2305.12130v1 [cs.NI] 20 May 2023

arxXiv

Joint Foundation Model Caching and Inference of
Generative Al Services for Edge Intelligence

Minrui Xu'!, Dusit Niyato!', Hongliang Zhang?, Jiawen Kang?, Zehui Xiong*, Shiwen Mao®, and Zhu Han®%"
1School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
2School of Electronics, Peking University, Beijing 100871, China
3School of Automation, Guangdong University of Technology, Guangzhou 510006, China
4Singapore University of Technology and Design, Singapore 487372, Singapore
5Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849-5201, USA
SDepartment of Electrical and Computer Engineering, University of Houston, Houston, TX 77004, USA
"Department of Computer Science and Engineering, Kyung Hee University, Seoul 446-701, South Korea
Email: minrui001@e.ntu.edu.sg, dniyato@ntu.edu.sg, hongliang.zhang @pku.edu.cn, kavinkang @ gdut.edu.cn,
zehui_xiong @sutd.edu.sg, smao@ieee.org, hanzhu22 @gmail.com.

Abstract—With the rapid development of artificial general in-
telligence (AGI), various multimedia services based on pretrained
foundation models (PFMs) need to be effectively deployed.
With edge servers that have cloud-level computing power, edge
intelligence can extend the capabilities of AGI to mobile edge
networks. However, compared with cloud data centers, resource-
limited edge servers can only cache and execute a small number
of PFMs, which typically consist of billions of parameters and
require intensive computing power and GPU memory during
inference. To address this challenge, in this paper, we propose
a joint foundation model caching and inference framework that
aims to balance the tradeoff among inference latency, accuracy,
and resource consumption by managing cached PFMs and user
requests efficiently during the provisioning of generative Al
services. Specifically, considering the in-context learning ability
of PFMs, a new metric named the Age of Context (AoC), is
proposed to model the freshness and relevance between examples
in past demonstrations and current service requests. Based
on the AoC, we propose a least context caching algorithm to
manage cached PFMs at edge servers with historical prompts
and inference results. The numerical results demonstrate that
the proposed algorithm can reduce system costs compared with
existing baselines by effectively utilizing contextual information.

Index Terms—Mobile edge computing, generative artificial in-
telligence, pretrained foundation models, joint foundation model
caching and inference

I. INTRODUCTION

Moving towards Artificial General Intelligence (AGI) in
mobile edge networks [1]], [2], pre-trained foundation mod-
els (PFMs), such as generative pre-trained transformers
(GPTs) [3], have achieved great successes in a variety of
fields over the past few years. As building blocks of AGI,
PFMs with billions of parameters are essential due to their
effectiveness in demonstrating emergent capabilities in down-
stream tasks with various data modalities [4]]. The pre-training
approach provides an efficient parameter initialization for a
wide range of downstream tasks, including semantic segmenta-
tion, content generation, and information retrieval. As a result,
language/visual/multimodal foundation models belong to the
paradigm of transfer learning, which can adapt to new tasks
and domains without any task-specific data during pre-training.

Multimedia services based on edge intelligence, such as
intelligent digital twins (DTs), autonomous driving, and Al-
generated content (AIGC), can be greatly enhanced by deploy-
ing PFMs on edge servers, benefiting from edge computing’s
low latency and flexible features. For instance, in autonomous
driving, PFMs can generate traffic simulations and provide
driving assistance in making complex driving decisions [S].
Additionally, during immersive human-avatar interactions in
the Metaverse, PFMs can assist in comprehending and reacting
to human emotions and behaviors. For example, ChatGPT
facilitates consistent and fluent interactions with humans, fine-
tuned based on GPT-3 to release its contextual awareness [3],
which is an LFM with 175 billion parameters. Beyond exe-
cuting PFMs in cloud data centers, edge servers can support
fine-tuning and inference processes of PFMs requested by
Al services, thus igniting the sparks of AGI in mobile edge
networks.

However, unlike cloud data centers, resource-constrained
edge servers are unable to concurrently load all PFMs to
serve users’ Al service requests. In literature, existing research
generally focuses on offloading Al services to cloud data cen-
ters for remote execution or caching inference results at edge
servers for low-latency response [6]. On one hand, offloading
inference requests of PFMs to cloud data centers introduce
additional latency, traffic overhead, and privacy threats to
serving Al services over core networks and public cloud
infrastructure. On the other hand, merely caching inference
results at edge servers is no longer effective for satisfying
users’ interactive requirements. To enable mobile Al services
with the computing and GPU resources currently loaded into
the GPUs of edge servers, effective deployment of PFMs at
edge servers requires flexible and context-aware management
on computing resources and user requests.

