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Abstract—The fast development of Internet-of-Things (IoT) de-
vices and applications has led to vast data collection, potentially
containing irrelevant, noisy, or redundant features that degrade
learning model performance. These collected data can be processed
on either end-user devices (clients) or edge/cloud server. Feature
construction is a pre-processing technique that can generate dis-
criminative features and reveal hidden relationships between origi-
nal features within a dataset, leading to improved performance and
reduced computational complexity of learning models. Moreover,
the communication cost between clients and edge/cloud server can
be minimized in situations where a dataset needs to be transmitted
for further processing. In this paper, the first federated feature con-
struction (FFC) method called multimodal multiple FFC (MMFFC)
is proposed by using multimodal optimization and gravitational
search programming algorithm. This is a collaborative method for
constructing multiple high-level features without sharing clients’
datasets to enhance the trade-off between accuracy of the trained
model and overall communication cost of the system, while also
reducing computational complexity of the learning model. We
analyze and compare the accuracy-cost trade-off of two scenarios,
namely, 1) MMFFC federated learning (FL), using vanilla FL
with pre-processed datasets on clients and 2) MMFFC centralized
learning, transferring pre-processed datasets to an edge server and
using centralized learning model. The results on three datasets for
the first scenario and eight datasets for the second one demonstrate
that the proposed method can reduce the size of datasets for about
60%, thereby reducing communication cost and improving accuracy
of the learning models tested on almost all datasets.

Index Terms—Feature Construction, Federated Learning, Gravi-
tational Search Programming, Internet-of-Things, Machine Learn-
ing

I. INTRODUCTION

The fast development of Information and Communication
Technologies (ICTs) has led to the invention and development
of numerous smart devices and applications, including Internet-
of-Things (IoT) devices such as smartphones and autonomous
vehicles that generate a huge volume of data. The collected
data are fed into different machine learning (ML) models to
learn patterns from the data and extract knowledge about the
environment. They were traditionally sent to the a cloud server,
but because of real-time response requirements and privacy
issues, for many IoT applications the data cannot be sent to
the cloud and need to be processed either locally or on the
edge [1]. These data are high dimensional big data that may
contain some irrelevant, redundant, noisy, or heterogeneous ones
that can negatively impact execution time and performance of
the ML models. Also it may increase the communication cost
between end-user devices and edge servers. Therefore, in IoT

environments, data pre-processing methods can be applied on lo-
cal datasets of each device to reduce data size and consequently,
improve the model performance and communication cost [2].

Among data pre-processing methods, feature selection (FS)
and feature construction (FC) are two common approaches in
data mining and ML. FS methods select informative features
from the original feature set. FC methods construct high-level
features by combining informative ones with suitable operators
to extract hidden relationships among original features. Some
FC methods use evolutionary computation algorithms that are
divided into two main categories: single-feature construction
and multiple-feature construction. These methods converge to
one best solution that can either contain one or multiple new
features [3]. However, different feature combinations may lead
to the similar learning performance. Therefore, FC problem can
be investigated from multimodal optimization (MO) perspective.
MO techniques like niching techniques try to find multiple
global optimum solutions by controlling population diversity and
dividing the population into multiple sub-populations [4].

To construct new features in IoT environments with dis-
tributed datasets, a collaborative FC method is needed. There
are a number of federated FS (FFS) methods in the litera-
ture that are inspired by federated learning (FL) procedure
to select informative features in a collaborative manner [5],
[6]. However, according to our best knowledge, FC has not
been investigated from this perspective. Also, FC has not been
investigated as a problem with multimodal property. In this
paper, we propose to use multimodal niching Gravitational
Search Programming (GSP) algorithm for federated feature
construction (FFC). Among niching strategies, the crowding
strategy is adopted to construct multiple new features by dividing
the population according to the distance between each program
and a random reference point. The proposed method reduces data
size in each client in an effective manner without information
loss. This leads to speeding-up ML models, and reducing their
complexity especially in privacy-preserving learning scenarios,
and communication cost reduction when datasets need to be sent
to edge servers. The main novelties of the proposed method can
be summarized as follows:

• Proposing the first FFC method inspired by FL procedure
• Adopting a MO technique for solving FC problem for the

first time
• Constructing multiple features by using a filter-based FC

approach in one execution
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• Comparing the proposed method with other centralized
FC methods, and other FFS methods in the literature,
resulting in a mean accuracy increase of about 4.5% and
1%, respectively while reducing data size for about 60%

II. BACKGROUND AND RELATED WORKS

Previous works on FS and FC have been mainly done cen-
tralized. To the best of our knowledge, there has been limited
research on federated and distributed FS, and no research on
FFC. In the following, we will explain the previous works more
in depth.

