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Abstract—Distributed ensemble learning (DEL) involves train-
ing multiple models at distributed learners, and then combining
their predictions to improve performance. Existing related studies
focus on DEL algorithm design and optimization but ignore
the important issue of incentives, without which self-interested
learners may be unwilling to participate in DEL. We aim to fill this
gap by presenting a first study on the incentive mechanism design
for DEL. Our proposed mechanism specifies both the amount of
training data and reward for learners with heterogeneous compu-
tation and communication costs. One design challenge is to have
an accurate understanding regarding how learners’ diversity (in
terms of training data) affects the ensemble accuracy. To this end,
we decompose the ensemble accuracy into a diversity-precision
tradeoff to guide the mechanism design. Another challenge is that
the mechanism design involves solving a mixed-integer program
with a large search space. To this end, we propose an alternating
algorithm that iteratively updates each learner’s training data
size and reward. We prove that under mild conditions, the
algorithm converges. Numerical results using MNIST dataset show
an interesting result: our proposed mechanism may prefer a lower
level of learner diversity to achieve a higher ensemble accuracy.

I. INTRODUCTION

The wisdom of the crowd refers to the often observed
phenomenon that the collective knowledge of a group of
individuals is often more accurate than that of an expert. En-
semble learning is a machine learning interpretation of such a
phenomenon that involves combining multiple learning models
to improve the overall predictive performance and robustness.
Ensemble learning methods, such as bagging, boosting, and
stacking, have been successfully applied in various sectors,
including finance, healthcare, and transportation [1].

Despite its improved performance and robustness, ensemble
learning can be computationally intensive, as it involves train-
ing multiple models and then combining their predictions [2].
The overall computational burden increases with the number of
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Fig. 1: Distributed ensemble learning (e.g., bagging).

models, the size of the training data, and the complexity of the
models. This can be a significant challenge, particularly when
dealing with large datasets or complex models. A promising
solution is distributed ensemble learning (DEL), in which a
central server coordinates the training of an ensemble of models
across multiple distributed learners (e.g., IoT devices, mobile
phones, and edge servers) [3]. A typical DEL process consists
of four steps (see also Fig. 1):

o Step 1: The server samples subsets of data from a large
dataset and sends them to respective learners.

o Step 2: The learners train machine learning models in
parallel using their downloaded datasets.

o Step 3: The learners upload trained models to the server.

o Step 4: The server combines the models into an ensemble
model and uses it to produce final predictions.

In DEL, learners can train on smaller subsets of data in parallel,
leading to faster overall training time.

There has been some excellent work on the algorithmic
design of DEL. One area of focus is developing more efficient
and scalable distributed learning frameworks (e.g., parameter
servers and data/model parallelism) that can improve the train-
ing time and resource utilization [4], [S]. Another area of focus
is improving the robustness and generalization capabilities by
developing model selection/pruning methods [6], [7]. However,
these prior studies ignored the important issue of incentive
design. Specifically, training at the distributed entities requires
costly computation (and communication for data/model trans-
mission). Without proper incentives, the entities may not be
willing to participate and faithfully perform model training.
This paper takes a first attempt to answer the question below:

Question 1. How to design an effective incentive mechanism
for distributed ensemble learning?

To answer Question 1, we consider a scenario where a central
server aims to incentivize distributed learners to participate and



finish model training tasks. The server aims to maximize a
tradeoff between the ensemble model accuracy and the total
costs of incentivizing learners. The incentive design for DEL
is challenging due to two reasons as follows.

First, diversity is the key to achieving a good ensemble model
accuracy [8]. That is, individual models should be diverse and
complement each other’s strengths and weaknesses, leading
to more accurate and robust predictions. However, there is
still no consensus till today in the research community on
how to best measure diversity and how diversity affects the
ensemble model accuracy [9]. To address this issue, motivated
by [9], we proceed from a diversity-precision decomposition
perspective and define a surrogate function to simulate the true
ensemble accuracy. The surrogate function contains two parts:
(1) “diversity” that is measured by the number of mistakes that
learners make during prediction; (2) “precision” that reflects
the average performance of learners on their own datasets. The
use of the surrogate function presents an important tradeoff
between learners’ diversity and precision, which will be helpful
in guiding the incentive design.