Differing from the existing works on joint service caching
and task offloading, several unique challenges arise for joint
foundation model caching and inference to balance the tradeoff
among inference latency, accuracy, and resource consumption
in mobile edge networks [7]. First, different quantities of re-

quests and performance requirements of the downstream tasks,
such as accuracy and latency, are present during the fine-tuning
and inference of PFMs [6]]. Additionally, a variety of PFMs can
be applied to comparable downstream tasks in a range of Al
services. This presents a challenge for edge servers in that the
cached PFMs may be called interchangeably to handle model
misses. Furthermore, PFMs can continuously learn and adapt
to new domains and tasks through prompts of instruction and
interactive demonstrations [8]]. Due to the in-context learning
ability of PFMs, cached models can enhance their inference
accuracy during inference without parameter updates. These
challenges make decisions about cached model management
and request offloading increasingly difficult for optimizing the
performance of the framework, which is a tradeoff among
inference latency, accuracy, and resource consumption.

To address these issues, in this paper, we investigate the
important but rarely studied problem of joint foundation model
caching and inference of generative Al services for edge
intelligence in mobile edge networks. We propose a joint
foundation model caching and inference framework to serve
PFMs for provisioning generative Al services. Furthermore,
to balance the tradeoff among inference latency, accuracy, and
resource consumption, we propose a new metric named Age of
Context (AoC) to indicate the freshness and relevance between
examples in historical demonstrations and current inference
requests. With a context vanishing factor, the AoC follows
the non-increasing utility function that affects the effective
examples in context from instruction, demonstrations, and
outputs of past interactions. Based on the AoC, we propose a
Least Context (LC) algorithm to manage cached PFMs at edge
servers. Simulation experiments demonstrate that the proposed
LC algorithm can reduce the total system cost by utilizing
contextual information for improving the service accuracy and
utilizing the computing power and GPU memory of edge
servers efficiently.

The main contributions of this paper are summarized as
follows.

o For the first time, we formulate the joint foundation
model caching and inference problem in mobile edge
networks, for minimizing service cost and accuracy loss
under limited computing and GPU memory capacity of
edge servers.

o Considering the in-context learning ability of PFMs, we
propose a new metric named age of context to measure
the freshness and relevance of historical examples in
context and current inference requests.

o Based on the AoC, we develop the least context algorithm
to efficiently manage the cached models by utilizing the
contextual information and thus reducing model switch-
ing, inference, and accuracy costs.

Compared with our prior work in [9]], this paper provides
formal mathematical formulations for the joint foundation
model caching and inference problem, the new age of context
metric, and the least context algorithm.

GPU Memory

EEE LT
B RR

Cloud Data
Center

N

N
é‘/% : Edge server -

ﬂ : Mobile device
g : Cached model D
& : AIGC do

Exanl'uples
“"in context

= Omm

Fig. 1: Joint foundation model caching and inference of
generative Al services for edge intelligence.

II. SYSTEM MODEL

As shown in Fig.[I] we consider an edge intelligence system
model consisting of service providers, including one cloud data
center and a set of edge servers, and a massive amount of users.
The cloud data center and edge servers can serve generative
Al services. The cloud data center is represented by 0 and the
set of edge servers is represented by NV = {1,2,...,N}. In
this system, edge servers and the cloud center provide generic
Al services such as AIGC, depending on different PFMs. We
use a set Z = {1,2,...,I} to denote the available generative
Al services based on a set of PFMs M = {1,2,..., M}. As
PFMs are capable of performing multiple downstream tasks in
generative Al services simultaneously, and thus we consider
I > M that the number of Al servers is far greater than the
number of PFMs.

