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Abstract—Advanced video technologies are driving the devel-
opment of the futuristic Metaverse, which aims to connect users
from anywhere and anytime. As such, the use cases for users
will be much more diverse, leading to a mix of 360-degree videos
with two types: non-VR and VR 360◦ videos. This paper presents
a novel Quality of Service model for heterogeneous 360◦ videos
with different requirements for frame rates and cybersickness.
We propose a frame-slotted structure and conduct frame-wise
optimization using self-designed differentiated deep reinforce-
ment learning algorithms. Specifically, we design two structures,
Separate Input Differentiated Output (SIDO) and Merged Input
Differentiated Output (MIDO), for this heterogeneous scenario.
We also conduct comprehensive experiments to demonstrate their
effectiveness.

Index Terms—Metaverse, resource allocation, reinforcement
learning, wireless networks.

I. INTRODUCTION

Background. Virtual Reality (VR) is a crucial tool for

creating a fully immersive and interactive experience for users,

particularly in the context of the Metaverse that seeks to

integrate all users into a unified and comprehensive virtual

world. 360-degree video (360◦ video) is a vital technology for

VR, as it provides users with an immersive and intuitive way to

explore virtual environments. Furthermore, as the Metaverse

is user-centric by design, we need to always put the users’

Quality of Service (QoS) as the core metric for these 360◦

video services. However, the QoS in 360◦ videos is much

more complicated than traditional 2-Dimensional (2D) videos,

and it is influenced by many factors [1]. 360◦ videos can be

viewed in either VR or non-VR mode. VR mode involves

using a head-mounted display (HMD) to create an immersive

experience, while non-VR mode refers to watching the video

on a monitor [2]. These two modes can result in very different

quality of service (QoS) for users [2]. With the emergence of

the Metaverse, the boundary between VR and non-VR modes

is becoming more blurred. While some users may prefer a

fully immersive experience with an HMD, many others may

opt for viewing 360◦ videos on their mobile or PC monitors

at the same time. And due to the large data sizes of 360◦

video applications, it is necessary to utilize a server to generate

and transmit video frames to users’ display devices. Therefore,

how to allocate resources to such different mixed users is a

huge challenge.

Challenges and motivations. As the Metaverse aims to

connect diverse users, QoS modeling for 360-degree videos is

particularly challenging due to the heterogeneous users using

both non-VR and VR modes. In VR mode, cybersickness is

a critical issue that affects users’ overall experience related

to frame latency and stability [3]. Additionally, perceptual

video quality differs between different modes, even when

having the same FPS, as indicated by studies [4]. Designing a

rational QoS model that accounts for the heterogeneous users

in the Metaverse remains a significant challenge. Furthermore,

most of the existing works focus on single-step optimization

and use the optimized setting for the entire video, which

is insufficient for efficient resource utilization. Our approach

involves conducting a frame-wise optimization using a frame-

slotted structure for the 360-degree video to decrease the la-

tency fluctuations between frames and alleviate cybersickness.

However, the frame-slotted sequential problem is non-convex

and cannot be solved through separate single-step optimiza-

tions. We propose using Deep Reinforcement Learning (DRL)

to address this time-sequential problem. However, traditional

DRL methods may not provide a global allocation for the

entire system in this heterogeneous scenario with two types

of users. Therefore, there is an urgent need to develop a novel

DRL method that considers users’ preferences for resolution,

latency, and frame rate to optimize the QoS.

Related work and our novelty. The QoS and QoE (Quality

of Experience) in 360◦ videos contain many objective factors,

such as the resolutions, frame rates, and frame delays [1].

Researchers put much effort to designing the QoS model and

optimize the objective metrics [1], e.g., Chen et al. studied

the QoS of a VR service over wireless communication using

an echo state network [5]. However, few of them has ever

considered the QoS for the heterogeneous 360◦ video users

(non-VR and VR users), or the cybersickness optimization

for VR users. Besides, most of the works focus on single-

step optimization and use this optimized setting for the whole

video. On the contrary, we design the comprehensive QoS

model for the mixed 360◦ video users, and a frame-slotted

structure for optimizations in each frame, improving both

kinds of users experience at the same time. Machine-learning-

based approaches have been widely adopted to tackle wireless

communication challenges [6], and DRL has been proven

to achieve excellent performance. Nevertheless, few of them

design a novel DRL approach with more specific view on

different type of users.

