
Joint Foundation Model Caching and Inference of
Generative AI Services for Edge Intelligence

Minrui Xu1, Dusit Niyato1, Hongliang Zhang2, Jiawen Kang3, Zehui Xiong4, Shiwen Mao5, and Zhu Han6,7
1School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore

2School of Electronics, Peking University, Beijing 100871, China
3School of Automation, Guangdong University of Technology, Guangzhou 510006, China

4Singapore University of Technology and Design, Singapore 487372, Singapore
5Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849-5201, USA
6Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004, USA
7Department of Computer Science and Engineering, Kyung Hee University, Seoul 446-701, South Korea

Email: minrui001@e.ntu.edu.sg, dniyato@ntu.edu.sg, hongliang.zhang@pku.edu.cn, kavinkang@gdut.edu.cn,
zehui xiong@sutd.edu.sg, smao@ieee.org, hanzhu22@gmail.com.

Abstract—With the rapid development of artificial general in-
telligence (AGI), various multimedia services based on pretrained
foundation models (PFMs) need to be effectively deployed.
With edge servers that have cloud-level computing power, edge
intelligence can extend the capabilities of AGI to mobile edge
networks. However, compared with cloud data centers, resource-
limited edge servers can only cache and execute a small number
of PFMs, which typically consist of billions of parameters and
require intensive computing power and GPU memory during
inference. To address this challenge, in this paper, we propose
a joint foundation model caching and inference framework that
aims to balance the tradeoff among inference latency, accuracy,
and resource consumption by managing cached PFMs and user
requests efficiently during the provisioning of generative AI
services. Specifically, considering the in-context learning ability
of PFMs, a new metric named the Age of Context (AoC), is
proposed to model the freshness and relevance between examples
in past demonstrations and current service requests. Based
on the AoC, we propose a least context caching algorithm to
manage cached PFMs at edge servers with historical prompts
and inference results. The numerical results demonstrate that
the proposed algorithm can reduce system costs compared with
existing baselines by effectively utilizing contextual information.

Index Terms—Mobile edge computing, generative artificial in-
telligence, pretrained foundation models, joint foundation model
caching and inference

I. INTRODUCTION

Moving towards Artificial General Intelligence (AGI) in
mobile edge networks [1], [2], pre-trained foundation mod-
els (PFMs), such as generative pre-trained transformers
(GPTs) [3], have achieved great successes in a variety of
fields over the past few years. As building blocks of AGI,
PFMs with billions of parameters are essential due to their
effectiveness in demonstrating emergent capabilities in down-
stream tasks with various data modalities [4]. The pre-training
approach provides an efficient parameter initialization for a
wide range of downstream tasks, including semantic segmenta-
tion, content generation, and information retrieval. As a result,
language/visual/multimodal foundation models belong to the
paradigm of transfer learning, which can adapt to new tasks
and domains without any task-specific data during pre-training.

Multimedia services based on edge intelligence, such as
intelligent digital twins (DTs), autonomous driving, and AI-
generated content (AIGC), can be greatly enhanced by deploy-
ing PFMs on edge servers, benefiting from edge computing’s
low latency and flexible features. For instance, in autonomous
driving, PFMs can generate traffic simulations and provide
driving assistance in making complex driving decisions [5].
Additionally, during immersive human-avatar interactions in
the Metaverse, PFMs can assist in comprehending and reacting
to human emotions and behaviors. For example, ChatGPT
facilitates consistent and fluent interactions with humans, fine-
tuned based on GPT-3 to release its contextual awareness [3],
which is an LFM with 175 billion parameters. Beyond exe-
cuting PFMs in cloud data centers, edge servers can support
fine-tuning and inference processes of PFMs requested by
AI services, thus igniting the sparks of AGI in mobile edge
networks.