Mobile users must request generative Al services from
edge servers or cloud data centers when their devices are
insufficient for executing PFMs. The inference requests of the
diverse services might request different PFMs when they are
serving different functions. Typically, a generative Al service
requires the collaboration of several PFMs to process users’
requests. For instance, in Stable Diffusion [10], text-related
conditioning is based on a pre-trained CLIP ViT-L/14 model.
Then, a variational autoencoder compresses images into a
smaller dimensional latent space. Finally, a U-Net block is
used to denoise the output from forward diffusion backwardly
to obtain a latent representation. This is a typical process
of serving text-to-image generation service requests. We use
R}, ; , to denote the number of inference requests generated
by Al service 7 to execute foundation model m at edge server
n. The configuration of PFM m consists of the amount of
runtime GPU memory, which is proportion to model size s,,,
the inference cost per token e,,, the model accuracy a,,, and
the size of context window w,,. The inference process of Al
services can put certain context information into the context
window of models. Then, the number of examples in context
is denoted by K. f’m of model m for application ¢ which is zero
initially, i.e., Kgm =0.

A. Decision Variables

To offer AI services based on PFMs, we propose a joint
foundation model caching and inference framework. Edge
servers need to make model caching and request offloading
decisions to utilize the existing edge computing resources
for accommodating generative Al service requests of mobile
users. Specifically, edge server n needs to determine the
following variables: (i) Let a’ € {0,1} denote the binary

n,i,m
variable indicating whether model m of application ¢ is cached
at edge server n at time slot ¢; (i) Let bfh,i,m € [0,1]

denote the continuous variable on whether model m of ap-
plication ¢ is cached at edge server n at time slot 7. Let
al, = {a},,,...,al, ; 5} denote the model caching decisions
of edge server n and a’! = {al,...,a’}. In addition, the
request offloading decision of edge server n can be denoted as
b, = {b},11,---,bl, ; s} and the request offloading decisions
of all edge servers can be denoted as b' = {b},... b’ }.
The generative Al service requests of users can be executed
at edge servers if the required components of models are
loaded at the GPU memories. Let G, denote the capacity
of GPU memory of edge server n. Then, the model caching
decision variables are subjected to the following constraint

Z Z i mSm < Gn,Vn e N. (D)

i€Z meM

The models of Al services can be executed at the edge server
after they are loaded into the GPU memory. Therefore, the
constraint of model execution at edge servers is

Vyiml(R ;> 0) <ap,;,,VneN,ieI,meM (2)

n,i,m n,t,m

at time slot ¢ and 1(+) is the indicator function. Let E,, denote
the resource capacity of edge server m. The total resource
consumption of servers is constrained by the total energy
capacity, which can be represented as

t t
S emal bl i Bl i S Enn €N, (3)
i€ meM
In cloud data centers, there are no GPU memory constraints
or energy constraints for cached PFMs.

B. Age of Context and In-context Learning Accuracy

PFMs, such as GPT-3, have the ability to perform in-context
learning, which means that they can learn from past prompts
and inference results when an unseen task is presented to them.
Some primary experiments show that larger models are more
effective at using in-context instructions and demonstrations,
as demonstrated by their improved ability to learn a task
from contextual information [3]]. This is particularly useful in
NLP tasks, where understanding the context of a sentence or
paragraph is crucial for accurate interpretation. Based on the
evidence that GPT-3 is capable of in-context learning, which
contributes to its strong performance on a variety of language
tasks, such as translation, basic arithmetic, and Q&A. Let
K}, denote the number of effective examples of model m
for application . The examples in the demonstration might
have different impacts on the model performance in terms

TABLE I: The Parameters of Accuracy in Downstream Tasks
of GPT3-13B/175B [3]].

Task Model | K AP AT o
Trmslation 3B | 64 | 1545 | 118 | 0.0923
758 | 64 [2203 | 750 | 0.1565
s Adgrc | 13B_[50 | 379 | 12.19 | -0.050]
758 | 50 [2599 | 14.72 | 0.1813
3B | 32 | 54.40 | 9.89 | 0.0969
SuperGLUE s ——=515820 [1070 | 0.1431

of relevance, quality, and freshness. We propose the AoC to
measure the freshness of examples in demonstrations that have
an impact on the quality of services provided by PFMs in
tasks that are now being carried out downstream. For instance,
the historical Q&A records that are recorded during PFM
inference can be used to improve future inference accuracy.
These examples can be used to increase the accuracy of PFMs,
as PFMs can use meta-gradient learn during interaction to fit
them [11]. However, depending on the caliber, applicability,
and timeliness of examples, the meta-gradient may have fa-
vorable or unfavorable impacts on the model performance.
Similar to the definition of age of information (Aol), the AoC
measures the freshness of historical contextual examples in
demonstrations between the cached PFMs and the inference
requests. As shown in TABLE [l with a vanishing factor v; ,,
of context, the AoC is adjusted by the non-increasing age
utility function. Therefore, the effective number of examples
in context K7, at edge server n can be represented as