Second, distributed learners usually have heterogeneous
computation costs (for model training) and communication
costs (for data downloading and model uploading). This re-
quires a customized design of the learning task (i.e., training
data) and the reward for each learner, resulting in a mixed-
integer program with a huge search space. To address this issue,
we propose an alternating algorithm that updates the reward and
the training data for each learner in a round-robin fashion. As
will be shown, our proposed algorithm significantly reduces the
search space and achieves fast convergence.

A. Key Contributions

The key contributions of this paper are as follows.

o Incentive design for distributed ensemble learning: To our
best knowledge, this is the first attempt to study the incen-
tive mechanism design for distributed ensemble learning.
We propose an incentive mechanism that specifies both
amount of training data and reward for learners with
heterogeneous computation and communication costs.

o Alternating optimization algorithm: The incentive design
involves solving a challenging mixed-integer problem with
a huge search space. To this end, we propose an alternating
algorithm that updates each learner’s reward and training
data in a round-robin fashion. The algorithm greatly re-
duces the search space and is provable convergent. It also
has a polynomial complexity in terms of the number of
learners, and hence is scalable to large distributed systems.

o Numerical experiments: We conduct experiments using
MNIST [10]. Our results also reveals an interesting inter-
action between learner diversity and the ensemble accu-
racy. Specifically, the mechanism may prefer a lower level
of learner diversity to achieve a higher ensemble accuracy.

The remainder of this paper is organized as follows. We

present the system model in Section II. We provide theoretical
analysis in Section III. We present numerical experiments in
Section IV and conclude in Section V.

II. SYSTEM MODEL

We first present the system model for the distributed learners’
decision problem in Section II-A, and then turn to the server’s
mechanism design problem in Section II-B.

A. Learners’ Decision Problem

In this subsection, we first introduce the task and learners.
Then, we define each learner’s strategy and payoff function,
and formulate its decision problem.

1) Learners and Task: There is a set N' = {1,2,--- , N} of
learners (e.g., mobile devices) that can be reached by the server.
The task of each learner 7 € A is to train a classification model
using data provided by the server. Define:

e M, learner i’s machine learning model (e.g., multi-layer
perceptron) with a model size M; = |M,]|.

e D;: learner ¢’s training data that is chosen by the server,
with the data size D; = |D;|.

After the local training process converges, each learner ¢ sends
the trained model M, to the server for downstream analysis.

2) Learner Participation Strategy: Each learner ¢ decides
whether to participate in distributed ensemble learning to
perform the training task. We use a binary variable d; € {0,1}
to denote a learner’s participation decision, where d; = 1 means
participating and d; = 0 means not participating.'

3) Computation and Communication Costs: A participating
learner mainly incurs two types of costs: computation cost and
communication cost, which we elaborate on as follows.

Computation cost: Performing model training consumes
computation resources. Let C; ™" denote the computation cost,
which is a linear function of learner ¢’s data size [11]:

Co" = ; D;. (D)

The computation cost coefficient of learner 7, a;; > 0, depends
on various factors such as the learner’s computing chip archi-
tecture and CPU processing speed.

Communication cost: A learner needs to consume commu-
nication resources (e.g., using wireless networks) for down-
loading training data from and uploading trained model to the
server. Let C{°™™ denote learner ¢’s communication cost:

C{o™™ = B;(D; + M;), 2

where 3; > 0 represents learner i’s communication cost coeffi-
cient that depends on the channel conditions. For convenience,
we normalized M; to zero, as it is much smaller than D; in
many settings. For example, in our experiments on MNIST
dataset, the training data size D; is 46.4M, while the neural
network model size M; is only 1.7M. One can easily extend
our analysis to the case where | M;]| is non-negligible.

In this paper, we assume that if a learner 4 participates, it will faithfully
perform the training task using data D; and truthfully upload the trained model
M. This is reasonable, as the server can verify the performance of learners’
uploaded models using a held-out dataset.



4) Reward: Without enough incentives, learners may not be
willing to participate in DEL. The server provides a reward
R; > 0 to each participating learner ¢ to compensate the
computation and communication costs. For non-participating
learners, the server does not provide any reward.