However, unlike cloud data centers, resource-constrained
edge servers are unable to concurrently load all PFMs to
serve users’ AI service requests. In literature, existing research
generally focuses on offloading AI services to cloud data cen-
ters for remote execution or caching inference results at edge
servers for low-latency response [6]. On one hand, offloading
inference requests of PFMs to cloud data centers introduce
additional latency, traffic overhead, and privacy threats to
serving AI services over core networks and public cloud
infrastructure. On the other hand, merely caching inference
results at edge servers is no longer effective for satisfying
users’ interactive requirements. To enable mobile AI services
with the computing and GPU resources currently loaded into
the GPUs of edge servers, effective deployment of PFMs at
edge servers requires flexible and context-aware management
on computing resources and user requests.

Differing from the existing works on joint service caching
and task offloading, several unique challenges arise for joint
foundation model caching and inference to balance the tradeoff
among inference latency, accuracy, and resource consumption
in mobile edge networks [7]. First, different quantities of re-

ar
X

iv
:2

30
5.

12
13

0v
1

 [
cs

.N
I]

 2
0

M
ay

 2
02

3

quests and performance requirements of the downstream tasks,
such as accuracy and latency, are present during the fine-tuning
and inference of PFMs [6]. Additionally, a variety of PFMs can
be applied to comparable downstream tasks in a range of AI
services. This presents a challenge for edge servers in that the
cached PFMs may be called interchangeably to handle model
misses. Furthermore, PFMs can continuously learn and adapt
to new domains and tasks through prompts of instruction and
interactive demonstrations [8]. Due to the in-context learning
ability of PFMs, cached models can enhance their inference
accuracy during inference without parameter updates. These
challenges make decisions about cached model management
and request offloading increasingly difficult for optimizing the
performance of the framework, which is a tradeoff among
inference latency, accuracy, and resource consumption.

To address these issues, in this paper, we investigate the
important but rarely studied problem of joint foundation model
caching and inference of generative AI services for edge
intelligence in mobile edge networks. We propose a joint
foundation model caching and inference framework to serve
PFMs for provisioning generative AI services. Furthermore,
to balance the tradeoff among inference latency, accuracy, and
resource consumption, we propose a new metric named Age of
Context (AoC) to indicate the freshness and relevance between
examples in historical demonstrations and current inference
requests. With a context vanishing factor, the AoC follows
the non-increasing utility function that affects the effective
examples in context from instruction, demonstrations, and
outputs of past interactions. Based on the AoC, we propose a
Least Context (LC) algorithm to manage cached PFMs at edge
servers. Simulation experiments demonstrate that the proposed
LC algorithm can reduce the total system cost by utilizing
contextual information for improving the service accuracy and
utilizing the computing power and GPU memory of edge
servers efficiently.

The main contributions of this paper are summarized as
follows.

• For the first time, we formulate the joint foundation
model caching and inference problem in mobile edge
networks, for minimizing service cost and accuracy loss
under limited computing and GPU memory capacity of
edge servers.

• Considering the in-context learning ability of PFMs, we
propose a new metric named age of context to measure
the freshness and relevance of historical examples in
context and current inference requests.

• Based on the AoC, we develop the least context algorithm
to efficiently manage the cached models by utilizing the
contextual information and thus reducing model switch-
ing, inference, and accuracy costs.

Compared with our prior work in [9], this paper provides
formal mathematical formulations for the joint foundation
model caching and inference problem, the new age of context
metric, and the least context algorithm.

Cloud Data
Center

: Edge server

: Cached model
: Mobile device

: AIGC

GPU Memory

Examples
in context

Fig. 1: Joint foundation model caching and inference of
generative AI services for edge intelligence.