A. Centralized Feature Construction

The quality of the feature set is a crucial factor in the
performance of supervised machine learning techniques such
as classification. To enhance performance, two main data pre-
processing approaches are commonly used: FS and FC. FC
methods can be classified into three categories: filter, wrapper,
and hybrid methods. Our paper proposes a filter-based FC
method. Unlike wrapper methods, filter methods do not rely on
learning algorithms and FC is treated as a pre-processing step
that does not interact with the learning algorithms. These meth-
ods evaluate and rank constructed features based on inherent
characteristics such as information theory, mutual information,
or correlation criteria [7].

FC is considered as NP-hard problem because it is not
practical to find the exact solution with large amount of features.
Genetic programming (GP) is mostly used for constructing either
one or multiple new features [8]. GP uses complex tree repre-
sentation and complicated process with crossover and mutation.
Single FC methods cannot provide a good accuracy by using
one constructed feature. On the other hand, most of multiple
FC methods use multi-tree representation for each program that
contains a number of trees correspond to constructed features.
This may cause disappearing good constructed features in pro-
grams with low fitness during the evolutionary process. Also,
some methods execute single FC method for multiple times to
construct multiple features. To the best of our knowledge, FC has
not been investigated in IoT environments with distributed local
datasets. To address these challenges, we propose using GSP
algorithm for FFC and adopting a multimodal niching method
for solving FC problem and constructing multiple features.

B. Federated Feature Selection (FFS)

There are a few number of FFS methods in the literature
that are divided into two main categories: vertical FFS [9] and
horizontal FFS [10]. In vertical FFS, datasets in clients have
instances with the same IDs, and different feature sets. However,
in horizontal FFS, clients have different instances with the same
feature sets. The horizontal FFS in [5] used filter-based Cross-
Entropy FS method in both clients and edge server. A few
number of informative features were selected with information
loss. Therefore, the proposed method cannot provide a good
trade-off between communication cost and accuracy. Another
work [11] proposed a wrapper-based horizontal FFS method.
Gravitational search algorithm (GSA) was used as a local and
global feature selector in clients and edge server, respectively.

The results demonstrated that by selecting about half number
of features, the method could achieve a reasonable trade-off
between communication cost and accuracy.

Some methods use a trusted third party on edge server
instead of a global FS algorithm. Therefore, there is not a
global algorithm to guide the FFS process. In [10], a horizontal
FFS method based on particle swarm optimization (PSO) was
proposed. Binary bare-bones PSO selected features from local
datasets in clients and a trusted third party assembled the
selected features. This may lead to a non-accurate FFS since
there is not a global FS algorithm on the server to continue evo-
lutionary process. Another work [12] proposed an unsupervised
horizontal FFS. Initially, a feature average relevance one-class
support vector machine algorithm was employed to eliminate
irrelevant features by combining the idea of outlier detection
and dimension reduction. Then, a feature relevance hierarchical
clustering algorithm was used to group related features and
create distinct feature clusters. In this method, the FS procedure
was executed only once on clients’ datasets unlike the concept
of FFS. After reviewing existing methods and their challenges,
rather than solely selecting features, our objective is to construct
multiple distinctive features to achieve a better balance between
accuracy and cost. To accomplish this, we incorporate MO with
GSP algorithm inspired by horizontal FFS.
C. Gravitational Search Programming (GSP)

GSP is one of the latest automatic programming approaches
that has been proposed in 2019 [13]. This algorithm is a
population-based meta-heuristic algorithm that used GSA as a
process to construct mathematical expressions, automatically,
and it is suitable for FC. By contrast to other programming
methods, GSP used a fixed-length string representation for
encoding programs instead of complex tree structure with great
depth. Terminal and internal nodes of programs can be selected
from problem variables and predefined mathematical operators,
respectively. This algorithm is faster and simpler than others
as it eliminated genetic operators including crossover, mutation,
selection and replacement in its process. The GSP search pro-
cedure can be narrated by several main steps:

1) Initializing a random population of programs using vari-
ables and operators for terminal and internal nodes.

2) Iterating the following sub-steps until reaching a stopping
criterion:

a) Evaluation: calculating fitness value of each program
by an appropriate fitness function.

b) Updating the best and the worst programs.
c) Calculating mass and acceleration of each program

using GSA formulas.
d) Updating the velocity and the position of programs

using GSA formulas.
3) Returning the best program with the maximum fitness

value as the optimum solution.
You can read more details about this algorithm in [13].

III. PROPOSED METHOD

In this section, the architecture and details of the proposed
filter-based multimodal multiple horizontal FFC is presented.



