z√
ᾱ1

.

Without the knowledge of ε, a sample of xt−1 is

ext−1 =
√
ᾱt−1 (

1√
ᾱt

(xt −
√

1− ᾱtWnεθ(xt,hr, t)))︸ ︷︷ ︸
estimate x0

+
√

1− ᾱt−1Wnεθ(xt,hr, t)︸ ︷︷ ︸
sample xt−1

. (30)

Note that for the last step t = 1, we only predict x0 such
that sampling is taken as

y =
1√
ᾱ1

(x1 −
√

1− ᾱ1Wnεθ(x1,hr, 1)). (31)

The sampling method is summarized in Algorithm 2.

III. APPLICATION OF CDDM IN SEMANTIC
COMMUNICATIONS SYSTEM BASED ON JSCC

In this section, the proposed CDDM is applied into a
semantic communications system based on JSCC for wireless
image transmission.

A. System Structure

An overview architecture of the joint CDDM and JSCC
system is shown in Fig. 2. An RGB source image s is
encoded by a JSCC encoder. In this paper, the JSCC is
built upon the Swin Transformer [16] backbone, which has
a more powerful expression ability than vision transformer
by replacing the standard multi-head self attention in vision
transformer with a shift window multi-head self attention.
Two convolution layers are adopted as the output layer of the
JSCC encoder, constituting variational auto-encoder (VAE)
[17] structure. The JSCC encoder computes the source image
s as µφ ∈ R2k and σφ ∈ R2k. Finally, the JSCC encoder
samples the transmitted signal x as

x = µφ + σφξ, (32)

where φ encapsulates all parameters of the JSCC encoder and
ξ ∼ N (0, I2k). x is then tranmitted and processed into yr at
the receiver, as described in Section II. At the receiver, the
proposed CDDM removes the channal noise from yr using
Algorithm 2. Following this, the output of CDDM is fed into
the JSCC decoder to reconstruct the source image ŝ.



B. Training algorithm

The entire training algorithm of the joint CDDM and JSCC
system consists of three stages. In the first stage, the JSCC
encoder and decoder are trained jointly through the channel
shown in Fig. 2, except for the CDDM module, to minimize
the distance d(s, ŝ). MSE is used as the performance metric
and a slight KL divergence punishment with normal distribu-
tion is exerted on the JSCC encoder. The slight punishment
does not reduce the final performance but it can constraint x
in a more structured way, thereby enhancing the convergence
of CDDM in the second stage. Therefore, the loss function
for this stage is given by

L1(φ, ϕ) = Es∼psEyr∼pyr|s
||s− ŝ||22

+ λDKL(p(x|s)||N(0, I2k)), (33)

where ϕ encapsulate all parameters of JSCC decoder and λ
is the punishment weight.

In the second stage, the parameters of the JSCC encoder
are fixed such that CDDM can learn the distribution of x0

via Algorithm 1. The training process is not affected by
the channel noise power because Algorithm 1 has a special
noise schedule, and the noise has been designed specially
to simulate the distribution of channel noise. Benefitting
from this, CDDM is designed for handling various channel
conditions and requires only one training process.

In the third stage, the JSCC decoder is re-trained jointly
with the trained JSCC encoder and CDDM to minimize
d(s, ŝ). The entire joint CDDM and JSCC system is per-
formed through the real channel, while only the parameters
of the decoder are updated. The loss function is derived as

L3(ϕ) = Ey∼py|s ||s− ŝ||22. (34)

The training algorithm is summarized in Algorithm 3.

IV. EXPERIMENTS RESULTS

In this section, we provide experiments results to verify the
effectiveness of the proposed CDDM. In the experiments,
the CDDM is established on U-Net architecture similar to
[2], which accommodates x and hr as input components.
We use CIFAR10 [18] dataset for training and testing. We
set T = 1000 and λ = 5 × 10−5. We set αt to constants
decreasing linearly from α1 = 0.9999 to αT = 0.98.

We adopt the JSCC system and classical separation-based
source and channel coding scheme as the benchmarks for
our performance comparison. It should be noted that in
both the joint CDDM and JSCC system, as well as the
JSCC system, we have used the same structure for JSCC.
For the JSCC system, each SNR requires its corresponding
model to be trained. The channel bandwith ratio is set as 1

8 .
For the classical scheme, we employ the JPEG2000 codec
for compression and LDPC [19] codec for channel coding,
marking as “JPEG2000+LDPC”.

Fig. 4 illustrates the MSE performance of CDDM in
different signal-to-noise ratio (SNR) regimes. In the case
of using CDDM, we caculate the MSE between x and y,

Algorithm 3 Training algorithm of the joint CDDM and
JSCC system

Input: Training set p(s), hyper-parameter T , ᾱt, and the channel
estimation result hc and σ2.

Output: The trained joint CDDM and JSCC system.
1: while the training stop condition of stage one is not met do
2: Randomly sample s from S
3: Perform forward propagation through channel without

CDDM.
4: Compute L1(φ, ϕ) and update φ, ϕ
5: end while
6: while the training stop condition of stage two is not met do
7: Randomly sample s from S
8: Compute s as x
9: Train CDDM with Algorithm 1.