Kf,m = min (U}m, {Kzt,;nl + R;,i,ma;,i,mbﬁz,am - I/i,m}+> 5
“)
fort = 1,...,T. According to the AoC, the weighted total
of the number of examples in demonstrations may be used to
determine the number of examples in context.
As shown in Table |I} the in-context (few-show) accuracy
A; mm of model m for the downstream task in application %
can be fit by a logarithmic function as [3]]

Aim(KL) =AY + A) logy(L+ KE %), (5)

where AY, is the zero-shot accuracy, Al is the one-shot
accuracy, Kfym is the number of examples in context, and
oy, 18 the coefficient of model m.

C. Cost Structure

As discussed above, the generative Al service requests can
be executed by edge servers and offloaded to cloud data centers
over the core network. Given the model caching and request
offloading decisions, the total system cost of serving generative
Al services consisting of the edge inference cost and cloud
inference cost can be formulated as follows.

1) Edge Inference Cost: Specifically, the edge inference
cost consists of the edge switching cost, the edge transmission
cost, the edge computing cost, and the model accuracy cost.
According to model caching decisions, each edge server needs
to load models into the GPU memory before execution. During
the loading process, the model switching cost consisting of

the model loading latency and hardware wear-and-tear cost is
incurred. Therefore, the switching cost [;, of edge server n to
load and evict models can be calculated as

Zz)\l 7’117’"

i€l meM

lswztch

>all), (6)

where A\ denotes the coefficient for loading and evicting the

model and 1(-) is the 1ndlcat0r function. When a, ; ,, >
t—1 - t _ _ b1
an,i,nL’ Le., an,i,m 1 and an ,i,m =0, 1(n i,m > a’n,z,m)

indicates that the loading of an uncached model Otherwise,
there is no switching cost incurred at edge servers.

When the requested models are cached into the GPU
memory of edge servers, users communicate with the edge
servers for requesting generative Al services. Let [[7"* denote
the transmission cost of input prompts and inference results.
The transmission cost of edge server n can be calculated as

Zzlnm nzm nzmb;zm? (7)

i€Z meM

ltran s

tbt

where 7; ,, is the unit transmission cost per input and result
for model m of application .

Let f,, denote the computing capacity of edge server n. The
forward propagation process of Al services at edge servers
incurs inference latency, which can be denoted as [2°™P for
edge server n. The edge computing cost can be calculated as

lfbomp(! bt Z Z Rn i,mOn. i, mbn i,m ;" (®)
1€ meM

Finally, as edge servers might not have sufficient resources for
executing the best match model requested by Al services, the
requests processed by other PFMs with the equivalent function
incur accuracy cost [2°°, which can be represented as

ZZ 1-A zm nlm nzmbiim (9)

i€L meM

lacc a bt

By sacrificing some accuracy of generative Al services, the
system can reduce the model missing rate. Therefore, the total
edge inference cost of edge server n is

Lt (a bt) 7lswztch()+ ltrans(a bt)
(D) 127)

The edge inference cost is jointly determined by the caching
decisions and offloading decisions of edge servers. Neverthe-
less, the missed or offloaded requests are processed by the
cloud data center.

2) Cloud Inference Cost: The edge servers are resource-
constrained, such that they are unable to serve all PFMs. On
one hand, due to the limited storage resources of the edge
server, the model requested by a user may be too large to
be loaded into the GPU of the edge server. On the other
hand, the limited computing power of the edge server makes it
necessary to actively migrate some requests to the cloud data
center for execution. Therefore, when the requested models are
missed at edge servers or offloaded to cloud data centers, this
part of user requests are transmitted to the cloud data center,
which needs to allocate resources for accomplishing such user