A. System Overview

We consider a 2-tier system, where horizontal FL is per-
formed. A number of clients like IoT devices are considered
as the first-tier that collect data, and a single edge server is
considered as the second-tier (This approach is generalizable
to more number of edge servers). We consider that there are a
set of M clients Cm, m := {1, 2, ...,M} and an edge server
e. Here, M should be at least 2 because if we have only
one client then the problem will be a centralized FC. The
set of all local datasets hold by the clients is represented by
D = {D1, ..., DM}. Each client’s dataset Dm = {X,Y } :=
{(xn, yn)}Nn=1, containing N unique samples and the same
feature set F = {f1, f2, ..., fL}. xn = (xn1, xn2, ..., xnL)
is a sample vector, and Y = (y1, y2, ..., yN ) is the class
label vector of N samples, where yn ∈ {1, ..., ClassLabel}.
F = {f1, f2, ..., fL} is the original feature set of each client that
is used to select informative ones and combine them to construct
multiple more discriminative features {fq1}, {fq2}, ..., {fqβ}.
B. Proposed Algorithm

As mentioned in previous sections, FFC is considered as a
MO problem, and niching strategy is applied to solve it. The
proposed MMFFC method is composed of two phases the same
as FL procedure: local and global phase. The GSP algorithm is
used for FC in both phases as feature constructor. To construct
multiple features, the local GSP population is partitioned into
sub-populations in each client and leverages local data to obtain
the optimal constructed feature for its respective region. Then the
global GSP in edge server aggregates the constructed features
by clients and continues the FC process. The global and local
feature constructors communicate iteratively until reaching the
stopping criterion. The pseudo code of global and local feature
constructors on edge server side and client side are given in
Algorithm 2 and 3, respectively. Fig. 1 illustrates the FFC
procedure as well.

Local Phase at Clients: In this phase, local feature con-
structor investigates original features to select and combine them
with appropriate mathematical operators to construct high-level
discriminative features (Algorithm 3). For this purpose, the local
GSP algorithm for FC starts with randomized population of
programs (Line 1 Algorithm 3). Each program in the popula-
tion corresponds to a constructed feature. A fixed-length string
represents the structure of each program, and its dimension is
specified by the number of original features in the dataset (L),
the depth of programs (PD)and the number of operands (NO)
for internal nodes of programs. This dimension is calculated as
follow:
Program′sDimension = L+

PD∑
i=1

NOi +

(PD−1)∑
j=0

NOj (1)

The string contains binary bits (for selecting informative features
from original feature set) and integer bits (for selecting operators
of internal nodes and connection links). At the next step, crowd-
ing clustering niching method is applied to the GSP algorithm
to maintain its population diversity and find multiple solutions
(Line 3 Algorithm 3). The population of programs is divided into
multiple sub-populations by calculating the distance between

each program and the random reference point by using hamming
distance. Similar programs with small differences are grouped
in the same cluster,and different programs are separated into
different clusters (Lines 1-13 Algorithm 1). This distance metric
provides the number of different bits between two program
strings. Crowding clustering niching pseudo code is given in
Algorithm 1.

Then, each program in each niche/cluster is evaluated by a
fitness function and a fitness value is assigned to it (Line 5
Algorithm 3). Here, information gain ratio (IGR) is used as a
fast filter-based fitness function to measure the effectiveness of
a constructed feature. The IGR of a constructed feature fqβ is
indicated by IGR(fqβ), and the information gain (IG) of the
fqβ is indicated by IG(fqβ). H(fqβ) indicates the entropy of
a constructed feature fqβ . Then, the IGR(fqβ) is calculated as
follow:

IGR(fqβ) =
IG(fqβ)

H(fqβ)
(2)

The IG of the constructed feature is the difference between the
H(Y ), information entropy of the class labels Y , and H(Y |fqβ),
conditional entropy of the class labels given the constructed
feature. IG, H(Y ), H(fqβ), and H(Y |fqβ) are defined in Eq.
(3), (4), (5), and (6), respectively.

IG(fqβ) = H(Y )−H(Y |fqβ) (3)

H(Y ) = −
c∑

i=1

P (Yi)log2P (Yi) (4)

where c is the number of class labels, and P (Yi) is the
probability of the class label Yi in the training set.

H(fqβ) = −
N∑
j=1

P (V j
qβ)log2P (V j

qβ) (5)

where N is the number of values of the fqβ . V j
qβ is the j-th

value of the constructed feature fqβ .