II. SYSTEM MODEL

As shown in Fig. 1, we consider an edge intelligence system
model consisting of service providers, including one cloud data
center and a set of edge servers, and a massive amount of users.
The cloud data center and edge servers can serve generative
AI services. The cloud data center is represented by 0 and the
set of edge servers is represented by N = {1, 2, . . . , N}. In
this system, edge servers and the cloud center provide generic
AI services such as AIGC, depending on different PFMs. We
use a set I = {1, 2, . . . , I} to denote the available generative
AI services based on a set of PFMs M = {1, 2, . . . ,M}. As
PFMs are capable of performing multiple downstream tasks in
generative AI services simultaneously, and thus we consider
I � M that the number of AI servers is far greater than the
number of PFMs.

Mobile users must request generative AI services from
edge servers or cloud data centers when their devices are
insufficient for executing PFMs. The inference requests of the
diverse services might request different PFMs when they are
serving different functions. Typically, a generative AI service
requires the collaboration of several PFMs to process users’
requests. For instance, in Stable Diffusion [10], text-related
conditioning is based on a pre-trained CLIP ViT-L/14 model.
Then, a variational autoencoder compresses images into a
smaller dimensional latent space. Finally, a U-Net block is
used to denoise the output from forward diffusion backwardly
to obtain a latent representation. This is a typical process
of serving text-to-image generation service requests. We use
Rtn,i,m to denote the number of inference requests generated
by AI service i to execute foundation model m at edge server
n. The configuration of PFM m consists of the amount of
runtime GPU memory, which is proportion to model size sm,
the inference cost per token em, the model accuracy am, and
the size of context window wm. The inference process of AI
services can put certain context information into the context
window of models. Then, the number of examples in context
is denoted by Kt

i,m of model m for application i which is zero
initially, i.e., K0

i,m = 0.

A. Decision Variables

To offer AI services based on PFMs, we propose a joint
foundation model caching and inference framework. Edge
servers need to make model caching and request offloading
decisions to utilize the existing edge computing resources
for accommodating generative AI service requests of mobile
users. Specifically, edge server n needs to determine the
following variables: (i) Let atn,i,m ∈ {0, 1} denote the binary
variable indicating whether model m of application i is cached
at edge server n at time slot t; (ii) Let btn,i,m ∈ [0, 1]
denote the continuous variable on whether model m of ap-
plication i is cached at edge server n at time slot t. Let
atn = {atn,1,1, . . . , atn,I,M} denote the model caching decisions
of edge server n and at = {at1, . . . ,atn}. In addition, the
request offloading decision of edge server n can be denoted as
btn = {btn,1,1, . . . , btn,I,M} and the request offloading decisions
of all edge servers can be denoted as bt = {bt1, . . . ,btn}.

The generative AI service requests of users can be executed
at edge servers if the required components of models are
loaded at the GPU memories. Let Gn denote the capacity
of GPU memory of edge server n. Then, the model caching
decision variables are subjected to the following constraint∑

i∈I

∑
m∈M

atn,i,msm ≤ Gn,∀n ∈ N . (1)

The models of AI services can be executed at the edge server
after they are loaded into the GPU memory. Therefore, the
constraint of model execution at edge servers is

btn,i,m1(Rtn,i,m > 0) ≤ atn,i,m,∀n ∈ N , i ∈ I,m ∈M (2)

at time slot t and 1(·) is the indicator function. Let En denote
the resource capacity of edge server n. The total resource
consumption of servers is constrained by the total energy
capacity, which can be represented as∑

i∈I

∑
m∈M

ema
t
n,i,mb

t
n,i,mR

t
n,i,m ≤ En, n ∈ N . (3)

In cloud data centers, there are no GPU memory constraints
or energy constraints for cached PFMs.

B. Age of Context and In-context Learning Accuracy

PFMs, such as GPT-3, have the ability to perform in-context
learning, which means that they can learn from past prompts
and inference results when an unseen task is presented to them.
Some primary experiments show that larger models are more
effective at using in-context instructions and demonstrations,
as demonstrated by their improved ability to learn a task
from contextual information [3]. This is particularly useful in
NLP tasks, where understanding the context of a sentence or
paragraph is crucial for accurate interpretation. Based on the
evidence that GPT-3 is capable of in-context learning, which
contributes to its strong performance on a variety of language
tasks, such as translation, basic arithmetic, and Q&A. Let
Kt
i,m denote the number of effective examples of model m

for application i. The examples in the demonstration might
have different impacts on the model performance in terms

TABLE I: The Parameters of Accuracy in Downstream Tasks
of GPT3-13B/175B [3].