5) Learner Payoff Maximization Problem: We define each
learner ¢’s payoff function as:

R —a;D; — B;D;, if d;i=1,

3
0, if d;=0. )

ui(ds; Ry, D;) = {
Given R; and D;, each learner i decides d; to maximize its
payoff. The problem is formulated below.

Problem 1. (Leaner i’s Participation Problem)
max U; (dl, Ri, Dz)

d; € {0,1}. @

var.

B. Server’s Mechanism Design Problem

In this subsection, we model how the server optimizes the
mechanism choices for each learner to maximize its payoff,
i.e., a tradeoff between the ensemble model accuracy and the
total costs of incentivizing learners.

1) Server Mechanism Choices: For each learner i, the server
needs to decide the reward R; > 0 to compensate the cost.
The server also needs to decide the training dataset D; for
each learner. As the first attempt to study the incentive design
for DEL, we focus on the widely adopted bagging (i.e.,
bootstrapped aggregating) approach [12]. In bagging, learners
train models in parallel using bootstrapped data (sampled with
replacement from the server’s dataset), and the server adopts
majority voting to aggregate the prediction results from all
learners.’

With bagging, the server’s decision on dataset D; reduces
to the datasize D; € {0,1,2,---, D™} where D™ > ()
is the size of server’s available dataset. For notational con-
venience, we define R = {R;}ien, D = {D;}ien, R—i =
{Bj}jen iy and D i = {Dj}jen\iy-

2) Ensemble model accuracy: The major target of the server
is to obtain an ensemble of models with good performance, i.e.,
the aggregated prediction results are accurate. The key is to
ensure that learners are “diverse” so that multiple models can
complement each other’s weaknesses and make fewer mistakes.
However, it is difficult to analyze how the ensemble accuracy
depends on learners’ diversity due to several reasons:

« First, there is still no consensus till today in the community
on how to best measure diversity [9], and how diversity
affects the ensemble model accuracy.

o Second, learners are both heterogeneous (due to having
different training data) and dependent (due to having
overlapping datasets from bagging) in model precision.

2The incentive mechanism design for other ensemble approaches such as
boosting and stacking will require a very different approach and is out of the
scope of this paper (e.g., in boosting, learners train models sequentially and a
learner’s dataset is affected by the prediction results from the previous learner).

This makes a closed-form characterization of the ensemble
accuracy difficult.

To address this challenge, we define a surrogate function
from a diversity-precision decomposition perspective to simu-
late the true ensemble accuracy. We first provide some notations
for ease of presentation:

o DT(D) = |U;en D;l: the size of the union of all learners’
training datasets.

o« NP(R,D): the set of participating learners, and the
number of participating learners is N¥ = |NF].

e p(R,D) =Y, rpi(D;)/NT: learners’ average preci-
sion, where p; is learner ¢’ precision.

e l4(R, D): the number of learners that give wrong predic-
tions on data sample x4 € U;enD;.

Motivated by the double fault measure in [9], we define the
surrogate ensemble accuracy function:

F(R D) ZlUZEN’D |l 2 ﬁ _1
DT-NP-(NF—1) "NP—1" (5
diversity precision

The first term in (5) measures the diversity. Intuitively, the
learners are more diverse if they make more mistakes (e.g.,
a larger [; which likely leads to more decision boundaries).
The second term reflects the average precision of learners. One
can see that (5) presents an intrinsic tradeoff between diversity
and precision. If learners make more mistakes, the diversity
level increases but the average precision decreases.

In what follows we will use F' as a surrogate function for the
true ensemble accuracy. As mentioned, F represents a concise
view of diversity-precision tradeoff that can better guide the
mechanism design. Our experiments in Section IV-A show that
F is indeed a good surrogate to the true ensemble accuracy.
Nonetheless, one can easily extend our incentive mechanism to
other surrogate functions.

3) Server Cost: The server’s cost is the total amount of
rewards allocated to learners, i.e., Y, - Ri.