Contributions. Our contributions are as follows:

• We design a frame-slotted structure and conduct frame-

wise optimization, fully utilize the network resources.
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Fig. 1. Frame slotted transmission system.

• We craft a rational QoS model for heterogeneous 360◦

video users (non-VR and VR modes), involving the frame

rate (FPS) and cybersickness optimization.

• We create two differentiated DRL structure and conduct

comprehensive experiments. Our results demonstrate the

superior performance of both methods in most heteroge-

neous scenario, achieving 15.2%, 20.8% improvement in

frame rates for two types of users, and -80.9% decrease

in cybersickness for users in VR mode, compared to the

traditional DRL algorithm.

A. Organization

The remainder of the paper is structured as follows. In Sec-

tion II, we present our system model. Next, in Sections III and

IV, we describe our deep reinforcement learning environment

and proposed algorithms. Then, in Section V, we conduct

comprehensive experiments and compare our approach to

various methods to demonstrate its effectiveness. Finally, in

Section VI, we provide concluding remarks.

II. SYSTEM MODEL

A. Frame-slotted structure

This paper examines the downlink wireless transmission of

360-degree videos from a Video Server (VS) with multiple

resolutions to a set of VR Users (VUs), represented by N , who

may be using different display types (HMD or monitor). N is

defined as {1, 2, . . . , N}. Since the video transmission is typ-

ically transmitting a series of frames [7], we employ a frame-

slotted structure to ensure a seamless video experience. In this

structure, the VS generates T frames (T = {1, 2, . . . , T })

per second, and each second is partitioned equally into T

slots, with each slot transmitting one frame to the video users

(VUs). This design helps to optimize the delivery of video

content by ensuring that each frame is transmitted efficiently

and received by the VUs in a timely manner. In each slot, the

same frames will be transmitted from the VS to all VUs, and

the Transmission Time Interval (TTI) of each slot it 1
T

(one

second with T frames). To ensure the smooth experience for

all VUs, we assume that the frame will be lost if it is not

finished in its TTI.

B. Propagation process

At the beginning of each TTI t, the server will allocate the

downlink transmission power for each VU. We use a N × T

matrix P to denote the downlink transmission power allocated

to VUs, where the element ptn in nth row and tth column refers

to the allocated power to VU n (n ∈ N ) at slot t (t ∈ T ), then,

the server will transmit the frames to each VU. To alleviate

the interference and simplify the transmission, we leverage

frequency division multiple access (FDMA) in the propagation

model. Therefore, the achievable transmission rate for VU n

at t is:

rtn = Wn log2(1 +
ptng

t
n

σ2Wn

), (1)

where Wn denotes the bandwidth for VU n, gtn is the channel

gain of VU n at TTI t, and σ2 is the power spectral density

of additive white Gaussian noise. Since the TTI is very short,

we assume that gtn remains constant within a given TTI, but

varies across different TTIs. Then, the transmission latency ltn
for VU n at TTI t should be:

ltn = min

(
f × b

ctn × rtn
,
1

T

)

, (2)

where f is the resolution (i.e., number of pixels), b is the

bits per pixel (bpp), ctn is the compression ratio of this frame.

Noted that compression ratios vary depending on the quality

of the image and the size of the data, and it’s always not

constant [8]. The use of min() in this context implies that if

the transmission delay is longer than the TTI, the frame will

be lost and the latency will be capped at the value of TTI (i.e.,
1
T

). We define a transmission success indicator as

Itn =

{

1, if
ft
n

ctn×rtn
≤ 1

T
.

0, if
ft
n

ctn×rtn
> 1

T
.

(3)

Then, the achievable frame rate of VU n is
T∑

t=1
Itn.

C. QoS for VR and non-VR modes

Each VU n can use either VR mode (HMD) or non-VR

mode (monitor), which is represented by a binary variable

κn ∈ {0, 1}, where 0 denotes non-VR and 1 denotes VR.

We assume that the chosen mode remains constant during the

whole process, because our optimization is conducted on a

per-frame basis, with a very short time interval. The QoS

varies significantly between different modes, particularly in

terms of frame rate (measured in frames per second) and

cybersickness [2]. Thus, we explain our QoS model from these

aspects according to the two modes.