Task Model K A0 A1 α

Translation 13B 64 15.45 11.8 0.0923
175B 64 22.03 7.59 0.1565

Basic Arithmetic 13B 50 3.79 12.19 -0.0501
175B 50 25.99 14.72 0.1813

SuperGLUE 13B 32 54.40 9.89 0.0969
175B 32 58.20 10.70 0.1431

of relevance, quality, and freshness. We propose the AoC to
measure the freshness of examples in demonstrations that have
an impact on the quality of services provided by PFMs in
tasks that are now being carried out downstream. For instance,
the historical Q&A records that are recorded during PFM
inference can be used to improve future inference accuracy.
These examples can be used to increase the accuracy of PFMs,
as PFMs can use meta-gradient learn during interaction to fit
them [11]. However, depending on the caliber, applicability,
and timeliness of examples, the meta-gradient may have fa-
vorable or unfavorable impacts on the model performance.
Similar to the definition of age of information (AoI), the AoC
measures the freshness of historical contextual examples in
demonstrations between the cached PFMs and the inference
requests. As shown in TABLE I, with a vanishing factor νi,m
of context, the AoC is adjusted by the non-increasing age
utility function. Therefore, the effective number of examples
in context Kt

i,m at edge server n can be represented as

Kt
i,m = min

(
wm, {Kt−1

i,m +Rtn,i,ma
t
n,i,mb

t
n,i,m − νi,m}+

)
,

(4)
for t = 1, . . . , T . According to the AoC, the weighted total
of the number of examples in demonstrations may be used to
determine the number of examples in context.

As shown in Table I, the in-context (few-show) accuracy
Ai,m of model m for the downstream task in application i
can be fit by a logarithmic function as [3]

Ai,m(Kt
i,m) = A0

m +A1
m log2(1 +Kt

i,m
αm), (5)

where A0
m is the zero-shot accuracy, A1

m is the one-shot
accuracy, Kt

i,m is the number of examples in context, and
αm is the coefficient of model m.

C. Cost Structure

As discussed above, the generative AI service requests can
be executed by edge servers and offloaded to cloud data centers
over the core network. Given the model caching and request
offloading decisions, the total system cost of serving generative
AI services consisting of the edge inference cost and cloud
inference cost can be formulated as follows.

1) Edge Inference Cost: Specifically, the edge inference
cost consists of the edge switching cost, the edge transmission
cost, the edge computing cost, and the model accuracy cost.
According to model caching decisions, each edge server needs
to load models into the GPU memory before execution. During
the loading process, the model switching cost consisting of

the model loading latency and hardware wear-and-tear cost is
incurred. Therefore, the switching cost lsn of edge server n to
load and evict models can be calculated as

lswitchn (at) =
∑
i∈I

∑
m∈M

λ1(atn,i,m > at−1n,i,m), (6)

where λ denotes the coefficient for loading and evicting the
model and 1(·) is the indicator function. When atn,i,m >

at−1n,i,m, i.e., atn,i,m = 1 and at−1n,i,m = 0, 1(atn,i,m > at−1n,i,m)
indicates that the loading of an uncached model. Otherwise,
there is no switching cost incurred at edge servers.

When the requested models are cached into the GPU
memory of edge servers, users communicate with the edge
servers for requesting generative AI services. Let ltransn denote
the transmission cost of input prompts and inference results.
The transmission cost of edge server n can be calculated as

ltransn (at,bt) =
∑
i∈I

∑
m∈M

ln,mR
t
n,i,ma

t
n,i,mb

t
n,i,m, (7)

where ri,m is the unit transmission cost per input and result
for model m of application i.