(10)

requests. In line with [12], the cloud data centers can consider
serving generative Al services in a serverless manner, which
is charged in a “pay-as-you-go” manner. Therefore, users need
to pay for executing Al services according to the number
of requests instead of specific occupied resources. When the
requests are missed at edge servers or edge servers do not have
enough resources for serving the requests, the unaccomplished
requests will be offloaded to the cloud data centers for remote
execution. The cloud data centers can execute the models
with their abundant computing and energy resources, and
then return the inference results to edge servers. However,
cloud inference incurs additional latency for data transmission
in the core network, which is much higher than the data
transmission latency at edge servers. Moreover, the accuracy
cost of offloaded inference requests executed by the cloud data
center is expected to be almost zero as they can be processed
by the most accurate model with common in-context examples
owned by the data center. Based on the above analysis, we use
lo,» to denote the aggregated cost of offloading one request to
the cloud data center for remote execution of model m. Then,
the total cloud computing cost at time slot ¢ is

Z ZZlOm nzmb;zm> ;Lm'

neN\{0} i€Z meM
(1D

Li(a’, b") =

D. Problem Formulation

To optimize the performance of mobile edge intelligence,
we jointly consider the cost of edge inference and cloud
inference, including the switching cost, the accuracy cost, the
transmission cost, and the inference cost over a time horizon
T. The problem is formulated as follows:

. t t
axgl’lgt Tt; L} +T§/L (12a)
st (1),(2),(3), (12b)
atim € 10,1}, (12¢)
b i € 10,1]. (12d)

To solve the optimization problem described above, we must
overcome the following challenges: (i) The problem involves
time-coupling elements, such as GPU memories and in-context
examples, as it considers both future request dynamics and
historical inference contexts; (ii) Through historical statistical
data, we can forecast future information before making a
decision The problem becomes a mixed-integer programming
problem, which is NP-hard. To address these challenges, a
low-complexity heuristic algorithm is needed to make deci-
sions regarding model caching and request offloading, despite
the lack of future information.

III. THE LEAST CONTEXT ALGORITHM

To effectively serve PFMs for provisioning generative Al
services, we propose the least context algorithm based on
the AoC metric. When additional GPU memory is required
for loading an uncached requested PFM, the LC algorithm

80
Cloud Inference Cost A - Cloud Inference Cloud Inference Cost A - Cloud Inference Cloud Inference Cost A - Cloud Inference
40 - wmm Accuracy Cost B - FIFO 40 - mmm Accuracy Cost B - FIFO mm Accuracy Cost B - FIFO 8
B Edge Inference Cost C-LFU B Edge Inference Cost C-LFU 60 7 Edge Inference Cost C-LFU
Switching Cost D - Least Context (LC) Switching Cost D - Least Context (LC) Switching Cost D - Least Context (LC)
1] 401
30 8 B 8 8 8 30 5 8
@ ? s 8 @
o o -
o o B 8 &0 B .
R0+ ~ R0+ ~ F - ~
R a . Ba . Be .
v 87 c A A A A | v 87 A | 0 81 4 A A A |
g > c g . A g el <
G 6 o c c c % 64 A c 56 = el . c 5
2 : o 5 27 - : 5 H >
C D D
4 4 o D 4
coD <
: - :
0 T T T T T 0 T T T T T 0 T T T T
20 40 60 80 100 22 24 26 28 30 2 4 8 16

Number of Time Slots

Number of Services

Number of GPUs

Fig. 2: Average total cost versus number Fig. 3: Average total cost versus number Fig. 4: Average total cost versus number

of time slots.

counts the number of examples in context, calculates them,
and removes the cached PFM with the fewest effective ex-

of services.

of GPUs.

TABLE II: The List of Main System Parameters.

Parameters Value
amples in context. Therefore, at each time slot ¢, the model Number of time slots 100
caching decisions can be obtained by solving the maximization Number of services 30
problem of the number of effective examples for the cached Siz?grflllgzthitG\xlngow 20848
models, which can be represented as Size of examples (10, 100]
t GPU Memory 80 GB
max Y Kj, (13a) GPU Computing Capacity | 312000 GFLOPS
a i€ meM Edge transmission cost 0.0001
s.t. al s < GL.YneN, 13b Cloud inference cost 0.0015
Z Z mhm = (13b) Switching cost coefficient 0.0001
1€ meM .
. Accuracy cost coefficient 0.01
A im € {0, 1} (13¢) GPU energy efficiency | 810 GFLOPS/W
Energy capacity 300 W

The available capacity of GPU memory G, of server n at time
slot ¢ can be calculated as G}, = G\, — R}, ; ,,,at, ; .0 i Sm.
This optimization problem can be tackled with a complexity
of O(IM) with prior knowledge and statistical data. This
algorithm gives the least important PFM for the current
inference task priority for eviction. It works well with huge
numbers of PFMs on edge servers with limited GPU memory.
By using more contextual information during inference, the
PFMs of mobile generative Al services are more accurate.
Based on caching decisions a’ by solving the optimization
problem , offloading decisions b? are obtained by solving
the optimization problem (12a).