H(Y |fqβ) = −
N∑
j=1

P (V j
qβ)

c∑
i=1

P (Yi|V j
qβ)log2P (Yi|V j

qβ) (6)

where P (Yi|V j
qβ) is the conditional probability of the i-th class

given the j-th value of the constructed feature fqβ .
In this method, as the population is divided into multiple

sub-populations, the mass, position, velocity, and acceleration
of programs within each niche are updated based on the fitness
values of the niche population, including the best and worst
programs found in the current iteration (Lines 6-8 Algorithm 3).
After reaching the stopping criterion, maximum iteration here,
clients save the last updated programs’ positions, velocities, and
their corresponding fitness values to be used in the next iteration
(Line 10 Algorithm 3).

Global Phase at Edge Server: The number of programs
in each niche or niche size (NS) is randomly selected in
each iteration for all clients similar to what has been done
in [14]. Therefore, the number of niches (A) is calculated as:
A = ceil(S/NS) where (S) is the number of programs in
the population, and ceil represents the ceiling of the value



(Line 3 Algorithm 2). Multiple programs with the highest fitness
value that construct multiple high-level discriminative features
can be specified by using MO method in each client after
reaching the stopping criterion. Therefore, clients need to save
all these programs with their corresponding fitness values and
their indices in the local GSP population. All these programs are
used as the population of the global GSP (Lines 4-8 Algorithm
2). Then, by using the GSP updating formula, the programs are
updated and returned to their corresponding clients (Lines 9-
12 Algorithm 2). This communication between clients and edge
server will be continued until reaching the stopping criteria.

Algorithm 1 Pseudo code of the Crowding clustering method

Input: The number of programs in the population (S), Number
of niches (A), and niche size (NS)

Output: Desired number of niches

1: Initialize a reference point R randomly in the population s
← S // s is the number of unclustered programs

2: for i = 1 : A do
3: if s > NS then
4: ns← NS
5: else
6: ns← s // ns is the niche size for the particular

niche
7: end if
8: Find the closest program Z to R in population
9: Fine ns− 1 closest programs to Z in population

10: Put Z and ns− 1 programs in the i-th niche
11: Remove the ns selected programs from the population
12: s ← s− ns
13: end for

Algorithm 2 Pseudo code of the global phase at edge server

Input: Multiple local “Best” programs, their corresponding
fitness values, and their indices in the local population from
all clients

Output: Multiple “Best” solutions (Best constructed features)

1: while reaching the stopping criteria or maximum iteration
do

2: for all clients do
3: Select NS randomly and compute A
4: Execute Algorithm 3
5: Receive multiple best programs, their corresponding

fitness values and indices
6: end for
7: Global population = all local best programs
8: Global fitness = corresponding fitness values of local

best programs
9: Updating Kbest, G, Best, and M based on the GSP

10: Calculating global programs’ acceleration and velocity
11: Updating global programs’ position
12: Send the updated programs to their clients
13: end while

Algorithm 3 Pseudo code of the local phase at client

Input: The number of programs, Number of features, Depth of
programs, Number of operands, A, and the updated “Best”
programs of the client from the global algorithm

Output: Multiple local “Best” programs and their
corresponding fitness values, and indices

1: Initialization: Initial a population of fixed-length strings
randomly

2: In iterations > 1, use saved population from last iteration
and replace the updated “Best” programs

3: Use Algorithm 1 to cluster the population
4: while reaching the stopping criteria/maximum iteration do
5: Evaluate programs by IGR (2)
6: Updating Kbest, G, Best, and M for each niche (GSP)
7: Calculating the acceleration and velocity of each niche

population (GSP)
8: Updating programs’ position of each niche (GSP)
9: end while

10: save the position, velocity, and fitness of local programs

IV. EXPERIMENTAL RESULTS

In this section, the proposed method is evaluated through
two scenarios. 1) MMFFC federated learning involves applying
MMFFC to the local datasets to decrease their sizes and using
vanilla FL as a learning model. 2) MMFFC centralized learning
involves transferring reduced-size datasets to an edge server after
applying the MMFFC to the clients’ datasets and then feeding
them to a centralized learning model.

A. Datasets

According to the literature, three benchmark datasets are used
for the first scenario that represent IoT network characteristics.
These datasets are: IoT network traffic (DEFT) dataset for
device classification, ACC dataset for anonymized credit card
transactions to predict fraud transactions, and KDD99 dataset
for network intrusion detection. The characteristics of these
datasets are provided in Table I. For the second scenario,
eight benchmark datasets are collected from the University of
California, Irvine (UCI) machine learning repository. The details
of these datasets are demonstrated in Table II.