Let fn denote the computing capacity of edge server n. The
forward propagation process of AI services at edge servers
incurs inference latency, which can be denoted as lcompn for
edge server n. The edge computing cost can be calculated as

lcompn (at,bt) =
∑
i∈I

∑
m∈M

Rtn,i,ma
t
n,i,mb

t
n,i,m

cn
fn
. (8)

Finally, as edge servers might not have sufficient resources for
executing the best match model requested by AI services, the
requests processed by other PFMs with the equivalent function
incur accuracy cost laccn , which can be represented as

laccn (at,bt) =
∑
i∈I

∑
m∈M

(1−Ai,m)Rtn,i,ma
t
n,i,mb

t
n,i,m. (9)

By sacrificing some accuracy of generative AI services, the
system can reduce the model missing rate. Therefore, the total
edge inference cost of edge server n is

Ltn(a
t,bt) =lswitchn (atn) + ltransn (atn,b

t
n)

+ lcompn (atn,b
t
n) + laccn (atn,b

t
n).

(10)

The edge inference cost is jointly determined by the caching
decisions and offloading decisions of edge servers. Neverthe-
less, the missed or offloaded requests are processed by the
cloud data center.

2) Cloud Inference Cost: The edge servers are resource-
constrained, such that they are unable to serve all PFMs. On
one hand, due to the limited storage resources of the edge
server, the model requested by a user may be too large to
be loaded into the GPU of the edge server. On the other
hand, the limited computing power of the edge server makes it
necessary to actively migrate some requests to the cloud data
center for execution. Therefore, when the requested models are
missed at edge servers or offloaded to cloud data centers, this
part of user requests are transmitted to the cloud data center,
which needs to allocate resources for accomplishing such user

requests. In line with [12], the cloud data centers can consider
serving generative AI services in a serverless manner, which
is charged in a “pay-as-you-go” manner. Therefore, users need
to pay for executing AI services according to the number
of requests instead of specific occupied resources. When the
requests are missed at edge servers or edge servers do not have
enough resources for serving the requests, the unaccomplished
requests will be offloaded to the cloud data centers for remote
execution. The cloud data centers can execute the models
with their abundant computing and energy resources, and
then return the inference results to edge servers. However,
cloud inference incurs additional latency for data transmission
in the core network, which is much higher than the data
transmission latency at edge servers. Moreover, the accuracy
cost of offloaded inference requests executed by the cloud data
center is expected to be almost zero as they can be processed
by the most accurate model with common in-context examples
owned by the data center. Based on the above analysis, we use
l0,n to denote the aggregated cost of offloading one request to
the cloud data center for remote execution of model m. Then,
the total cloud computing cost at time slot t is

Lt0(a
t,bt) =

∑
n∈N\{0}

∑
i∈I

∑
m∈M

l0,m(1−atn,i,mbtn,i,m)Rtn,i,m.

(11)

D. Problem Formulation

To optimize the performance of mobile edge intelligence,
we jointly consider the cost of edge inference and cloud
inference, including the switching cost, the accuracy cost, the
transmission cost, and the inference cost over a time horizon
T . The problem is formulated as follows:

min
at,bt

1

T

∑
t∈T

(
Lt0 +

∑
n∈N

Ltn

)
(12a)

s.t. (1), (2), (3), (12b)
atn,i,m ∈ {0, 1}, (12c)

btn,i,m ∈ [0, 1]. (12d)

To solve the optimization problem described above, we must
overcome the following challenges: (i) The problem involves
time-coupling elements, such as GPU memories and in-context
examples, as it considers both future request dynamics and
historical inference contexts; (ii) Through historical statistical
data, we can forecast future information before making a
decision The problem becomes a mixed-integer programming
problem, which is NP-hard. To address these challenges, a
low-complexity heuristic algorithm is needed to make deci-
sions regarding model caching and request offloading, despite
the lack of future information.