Frame rate: The ideal frame rates for VR and non-VR

are different, because the HMD VR requires a higher frame

rate to maintain a sense of presence and prevent motion

sickness [3]. Thus, we take the frame rate as a time-sequential

optimization object in this paper, which is to make more

frames be transmitted successfully in TTIs. And we set the

minimum acceptable frame rates for VR and non-VR as Īvr

and Īnon.

Cybersickness (for HMD VR): Cybersickness is a complex

phenomenon that is challenging to model accurately. One

critical factor that affects cybersickness when using a HMD

2
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Fig. 2. The delay between two successful frames.

VR is the stability and latency between frames. It may seem

counterintuitive, but the length of delays between each frame is

not necessarily the most crucial factor. Instead, it is the abrupt

high latency and delays fluctuations that can cause severe

sickness for users [3]. Therefore, simply minimizing the delays

between frames may not be a feasible approach to reduce user

discomfort, as it can potentially compromise resolution quality

in order to achieve this trade-off. Our objective is to minimize

the standard deviation (std) of delays between each pair of

successfully transmitted frames. However, since cybersickness

is not a concern in non-VR mode [2], we only need to consider

this issue for VR mode.

To simplify the formulation of the delay standard deviation,

we order the successfully transmitted frame (i.e., Itn = 1)

as {µ1
n, µ

2
n, . . . , µ

K
n } (∀n ∈ N ), where K =

T∑

t=1
Itn means

there are K frames successfully transmitted in total. µi
n = j

(i ∈ {1, 2, . . . ,K}, j ∈ T ) means the ith successful frame is

the j th frame among all frames in one second. To provide a

clearer explanation of the delays between each pair of received

frames, we have included a visual aid in Fig. 2. Once the ith

frame is successfully received at slot µi
n, we determine the

time interval until the next successful frame is received. Then,

the delay between every two successful frames i and i+1 is:

di,i+1
n = (

1

T
− l

µi
n

n ) +

µi+1
n∑

t=µi
n+1

ltn, ∀n ∈ N . (4)

And the standard deviation of delays between each pair of

frames for VU n is:

stdn =

√
∑K−1

i=1 (di,i+1
n − d̄n)2

K − 1
, (5)

where d̄n is the mean of these delays
∑K−1

i=1
di,i+1
n

K−1 .

Our QoS model integrates both frame rate and cybersick-

ness, which is as follows:

Qn = ω1

T∑

t=1

Itn

︸ ︷︷ ︸

frame rate

−ω2 κnstdn
︸ ︷︷ ︸

cybersickness

, (6)

where ω1, ω2 are weight parameters for these three metrics,

which will be numerically defined in Section III. Note that

κn is multiplied in the delay std part as cybersickness is only

considered when the user is using VR mode.

D. Problem formulation

This paper aims to optimize transmission power P during

T frames, to maximize the QoS for all VUs, subject to the

frame rate and power constraints. From above discussion, the

formulated problem is:

max
P

∑

n∈N

Qn. (7)

s.t. C1 :

T∑

t=1

Itn ≥ (1− κn)Īnon, ∀n ∈ N , (8)

C2 :

T∑

t=1

Itn ≥ κnĪvr, ∀n ∈ N , (9)

C3 :
∑

n∈N

ptn ≤ pmax, ∀t ∈ T . (10)

Constraint C1, C2 are the frame rate requirements for non-VR

and VR modes, respectively. These constraints will be fulfilled

by applying an early-termination flag to the DRL training,

which will be explained in detail in Section V. Constraint C3
is the sum-power limit.

Why DRL method? The formulated problem is non-convex

and NP-hard. Its time-sequential nature involving cybersick-

ness and frame rate optimization across multiple time slots

significantly increases the number of variables with respect to

time, denoted as T . Therefore, using the traditional convex

optimization strategy is not appropriate in such a complicated

situation. Besides, heuristic search, while naively improving

action selection based on the current value function, it typically

involves considering a vast tree of potential continuations [9],

which makes it impractical to apply heuristic search in sce-

narios with a large number of decisions and dimensions to

consider. The effectiveness in handling time sequential prob-

lems of the DRL method has been demonstrated in numerous

studies [6]. With appropriate reward settings and algorithm

structure design, this method can achieve satisfactory results

in complex scenarios.

III. DRL ENVIRONMENT DESGIN

When solving problems with DRL methods, the foremost

step is to craft a comprehensive DRL environment for the DRL

agent, including three key elements: state, action, and reward.