TABLE I: Characteristics of the IoT datasets
Dataset name Classes Features Instances

DEFT 16 111 7289
ACC 2 30 284807

KDD99 5 41 494021

TABLE II: Details of the UCI datasets
Dataset name Classes Features Instances

Wine 3 13 178
Sonar 2 60 208
wdbc 2 30 569

HillValley 2 100 606
Ionosphere 2 34 351

Balance-Scale 3 4 625
Iris 3 4 150

Thyroid 3 5 215



B. Evaluation Measure
In this work, vanilla FL algorithm (FedAvg) with multi layer

perceptron (MLP) with 6 layers is used in the first scenario. In
the second one, after constructing new features, the reduced-size
datasets are transferred and fed to a centralized C4.5 decision
tree classifier. Moreover, classification accuracy (acc) and feature
reduction (fr) as measures of learning model performance and
communication cost are used. These two metrics are calculated
as follow: acc = C

T ∗ 100 where C is the number of correctly
classified instances in the test set, and T is the total number
of instances in the test set. The higher the acc, the constructed
features are more distinctive. fr = TF−CF

TF ∗ 100 where TF
is the total number of features in the original set, and CF
is the number of constructed features. The higher the fr, the
communication cost is lower, and the FC method is more
appropriate.

C. Parameter setting

In our experiment, a FL with 10 clients is considered. In-
dependent and identically distributed (iid) and non-iid config-
urations are used for data distribution. Therefore, the results
are comparable with results in [5], [10], [11], and [12]. The
number of programs and iterations in local GSP are 30 and
5, respectively. The total number of iterations in global GSP is
100, and total best programs from all clients form its population.
Other parameters of GSP are unchanged and the same as the
original algorithm[13]. These parameters are obtained by trial
and error.

D. Results and Analysis
In the first scenario, as the proposed method is the first

method in federated feature construction, it is compared with
the baseline with no FS (No-FS) and four existing FFS methods
in the literature on three benchmark datasets: DEFT, ACC,
and KDD99. However, in the second scenario, the proposed
MMFFC method is compared with two recent centralized FC
methods on eight UCI datasets. The results are demonstrated in
Table III and IV. In the first scenario, filter-based FFS method
proposed in [5] (Fed-FS-CE) can select a few number of features
and reduce communication cost, but lost a lot of information.
However, our method can construct multiple high-level features
and achieve good accuracy with low computational complexity
of local learning models. For example, for ACC dataset, although
Fed-FS-CE [5] and MFPSO [10] methods remove 80 % and 56
% of features respectively, they cannot provide accurate results.
Moreover, FSHFL [12] and Fed-FS-GSA [11] methods obtain
the same or about the same accuracy of the FL classifier with no
feature selection (No-FS). However, the proposed method can
simultaneously enhance accuracy by approximately 1.6% and
decrease data size by 60%. The results for both iid and non-iid
datasets show that the MMFFC can enhance mean accuracy by
1% and decrease data size by about 65%. In the second scenario,
instead of sending the entire dataset, only the constructed
features are sent and fed into the C4.5 classifier at the edge
server. We observed that the proposed MMFFC method can
achieve higher accuracy for nearly all datasets while reducing the
average communication cost by approximately 57%. However,

 

Fig. 1: Federated Feature Construction Procedure

for one or two datasets, it can obtain the same accuracy with
more number of constructed features. For example, for Balance-
Scale dataset the proposed method with 3 features and Fcm
[15] with 10 features can obtain almost the same accuracy, and
FCMFS [7] obtains better result with fewer number of features
and communication cost.

V. CONCLUSION AND FUTURE WORKS

In IoT environments, there are many end-user devices that
collect enormous amount of data. These datasets may contain
some non-informative, noisy, and redundant features. Therefore,
data pre-processing methods like feature construction can be
effective to reduce data size and learning models’ computational
costs. In this paper, a multiple federated feature construction
method is proposed for the first time. Multimodal optimization
with filter-based gravitational search programming are used to
create new features in a distributed procedure. To examine the
proposed method, three IoT benchmark datasets are fed to a
privacy preserving learning method like FL. The results indicate
that the proposed method can obtain better accuracy with fewer
features compare to other FFS methods. Moreover, the results
on eight UCI datasets illustrate that centralized learning models
like C4.5 on edge server can obtain accurate results and achieve
good trade-off between accuracy and communication cost. In
this work, we use crowding clustering strategy for MO and
combine it with FFC for the first time. Exploring alternative MO
strategies such as speciation and fitness sharing, in combination
with FFS and FFC, holds the potential for achieving improved
results. Therefore, for future research, we intend to investigate
the effectiveness of these methods in distributed pre-processing
approaches specifically designed for IoT environments.
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