III. THE LEAST CONTEXT ALGORITHM

To effectively serve PFMs for provisioning generative AI
services, we propose the least context algorithm based on
the AoC metric. When additional GPU memory is required
for loading an uncached requested PFM, the LC algorithm

20

30

40

B B B B B

A - Cloud Inference
B - FIFO
C - LFU
D - Least Context (LC)

Cloud Inference Cost
Accuracy Cost
Edge Inference Cost
Switching Cost

20 40 60 80 100
Number of Time Slots

0

2

4

6

8

Av
er

ag
e

To
ta

l C
os

t

A A A A AC
C C C C

D
D D D D

Fig. 2: Average total cost versus number
of time slots.

20

30

40

B B B B
B

A - Cloud Inference
B - FIFO
C - LFU
D - Least Context (LC)

Cloud Inference Cost
Accuracy Cost
Edge Inference Cost
Switching Cost

22 24 26 28 30
Number of Services

0

2

4

6

8

Av
er

ag
e

To
ta

l C
os

t

A
A

A
A

A

C C
C

C
C

D D D D
D

Fig. 3: Average total cost versus number
of services.

20

40

60

80

B
B

B

B
A - Cloud Inference
B - FIFO
C - LFU
D - Least Context (LC)

Cloud Inference Cost
Accuracy Cost
Edge Inference Cost
Switching Cost

2 4 8 16
Number of GPUs

0

2

4

6

8

Av
er

ag
e

To
ta

l C
os

t

A A A AC

C
C

CD

D
D

D

Fig. 4: Average total cost versus number
of GPUs.

counts the number of examples in context, calculates them,
and removes the cached PFM with the fewest effective ex-
amples in context. Therefore, at each time slot t, the model
caching decisions can be obtained by solving the maximization
problem of the number of effective examples for the cached
models, which can be represented as

max
at

∑
i∈I

∑
m∈M

Kt
i,m (13a)

s.t.
∑
i∈I

∑
m∈M

atn,i,msm ≤ Gtn,∀n ∈ N , (13b)

atn,i,m ∈ {0, 1}. (13c)

The available capacity of GPU memory Gtn of server n at time
slot t can be calculated as Gtn = Gn−Rtn,i,matn,i,mbtn,i,msm.
This optimization problem can be tackled with a complexity
of O(IM) with prior knowledge and statistical data. This
algorithm gives the least important PFM for the current
inference task priority for eviction. It works well with huge
numbers of PFMs on edge servers with limited GPU memory.
By using more contextual information during inference, the
PFMs of mobile generative AI services are more accurate.
Based on caching decisions at by solving the optimization
problem (13a), offloading decisions bt are obtained by solving
the optimization problem (12a).

IV. NUMERICAL RESULTS

In the experiment, we consider an edge intelligence system
with T = 100 slots. The requests for generative AI services per
time slot follow the Poisson process with an average of one.
We consider three types of PFMs and select six representative
models to serve in the experiments, i.e., GPTs, Uniformers,
and CLIPs. The detailed model configuration can be found
in [9]. The main parameters are listed in TABLE II.

We evaluate the proposed LC approach in comparison to
several baselines including cloud inference, the first-in-first-out
(FIFO) caching algorithm, and the least frequently used (LFU)
caching algorithm. Initially, we examined the effectiveness
of the LC algorithm by comparing the average total cost in
various system settings. As we observe in Fig. 2, the switching
cost of the LC algorithm gradually converges to a smaller value

TABLE II: The List of Main System Parameters.