10: end while
11: while the training stop condition of stage three is not met do
12: Randomly sample s from S
13: Perform forward propagation through channel with noise

power σ2 with the trained CDDM
14: Compute L3(ϕ) and update ϕ
15: end while

while in the case of not using CDDM, we calculate the MSE
between x and yr. As shown in Fig. 1, yr and y are the
input and output of CDDM, respectively. We can see that the
system with CDDM performs much better than the system
without CDDM in all SNR regimes under both AWGN and
Rayleigh fading channels. For example, for AWGN channel,
the proposed CDDM has a 0.49 dB gain in MSE at SNR=20
dB. Meanwhile, it can be seen that as the SNR decreases,
the gain of CDDM in MSE increases. This indicates that
as the SNR decreases, i.e., the channel noise increases, the
proposed CDDM is easier to remove more noise, e.g. 3.55
dB gain at SNR=5 dB for AWGN channel. Moreover, it is
important to note that under Rayleigh fading channel, MMSE
has theoretically minimized the MSE, but CDDM can further
reduce the MSE after MMSE. The reason for this fact is that
CDDM can learn the distribution of x0 = Wsx, and utilizes
this learned knowledge to remove the noise, improving the
effective SNR and thereby further reducing the MSE.

Fig. 5 and Fig. 6 show the PSNR performance versus SNR
under AWGN channel and Rayleigh fading channel, respec-
tively. Given a SNR, both the joint CDDM and JSCC system
and the JSCC system need to be retrained to achieve the
best performance. Under both Rayleigh fading and AWGN
channels, the joint CDDM and JSCC system achieves better
PSNR performance compared to the JSCC system at SNR
ranging from 5 dB to 20 dB. For example, compared to the
JSCC system, the joint CDDM and JSCC system achieves
1.06 dB gain at SNR=20 dB over Rayleigh fading channel.
Moreover, we also can observe that the CDDM and JSCC
system significantly outperforms the “JPEG2000+LDPC”
scheme over both Rayleigh fading and AWGN channels.

V. CONCLUSION

In this paper, we have proposed the channel denois-
ing diffusion models to eliminate the channel nosie under



Figure 4: The MSE performance of the proposed CDDM versus
SNR over different channels.

Figure 5: The PSNR performance versus SNR over AWGN channel.

Rayleigh fading channel and AWGN channel. CDDM is
trained utilizing a specialized noise schedule adapted to the
wireless channel, which permits effective elimination of the
channel noise via a suitable sampling algorithm in the reverse
sampling process. CDDM is then applied into the semantic
communications system based on JSCC. Experimental results
show that under both AWGN and Rayleigh fading channels,
the system with CDDM performs much better than the system
without CDDM in terms of MSE and PSNR.

REFERENCES

[1] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli,
“Deep unsupervised learning using non-equilibrium thermodynamics,”
in Proc. Int. Conf. Mach. Learn., 2015, pp. 2256–2265.

[2] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp.
6840–6851.

[3] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit mod-
els,” in Proc. International Conference on Learning Representations,
2021.

[4] C. Meng, Y. He, Y. Song, J. Song, J. Wu, J.-Y. Zhu, and S. Er-
mon, “SDEdit: Guided image synthesis and editing with stochastic

Figure 6: The PSNR performance versus SNR over Rayleigh fading
channel.

differential equations,” in Proc. International Conference on Learning
Representations, 2022.

[5] J. Choi, S. Kim, Y. Jeong, Y. Gwon, and S. Yoon, “ILVR: Condition-
ing Method for Denoising Diffusion Probabilistic Models,” in Proc.
IEEE/CVF ICCV, 2021, pp. 14 347–14 356.

[6] L. Zheng, J. Yuan, L. Yu, and L. Kong, “A reparameterized discrete
diffusion model for text generation,” https://arxiv.org/abs/2302.05737,
2023.

[7] S. Yu, K. Sohn, S. Kim, and J. Shin, “Video probabilistic diffusion
models in projected latent space,” https://arxiv.org/abs/2302.07685,
2023.

[8] M. Kim, R. Fritschek, and R. F. Schaefer, “Learning end-to-end
channel coding with diffusion models,” in Proc. WSA & SCC 2023,
2023, pp. 1–6.

[9] Y. Choukroun and L. Wolf, “Denoising diffusion error correction
codes,” in Proc. the Eleventh International Conference on Learning
Representations, 2023.

[10] Q. Lan, D. Wen, Z. Zhang, Q. Zeng, X. Chen, P. Popovski, and
K. Huang, “What is semantic communication? a view on conveying
meaning in the era of machine intelligence,” Journal of Communica-
tions and Information Networks, vol. 6, no. 4, pp. 336–371, 2021.

[11] J. Choi and J. Park, “Semantic communication as a signaling game with
correlated knowledge bases,” in Proc. IEEE VTC 2022-Fall, 2022, pp.
1–5.

[12] E. Bourtsoulatze, D. Burth Kurka, and D. Gündüz, “Deep joint source-
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