IV. NUMERICAL RESULTS

In the experiment, we consider an edge intelligence system
with T' = 100 slots. The requests for generative Al services per
time slot follow the Poisson process with an average of one.
We consider three types of PFMs and select six representative
models to serve in the experiments, i.e., GPTs, Uniformers,
and CLIPs. The detailed model configuration can be found
in [9]. The main parameters are listed in TABLE |m

We evaluate the proposed LC approach in comparison to
several baselines including cloud inference, the first-in-first-out
(FIFO) caching algorithm, and the least frequently used (LFU)
caching algorithm. Initially, we examined the effectiveness
of the LC algorithm by comparing the average total cost in
various system settings. As we observe in Fig. 2] the switching
cost of the LC algorithm gradually converges to a smaller value

at around 1.3%, while the switching cost of the FIFO algorithm
remains constant with system time. This indicates that the
LC algorithm is able to cache most of the required models
for inference services on the edge server in GPU memory. In
addition, the LC algorithm achieves the lowest average total
cost among all the algorithms. The LC algorithm can reduce
the cloud inference cost by increasing the utilization of edge
computing resources so that the requests can be executed at
edge servers with low latency.

We then show that the proposed LC algorithm is robust
under different system settings, such as a different number of
services and a different number of GPUs. From Fig. 3] we
can see that the total system cost increases with the number
of services. This is because the resources in the edge servers
become insufficient when more services need to be served on
the edge servers. On one hand, the GPU memory on the edge
servers is limited, and as the number of services increases,
more model switching will be required when running the
model, so the switching cost becomes higher. On the other
hand, when the resources on the edge servers are not sufficient,
the requests for cloud inference have to be forwarded to
cloud data centers, whose costs are higher than those of edge
inference. In the meanwhile, the experimental results in Fig.]
indicate that the number of GPUs has a complex impact on the
total system cost. When the number of GPUs increases, the

FIFO
1 -e Lru
—- Least Context (LC)

© o o o
> 2 0 W
G ® o W

o
IS
[

o
'S
o

o
W
©

Avelaye ALLuladly LusL

o
w
v

e

0.0 0.2 0.4 0.6 0.8 1
Context Vanishing Factor

Fig. 5: Edge accuracy cost vs. context vanishing factor.

switching cost increases. The reason is that the edge servers
can cache more models in the GPU memory. Without effective
management of cached models, the switching cost is high for
the FIFO algorithms. Though the cost of the proposed LC
algorithm is always lower than those of the other algorithms,
its cost increases when the number of GPUs increases. The
reason behind this trend is that edge servers can cache larger
models when the number of GPUs is large. However, such
large models require intensive computing resources while
incurring similar edge inference costs. Therefore, these user
requests for large models are better offloaded to cloud data
centers for remote execution.

After demonstrating the effectiveness of the proposed LC
algorithm, we next investigate the impacts of the context
vanishing factor. To make comparisons between models more
noticeable, the size of the context window is set to 214, As
shown in Fig. 5] as the context vanishing factor increases,
the average accuracy cost of edge inference is first static and
then decreases. When the context vanishing factor is small, the
performance gap among these three algorithms becomes large.
However, when the context vanishing factor is large, such as
one in Fig. [5] the average accuracy cost decreases, and their
performance gap starts to shrink. Another interesting finding
shown in Fig. [f] is that the averse edge inference cost first
increases as the context vanishing factor increases and then
dramatically declines after a certain threshold.

V. CONCLUSIONS

In this paper, we investigated the joint foundation model
caching and inference problem for deploying PFMs to serve
Al-based multimedia services in mobile edge networks. We
introduced a joint foundation model caching and inference
framework designed to effectively provision generative Al
services at edge servers, and thus advancing toward AGI.
To this end, we proposed a new metric for measuring the
relevance and freshness of contextual examples in relation to
ongoing inference requests. Moreover, we have developed the
LC algorithm for PFM management, which optimizes the uti-
lization of historical contextual prompts and inference results,
subsequently enhancing the performance of generative Al
services. Experimental results indicated that the LC algorithm

I
3
v 1.64
J FIFO
= -8~ LFU
; 162 1 >~ Least Context (LC)
L
g’ 1.60
it /
D
o)l
8 1.58
D
>
T 156
0.0 0.2 0.4 0.6 0.8 1

Context Vanishing Factors

Fig. 6: Edge inference cost vs. context vanishing factor.

effectively reduces system costs by effectively leveraging
historical demonstrates and managing cached models.