Parameters Value
Number of time slots 100
Number of services 30
Number of GPUs 8

Size of context window 2048
Size of examples [10, 100]

GPU Memory 80 GB
GPU Computing Capacity 312000 GFLOPS

Edge transmission cost 0.0001
Cloud inference cost 0.0015

Switching cost coefficient 0.0001
Accuracy cost coefficient 0.01

GPU energy efficiency 810 GFLOPS/W
Energy capacity 300 W

at around 1.3%, while the switching cost of the FIFO algorithm
remains constant with system time. This indicates that the
LC algorithm is able to cache most of the required models
for inference services on the edge server in GPU memory. In
addition, the LC algorithm achieves the lowest average total
cost among all the algorithms. The LC algorithm can reduce
the cloud inference cost by increasing the utilization of edge
computing resources so that the requests can be executed at
edge servers with low latency.

We then show that the proposed LC algorithm is robust
under different system settings, such as a different number of
services and a different number of GPUs. From Fig. 3, we
can see that the total system cost increases with the number
of services. This is because the resources in the edge servers
become insufficient when more services need to be served on
the edge servers. On one hand, the GPU memory on the edge
servers is limited, and as the number of services increases,
more model switching will be required when running the
model, so the switching cost becomes higher. On the other
hand, when the resources on the edge servers are not sufficient,
the requests for cloud inference have to be forwarded to
cloud data centers, whose costs are higher than those of edge
inference. In the meanwhile, the experimental results in Fig. 4
indicate that the number of GPUs has a complex impact on the
total system cost. When the number of GPUs increases, the

0.0 0.2 0.4 0.6 0.8 1
Context Vanishing Factor

0.35

0.38

0.40

0.43

0.45

0.48

0.50

0.53

Av
er

ag
e

Ac
cu

ra
cy

 C
os

t
FIFO
LFU
Least Context (LC)

Fig. 5: Edge accuracy cost vs. context vanishing factor.

switching cost increases. The reason is that the edge servers
can cache more models in the GPU memory. Without effective
management of cached models, the switching cost is high for
the FIFO algorithms. Though the cost of the proposed LC
algorithm is always lower than those of the other algorithms,
its cost increases when the number of GPUs increases. The
reason behind this trend is that edge servers can cache larger
models when the number of GPUs is large. However, such
large models require intensive computing resources while
incurring similar edge inference costs. Therefore, these user
requests for large models are better offloaded to cloud data
centers for remote execution.

After demonstrating the effectiveness of the proposed LC
algorithm, we next investigate the impacts of the context
vanishing factor. To make comparisons between models more
noticeable, the size of the context window is set to 214. As
shown in Fig. 5, as the context vanishing factor increases,
the average accuracy cost of edge inference is first static and
then decreases. When the context vanishing factor is small, the
performance gap among these three algorithms becomes large.
However, when the context vanishing factor is large, such as
one in Fig. 5, the average accuracy cost decreases, and their
performance gap starts to shrink. Another interesting finding
shown in Fig. 6 is that the averse edge inference cost first
increases as the context vanishing factor increases and then
dramatically declines after a certain threshold.

V. CONCLUSIONS

In this paper, we investigated the joint foundation model
caching and inference problem for deploying PFMs to serve
AI-based multimedia services in mobile edge networks. We
introduced a joint foundation model caching and inference
framework designed to effectively provision generative AI
services at edge servers, and thus advancing toward AGI.
To this end, we proposed a new metric for measuring the
relevance and freshness of contextual examples in relation to
ongoing inference requests. Moreover, we have developed the
LC algorithm for PFM management, which optimizes the uti-
lization of historical contextual prompts and inference results,
subsequently enhancing the performance of generative AI
services. Experimental results indicated that the LC algorithm

0.0 0.2 0.4 0.6 0.8 1
Context Vanishing Factors

1.56

1.58

1.60

1.62

1.64

Av
er

ag
e

Ed
ge

 In
fe

re
nc

e
Co

st

FIFO
LFU
Least Context (LC)

Fig. 6: Edge inference cost vs. context vanishing factor.

effectively reduces system costs by effectively leveraging
historical demonstrates and managing cached models.