State. The global state stg = {stnon; s
t
vr} contains two sets

of users’ states: the non-VR users’ states stnon and VR users’

states stvr. For non-VR user states stnon, it involves

• left frames needed to be transmitted T − t

• left tolerant failure times (T − Īnon)−
∑t

t′=1(1− Itn)

• the data size of current frame Dt
n = f×b

ctn
• the current channel gain gtn

(∀n that κn = 0). In addition to the elements mentioned above,

the states stvr for VR users also include another crucial factor:

stdt
n, which represents the standard deviation of current delays

between successful frames.

Action. The action at in this paper is the allocated trans-

mission powers for each VU n used to communicate with

the server: at = {pt1, p
t
2, . . . , p

t
N}. However, it is not feasible

for the RL algorithm to allocate power for all VUs within

the summed power constraint. Therefore, we incorporate a

softmax layer into the network to convert the output into

fractions {p′
t
1, p

′t
2, . . . , p

′t
N} (with a sum of 1). Afterwards,

3
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we multiply these fractions by pmax (the maximum power

resource of the server).

Rewards. Rational reward setting is crucial for DRL train-

ing. Here, we give our numerical reward setting for reference.

Similar to the state, the reward is also divided into Rt
non

for non-VR users and Rt
vr for VR users. The Rt

non includes:

(1) frame success reward Rt
f,non: +1 for all VUs on every

success. (2) the early termination penalty (the left tolerant

failure time is 0): −2 × (T − t). While the Rt
vr comprises:

(1) frame success reward Rt
f,vr: +1.5 for each as the VR

mode is more sensitive to frame loss. (2) early termination

penalty −2 × (T − t). (3) the frame delay std penalty Rt
std:

−1000× stdt
n (order of magnitude is generally 10−3).

IV. METHODOLOGY

Our algorithm is based on Proximal Policy Optimization

(PPO) [10], which serves as the backbone. We then introduce

novel structures that are tailored to our specific problem. In

this section, we provide a brief overview of PPO and then

elaborate on our customized algorithms that build upon it.

A. Backbone-PPO

The Actor-Critic-based algorithm is currently regarded as

the most advanced and effective DRL algorithm, employing

an Actor network to choose actions and a Critic network

to evaluate them. One state-of-the-art algorithm within this

framework is Proximal Policy Optimization (PPO), which

has demonstrated impressive performance across a range of

scenarios, including the widely discussed ChatGPT [11]. PPO

incorporates two key techniques in its policy network (Actor):

(1) Importance Sampling, which is using the current policy for

sampling trajectories, and the previous policy for calculating

the action advantages (how is the current state), to increase

the sample efficiency. (2) KL penalty between the current and

previous policies to enhance stability. Therefore, we use PPO

as the backbone of our proposed algorithms. For the sake of

brevity, we will only provide the update functions of the Actor

and Critic networks. A detailed, step-by-step explanation of

PPO can be found in our previous work [12].

The Actor is updated by gradient ascent, and the update

function is [10]:

∆θ = E(st,at)∼πθ′
[▽f t(θ, At)], (11)

where f t(θ) = min{rt(θ)At, clip(rt(θ), 1 − ǫ, 1 + ǫ)At}
serves as the policy change constraint. πθ, πθ′ are the current

and previous policies, and the rt(θ) = πθ(a
t|st)

πθ′ (a
t|st) is the ratio

between the two policies. ǫ is the clip rate.

The At(Rt, st) (short as At) denotes the advantage of state

that is calculated by rewards and states. We use the state-of-art

generalized advantage estimation (GAE) [13] to calculate the

advantage function:

At = δt + (γλ)δt+1 + ...+ (γλ)T̄−1δt+T̄−1, (12)

where δt = Rt + γVφ′(st+1)− Vφ′(st). (13)

In terms of the value network (Critic), PPO uses identical

Critic as per other Actor-Critic algorithms; and the loss

function can be formulated in [10] as:

L(φ) = [Vφ(s
t)− (At + Vφ′(st))]2. (14)

The state-value function V (s), as described in [9], is a

commonly used metric that is estimated by a learned Critic

network with parameter φ. To update φ, we minimize L(φ) and

periodically update the parameter φ′ of the target state-value

function with φ, a technique known as target value, which is

prevalent in RL [9].