4) Server Mechanism Design Problem: The server’s payoff
function is defined as the difference between the surrogate
ensemble accuracy and the server’s cost to incentivize learners:

- R, 6)

ieN

II(R,D) =~ F(R,D)

where v > 0 represents the weight of the ensemble accuracy.
The server chooses the reward vector R and data size vector D
to maximize its payoff. The problem is formulated as follows.

Problem 2. (Server’s Mechanism Design Problem)

max II(R, D)

7
RiZO,DiE{O,l,'“ @

var

,D™XY i e .
III. THEORETICAL ANALYSIS

We first analyze each learner’s optimal participation decision
in Section III-A. Then, we discuss how to optimize the server’s
mechanism design in Section III-B.



A. Learner’s Optimal Participation

We solve the learners’ participation problem in (4) and
present the result in Lemma 1.

Lemma 1. Given R and D, a learner i’s optimal participation
decision is

1, if R;> (a;+Bi)Ds,

di(R,D) = {

Due to space limits, we only outline the sketches and
defer the detailed proofs to the online appendix [13].

We prove Lemma 1 by comparing the learner payoft (in (3))
at different values of d;. Lemma 1 shows that a learner will
participate in DEL if the provided reward R; is relatively large
or the size of the training dataset D; is relatively small.

B. Server’s Optimal Mechanism Design

We achieve the server’s mechanism design in three steps.
First, given the data size, we optimize the reward design in
subsection III-B1. Then, given the reward, we optimize the
data size design in subsection III-B2. Next, we discuss the joint
optimization of the reward and data size in subsection III-B3.

1) Server Reward Design: We summarize the server’s re-
ward design for each learner in Proposition 1.

Proposition 1. Given R_; and D, the optimal reward for
learner i is

; )D;, if (1 holds
Ry, D)= ¢ (TP E 0] holds
0, else.
Y (Fli=+pop. = Flr=o) > (@i + B)Di. (10)

We prove Proposition 1 by calculating whether the benefit
of learner ¢’s participation outweighs the server’s cost to
incentivize the learner. Proposition 1 has three implications:

« Proposition 1 reduces the decision space of R; from [0, c0)
to binary space {0, (o; + 3;)D;}.

o If a learner is assigned a larger dataset, or it has a larger
cost coefficient, the server needs to provide a larger reward
to incentivize participation (see (9)).

o If the server cares more about the ensemble model ac-
curacy (i.e., a larger ~y), it is more likely to incentivize
learner ¢’s participation (see (10)).

2) Server Data Size Design: Given R and D _;, the server

solves the following problem to find the optimal D;:

Problem 3. (Data Size Design for Learner i)

max fyF(Di) — (o + B:)D;

(11)
Di € {0,1,2,"' 7Dmax}

var
It is difficult to provide a closed-form characterization of
learner ¢’s optimal data size due to it being a discrete variable.
To obtain cleaner insights, we solve a relaxed continuous
version of the data size design for learner i. More specifically,
given R and D_;, the server solves the following problem:

Problem 4. (Relaxed Data Size Design for Learner 1)
max ’}/F(DZ) — (CEZ' + ﬁZ)Dl
D; € [0, D]

If the optimal solution to Problem 4 is feasible to Problem 3,
then it is also the optimal solution to Problem 3. Otherwise, one
can round the solution as an approximation. Also, the optimal
objective value of Problem 4 provides an upper bound of the
optimal objective value of Problem 3.

Next, we characterize some useful properties of the solutions
to Problem 4. We start with a minor assumption.

(12)

var

Assumption 1. Fis non-decreasing in D; for each 1.

Assumption 1 means that the ensemble accuracy increases
in a learner’s data size. Our experiments in Section IV (e.g.,
Fig. 2a) are consistent with this assumption.

Proposition 2. Under Assumption 1, (i) D} is non-decreasing
in 7. (ii) D} is non-increasing in both o; and j;.

Proposition 2 is proven by showing that 9I1/(0D;0v) >
0, 911/(0D;0cv;) < 0, and 9°11/(8D;3;) < 0. Proposition
2 implies that if the server attaches more importance to the
ensemble accuracy, it will assign a larger dataset to a learner
1. However, it will assign less data if learner 7 has a larger
communication/computation cost coefficient.