REFERENCES

[1] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Ka-
mar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg et al., “Sparks of artificial
general intelligence: Early experiments with GPT-4,” arXiv preprint
arXiv:2303.12712, Mar. 2023, [Online]. Available: https://arxiv.org/abs/
2303.12712.

[2] P. Zhou, J. Zhu, Y. Wang, Y. Lu, Z. Wei, H. Shi, Y. Ding, Y. Gao,
Q. Huang, Y. Shi et al., “Vetaverse: Technologies, applications, and
visions toward the intersection of metaverse, vehicles, and transporta-
tion systems,” arXiv preprint arXiv:2210.15109, Oct. 2022, [Online].
Available: https://arxiv.org/abs/2210.15109.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” Proc. of the Advances in Neural Information
Processing Systems, vol. 33, pp. 1877–1901, Dec. 2020.

[4] C. Zhou, Q. Li, C. Li, J. Yu, Y. Liu, G. Wang, K. Zhang, C. Ji, Q. Yan,
L. He et al., “A comprehensive survey on pretrained foundation models:
A history from BERT to ChatGPT,” arXiv preprint arXiv:2302.09419,
Feb. 2023, [Online]. Available: https://arxiv.org/abs/2302.09419.

[5] M. Xu, D. Niyato, J. Chen, H. Zhang, J. Kang, Z. Xiong, S. Mao, and
Z. Han, “Generative AI-empowered simulation for autonomous driving
in vehicular mixed reality metaverses,” arXiv preprint arXiv:2302.08418,
Feb. 2023, [Online]. Available: https://arxiv.org/abs/2302.08418.

[6] G. R. Gilman, S. S. Ogden, R. J. Walls, and T. Guo, “Challenges and
opportunities of dnn model execution caching,” in Proc. of the Workshop
on Distributed Infrastructures for Deep Learning, Davis, CA, Dec. 2019,
pp. 7–12.

[7] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proc. of the IEEE, vol. 107, no. 8, pp. 1738–1762, Jun.
2019.

[8] Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun,
J. Xu, and Z. Sui, “A survey for in-context learning,” arXiv preprint
arXiv:2301.00234, Jan. 2023, [Online]. Available: https://arxiv.org/abs/
2301.00234.

[9] M. Xu, D. Niyato, H. Zhang, J. Kang, Z. Xiong, S. Mao, and Z. Han,
“Sparks of gpts in edge intelligence for metaverse: Caching and infer-
ence for mobile aigc services,” arXiv preprint arXiv:2304.08782, Apr.
2023, [Online]. Available: https://arxiv.org/abs/2304.08782.

[10] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” in Proc. of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
New Orleans, LA, Jun. 2022, pp. 10 684–10 695.

[11] D. Dai, Y. Sun, L. Dong, Y. Hao, Z. Sui, and F. Wei, “Why can gpt
learn in-context? language models secretly perform gradient descent as
meta optimizers,” arXiv preprint arXiv:2212.10559, Dec. 2022, [Online].
Available: https://arxiv.org/abs/2212.10559.

[12] K. Zhao, Z. Zhou, X. Chen, R. Zhou, X. Zhang, S. Yu, and D. Wu,
“Edgeadaptor: Online configuration adaption, model selection and re-
source provisioning for edge dnn inference serving at scale,” IEEE
Transactions on Mobile Computing, pp. 1 – 16, Jul. 2022.

https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2210.15109
https://arxiv.org/abs/2302.09419
https://arxiv.org/abs/2302.08418
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2304.08782
https://arxiv.org/abs/2212.10559

	I Introduction
	II System Model
	II-A Decision Variables
	II-B Age of Context and In-context Learning Accuracy
	II-C Cost Structure
	II-C1 Edge Inference Cost
	II-C2 Cloud Inference Cost

	II-D Problem Formulation

	III The Least Context Algorithm
	IV Numerical Results
	V Conclusions
	References