B. Our proposed methods

Despite the advantages of PPO, its traditional structure may

not be sufficient for our formulated problem. Our scenario

involves a highly mixed population of non-VR and VR mode

users, which presents a heterogeneous situation for the RL

agent since it must output actions (i.e., downlink transmission

powers) for all VUs simultaneously. Using the standard PPO

structure in this situation can result in a heterogeneous and

blurred total reward as feedback for the agent, similar to the

sparse-reward problem [14], which can significantly impede

DRL training. Consequently, we have developed two unique

structures based on PPO to address our problem.

In order to evaluate the current state for non-VR and VR

users separately and obtain the corresponding values V t
non and

V t
vr, we employ a differentiated structure to leverage domain

knowledge and accelerate training speed. Accordingly, we

modify the update functions of Actor in Eq. (11) and Critic

in Eq (14):

Actor: ∆θ = E(st,at)∼πθ′
[▽f t(θ, (At

non +At
vr))], (15)

Critic: Lt(φ) = [V t
non − (At

non + V ′t
non)]

2+

[V t
vr − (At

vr + V ′t
vr)]

2 (16)

where

At
non = δtnon + (γλ)δt+1

non + ...+ (γλ)T̄−1δt+T̄−1
non , (17)

δtnon = Rt
non + γV ′t+1

non − V ′t
non, (18)

and the same for At
vr.

The updated Actor function Eq.(15) sums the advantages

At
non and At

vr, which are calculated by the Critic for non-

VR and VR users, respectively. The updated Critic function

Eq.(14) evaluates the values V t
non and V t

vr (value with prime is

evaluated by the target network), and updates by summing the

losses from both values. The approach of summing the losses

is inspired by the Hybrid Reward Architecture [15].

How to get the values? The process for the Actor is

straightforward: it takes in the global state as input and

generates actions for all users. However, the way the Critic

evaluates the two values for non-VR and VR users is quite

different. In other words, it is unclear how to obtain V t
non and

V t
vr. To address this issue, we propose two different approaches

that can be used to obtain these values.

Approach 1: Separate Input Differentiated Output (SIDO)

We provide two separate states, stnon and stvr, to the Critic,

which can be thought of as two Critic branches that share the

same upper layers. The first branch takes stnon as input and

outputs the value for non-VR users, while the second branch

takes stvr as input and outputs the value for VR users:

V non
φ (stnon) = V t

non;V
vr
φ (stvr) = V t

vr, (19)

where V non
φ and V vr

φ are the two Critic branches.

4
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Fig. 3. Proposed SIDO and MIDO algotirhms.

Approach 2: Merged Input Differentiated Output (MIDO)

In this approach, we give the Critic the global state stg =
stnon; s

t
vr, and the critic outputs V t

non, V
t

vr simultaneously,

Vφ(s
t
g) = {V t

non, V
t

vr}. (20)

Here, we use the term ”differentiated” to refer to the Critic

that can evaluate the two separate sets of users. The SIDO

approach enables the Critic to focus on the specific aspects

of the environment that are relevant to each user group (non-

VR/VR), but it lacks global information as each branch of the

Critic only has access to a subset of the input state. On the

other hand, MIDO allows the Critic to consider all aspects of

the environment, including those that are relevant to both user

groups, but may struggle to learn specialized representations

for each group. Thus, empirical testing will be necessary to

determine which approach is more effective.

C. Baselines

We will evaluate the performance of our proposed algo-

rithms against the following baselines:

• SIDO: proposed algorithm described above, which uses

a separate input and differentiated output Critic PPO.

• MIDO: proposed algorithm described above, which uses

a merged input and differentiated output Critic PPO.

• PPO: standard PPO algorithm with a single input (global

state) and a single output (value for all users).

• Average allocation: a naive baseline that allocates down-

link transmission power equally across all users.

In terms of the metrics, we select (1) frame rate, (2) delay

std among VR users, and (3) successful steps (before left

tolerance frame failure times run out) during training.

Computational complexity: We use ml
A,m

l
C to denote

the number of neurons in layer l of the Actor and the

Critic. And d(s) as the input layer (proportional to the state

dimension), (LA, LC) is the number of training layers of

the three parts. Considering the mini-batch size B in the

training stage, we have the complexity in one training step as

O(B(d(stg)m
1
A+

LA−1∑

l=1

ml
Am

l+1
A

︸ ︷︷ ︸

Actor

+

{

[d(stvr) + d(stnon)]m
1
C +

∑LC−1
l=1 ml

Cm
l+1
C )), SIDO,

d(stg)m
1
C +

∑LC−1
l=1 ml

Cm
l+1
C )), MIDO.