3) Server Mechanism Design: So far we have characterized
the reward and data size design for each learner i, given that the
design for other learners (i.e., R_; and D_;) is fixed. These
results provide guidance into the joint optimization of R and
D for all learners (see Problem 2).

Next, we present an alternating optimization algorithm that
iteratively updates the reward and the data size design, as shown
in Algorithm 1. Let ¢t € Z denote the iteration index, and the
server starts with a randomized choice of R and D. The server
first sorts the learners based on their cost coefficients,? and then
optimizes each learner’s data size (via solving Problem 4) and
reward (via (9)-(10)) in a round-robin fashion. The algorithm
terminates when the relative difference of the variables between
consecutive interations is small.

Analyzing Algorithm 1’s convergence is challenging. First,
Problem 2 is a mixed-integer program with a large search space.
Second, F is not jointly concave in reward R and data size D.
Nevertheless, with another mild assumption, we can analyze
the algorithm convergence and complexity.*

Assumption 2. F is a bi-concave Sfunction in N P and D, and
satisfies the KL property.

Assumption 2 means that the ensemble accuracy concavely
increases in the number of participating learners and the data
size. Our experiments in Fig. 2a are consistent with this
assumption. The KL property implies the function is relatively

3This corresponds to the case where the server has learners’ information and
can model the scenario where server and learners had previous interactions.
We leave the case where such information is unknown to future work.

4The optimality analysis is an open problem and left to future work, as the
mechanism design is a challenging non-concave and mixed-integer program.



Algorithm 1 Alternating Reward and Data Size Optimization

1: initialization: let the iteration index be ¢ = 0. Randomly
initialize R(t = 0) and D(t = 0).
2: sorting: sort learners in ascending order w.r.t. a;+3;, based
on which re-index learners k =1,2,3,--- | N.
3. repeat
for k=1,2,3,--- ,N do
data size design: update Dy (t) by solving Problem 4
(e.g., using gradient ascent).
reward design: update Ry (¢) via (9)-(10).
end for
update iteration index: t <— ¢t + 1.
until R(t) and D(¢) converge.

AN
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steep around the critical point, and is satisfied by a wide class
of non-convex (and even non-smooth) functions [14].

Theorem 1. Under Assumptions 1-2, Algorithm 1 converges.

Theorem 1 is proven by first transforming the decisions of R
to the number of participating learners N*'. Then, the result of
the proof follows that of Theorem 2.9 in [15]. Our numerical
experiments in Fig. 3 also show that the algorithm converges
under various parameters.

Theorem 2. Algorithm 1 has a complexity O(Nlog N +
LN D™, where L is the number of alternating iterations.

Theorem 2 is proven by showing that sorting learners takes
O(Nlog N), and solving reward and data size (e.g., via gradi-
ent ascent) in each iteration takes O(D™2*).

Theorem 2 shows that Algorithm 1 is polynomial in both the
number of learners and the maximum data size. This implies
that our algorithm is scalable and can be used in practice with
a large number of learners and a large dataset.

IV. EXPERIMENTAL RESULTS

We conduct numerical experiments to validate our analysis
and draw new insights. In Section IV-A, we study the property
of the surroagte function F (see (5)). In Section IV-B, we study
the convergence of Algorithm 1. In Section IV-C, we study the
impact of the server’s valuation on the mechanism performance.

Our experiments are based on the MNIST dataset [10]. The
dataset contains 70k images of handwritten digits in which 60k
are training data and 10k are test data. Our codes are made
public in [16].

A. Property of Surroagte Function F

We numerically investigate the properties of F and show
that it is a good surrogate to the true ensemble accuracy. Here,
the true ensemble accuracy is calculated using the aggregated
predictions from all learners’ model output via majority voting.
In the experiments, we use N = 100 and assign each learner
a dataset with size D; € [200,1000] using sampling with
replacement. We plot F and the true ensemble accuracy in

Fig. 2. We also use curve fitting to simulate both F' and
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Fig. 2: Impact of learner number and data size on the surrogate
and true ensemble accuracy.
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the true ensemble accuracy, and the function takes the form:
(alog(Nb+¢) + d)(elog(4 S,en Di+g) + ).