REFERENCES

[1] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Ka-
mar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg et al., “Sparks of artificial
general intelligence: Early experiments with GPT-4,” arXiv preprint
arXiv:2303.12712, Mar. 2023, [Online]. Available: https://arxiv.org/abs/
2303.12712.

[2] P. Zhou, J. Zhu, Y. Wang, Y. Lu, Z. Wei, H. Shi, Y. Ding, Y. Gao,
Q. Huang, Y. Shi et al., “Vetaverse: Technologies, applications, and
visions toward the intersection of metaverse, vehicles, and transporta-
tion systems,” arXiv preprint arXiv:2210.15109, Oct. 2022, [Online].
Available: https://arxiv.org/abs/2210.15109.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” Proc. of the Advances in Neural Information
Processing Systems, vol. 33, pp. 1877-1901, Dec. 2020.

[4] C. Zhou, Q. Li, C. Li, J. Yu, Y. Liu, G. Wang, K. Zhang, C. Ji, Q. Yan,
L. He et al., “A comprehensive survey on pretrained foundation models:
A history from BERT to ChatGPT,” arXiv preprint arXiv:2302.09419,
Feb. 2023, [Online]. Available: https://arxiv.org/abs/2302.09419.

[5] M. Xu, D. Niyato, J. Chen, H. Zhang, J. Kang, Z. Xiong, S. Mao, and
Z. Han, “Generative Al-empowered simulation for autonomous driving
in vehicular mixed reality metaverses,” arXiv preprint arXiv:2302.08418,
Feb. 2023, [Online]. Available: https://arxiv.org/abs/2302.084 18|

[6] G. R. Gilman, S. S. Ogden, R. J. Walls, and T. Guo, “Challenges and
opportunities of dnn model execution caching,” in Proc. of the Workshop
on Distributed Infrastructures for Deep Learning, Davis, CA, Dec. 2019,
pp. 7-12.

[71 Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proc. of the IEEE, vol. 107, no. 8, pp. 1738-1762, Jun.
2019.

[8] Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun,
J. Xu, and Z. Sui, “A survey for in-context learning,” arXiv preprint
arXiv:2301.00234, Jan. 2023, [Online]. Available: https://arxiv.org/abs/
2301.00234.

[9] M. Xu, D. Niyato, H. Zhang, J. Kang, Z. Xiong, S. Mao, and Z. Han,
“Sparks of gpts in edge intelligence for metaverse: Caching and infer-
ence for mobile aigc services,” arXiv preprint arXiv:2304.08782, Apr.
2023, [Online]. Available: https://arxiv.org/abs/2304.08782.

[10] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” in Proc. of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
New Orleans, LA, Jun. 2022, pp. 1068410 695.

[11] D. Dai, Y. Sun, L. Dong, Y. Hao, Z. Sui, and F. Wei, “Why can gpt
learn in-context? language models secretly perform gradient descent as
meta optimizers,” arXiv preprint arXiv:2212.10559, Dec. 2022, [Online].
Available: https://arxiv.org/abs/2212.10559,

[12] K. Zhao, Z. Zhou, X. Chen, R. Zhou, X. Zhang, S. Yu, and D. Wu,
“Edgeadaptor: Online configuration adaption, model selection and re-
source provisioning for edge dnn inference serving at scale,” IEEE
Transactions on Mobile Computing, pp. 1 — 16, Jul. 2022.

https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2210.15109
https://arxiv.org/abs/2302.09419
https://arxiv.org/abs/2302.08418
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2304.08782
https://arxiv.org/abs/2212.10559

	I Introduction
	II System Model
	II-A Decision Variables
	II-B Age of Context and In-context Learning Accuracy
	II-C Cost Structure
	II-C1 Edge Inference Cost
	II-C2 Cloud Inference Cost

	II-D Problem Formulation

	III The Least Context Algorithm
	IV Numerical Results
	V Conclusions
	References