︸ ︷︷ ︸

Critic

(21)
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Fig. 4. Reward (left) and the train & execution time (right). Considering the
random evolving variables, all experiments were conducted using the same
10 global random seeds, and error bands were included in the illustrations.

And according to [16], the total computational complexity

depends on the total number of convergence steps to the

optimal policy.

V. SIMULATION

In this section, we first briefly explain the numerical set-

tings, and then evaluate the proposed algorithms.

A. Numerical Settings

We use 8 VUs in total with VR users from 2-6. Frame

resolution is 2k with 16 bpp, and the compression ratio is

uniformly selected from 300-500. The total frames per second

are 90, and the bandwidth per channel is 106 Hz. The required

successful frame rates are 75 for VR users and 60 for non-

VR users. Small-scale fading follows Rayleigh distribution and

the path loss exponent is 2. We train for 5 × 105 steps with

evaluation every 50 steps. Experiments are conducted with

the same global random seeds from 0-10 and error bands are

included.

B. Result Analysis

Due to space limitations, we present the complete reward for

a typical scenario of 4 non-VR users and 4 VR users (i.e., 4|4)

during training in Figure 4(a). This scenario is representative

of the challenges posed by heterogeneous user environments.

In this scenario, both SIDO and MIDO outperform traditional

PPO by a significant margin. Specifically, MIDO achieves

approximately 215.1% and SIDO obtains around 212.6%
improvement over PPO. In contrast, PPO drops into a local

minimum in an early stage, similar to the common problem

encountered when using the normal algorithm in other sparse-

reward scenarios [14]. Although MIDO and SIDO reach a

similar peak, there are also interesting differences between

them during training, and these differences are reflected in

other scenarios as well. It is evident that MIDO has a faster

convergence speed (around 73, 000 sample steps) than SIDO,

but SIDO is much more stable than MIDO. We assume that

the fast convergence speed of MIDO can be attributed to its

global view, while the stability of SIDO may benefit from

the specific view of the states for different types of users.

With the global view of all users, MIDO manages to find the

optimal solutions, but the estimations of the values for two
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(a) Average Frame Rate for non-VR (left) and VR (right) users. (b) Average Cybersickness for VR users.

Fig. 5. Metrics (i.e., achievable FPS for non-VR, FPS for VR users, and cybersickness for VR users) in different scenarios.

types of users may be not so accurate, since it only takes

in the global state, containing mixed elements of both kinds

of users, which causes instability. In contrast, SIDO is more

stable because it takes into account the specific views of the

states for different types of users. Furthermore, although PPO

falls into the local minimum very soon, it still has a 506.2%
improvement over average allocation. We also illustrate the

single step train & execution time of different algorithms in

Fig 4(b). Based on the computation complexity in Eq. (21),

the computation complexity of SIDO is only slightly greater

than that of MIDO since d(stvr)+d(stnon) is greater than d(stg)
due to the duplicated elements. Moreover, the state dimension

is influenced by different scenarios, as the VR users state

contains the cybersickness element. In general, the increment

of both train & execution time of MIDO and SIDO compared

to PPO is acceptable.

Fig. 5(a) and Fig. 5(b) illustrate the achievable FPS (frames

per second) and cybersickness (frame delays std) for users. For

the FPS, SIDO and MIDO have similar performance, obtaining

15.2%, 20.8% improvements among non-VR users and VR

users than PPO, respectively, in the 4|4 scenario. This is the

scenario with most heterogeneous users, and the gaps in other

scenarios between SIDO, MIDO and PPO are smaller. The

similar results are also sown for the cybersickness, while SIDO

is slightly better than MIDO according to cybersickness. We

think this is also due to the specific view of SIDO, since the

cybersickness is only considered for VR users, and SIDO can

get a more clear view on the VR users.

VI. CONCLUSION

This paper create a frame-slotted structure and conduct

the frame-wise optimization, considering the scenario with

heterogeneous 360-degree video for both non-VR and VR

users. We optimize the frame rates for both kinds of users,

and cybersickness for VR users. In general, our proposed

SIDO and MIDO both achieve much superior performance

compared to traditional PPO algorithms over the achievable

FPS and cybersickness. In the future, we will try to optimize

the allocation of resolutions for each frame simultaneously,

and extend the proposed SIDO, MIDO to multi-agent DRL

structures.
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