In Fig. 2, we observe that as learners use more data, the
improvements of both the surrogate and true ensemble accuracy
are marginally decreasing. Also, as more learners participate in
DEL, the ensemble accuracy concavely increases.

To further evaluate whether F is a good surrogate to the
true ensemble accuracy, we calculate the widely adopted Pear-
son coefficient [17] between the two functions. The Pearson
coefficient takes values in [—1, 1], where values close to 1 (-
1, respectively) indicate strong positive (negative, respectively)
correlations, and values close to 0 indicate weak correlations.
The Pearson coefficient in our experiment is 0.685, which
implies a strong positive correlation.

We summarize the key observations as follows:

Observation 1. (i) Both F' and true ensemble accuracy con-
cavely increases in the learner number and the data size.

(ii) The surrogate F has a strong positive correlation with the
true ensemble accuracy.

B. Algorithm Convergence

In this subsection, we study the convergence of the proposed
algorithm.® In the experiments, we initialize 100 base learners
and set «; + f3; for each learner ¢ uniformly in [le-5, le-3],
and initialize R = 0 and D = 500. We plot how the optimal
number of learners and data size change with the iteration

3The detailed values of {a,b, c,d, e, f, g, h} for both F' and true ensemble
accuracy are given in the online technical report [13].

%Here we do not study the optimality property as the search of global
optimum is experimentally infeasible given a huge search space, ie., 2V -
(D™2x)N | where D™a% = 6 - 10%. We leave the algorithm development to
find the global optimum to future work.
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index ¢ in Fig. 3a and Fig. 3b, respectively. We further test the
convergence under different values of v and plot the number of
iterations needed for convergence in Fig. 3c. The results show
that our algorithm achieves fast convergence within less than 5
iterations on average.

C. Impact of Server’s Valuation on Mechanism Performance

In this subsection, we study how the server’s valuation on the
ensemble accuracy affects the mechanism performance. In the
experiment, we consider «; + ; for each learner ¢ uniformly
distributed in [le-5, 1e-3] and change v € [500,8000]. Fig.
4 plots how the true ensemble accuracy, the optimal number
of participating learners, and diversity (the first term in (5))
depend on the server’s valuation ~.

In Fig. 4a, we observe that as + increases, the resulting
ensemble accuracy (after mechanism optimization) increases.
The server will incentivize more learners (see Fig. 4b) to
participate in DEL, leading to a higher ensemble accuracy.

Counter-intuitively, we observe in Fig. 4c that the trend of
learners’ diversity first increases and then decreases in server’s
valuation v. When v is small (e.g., v = 2000), the server
incentivizes only a few learners. To achieve a high ensemble
accuracy, the few learners should not be too diverse, because
otherwise their wrong predictions cannot be corrected by the
few remaining learners. When -~y increases (e.g., v = 3000), the
server incentivizes a larger learner pool which is more robust
to wrong predictions. The server is better off diversifying the
learners so that they can learn from different mistakes, leading
to a higher ensemble accuracy. As vy keeps growing (e.g.,
~ = 5000), the server incentivizes even more learners, but their
diversity value slightly decreases. This is because it is difficult
to reach a prediction consensus when a large number of learners
are too diverse. As a result, one needs to ensure a moderate
level of diversity to achieve the best ensemble accuracy.

We summarize the above observations below.

Observation 2. (i) The ensemble accuracy and the optimal
number of participating learners increase in ~y.(ii) When the
number of participating learners is large, the server prefers a
lower level of learner diversity to achieve a higher accuracy.

V. CONCLUSION

This paper presents the first study on the incentive mecha-
nism design for distributed ensemble learning. The mechanism
design is a challenging mixed-integer program with a large

search space. To address this issue, we propose an alternating
algorithm that iteratively updates the data size and reward for
heterogeneous learners. We prove that the algorithm converges
and is scalable to large distributed systems. Numerical experi-
ments using MNIST dataset show an important insight: when
the number of participating learners is large, the server prefers
a lower level of learner diversity to achieve a higher ensemble
accuracy.

There are a few exciting directions for future work. For
example, it would be interesting to extend the mechanism to the
incomplete information case where the server does not know
each learner’s cost information. One can resort to Bayesian
game-theoretical tools or auction mechanisms. Another inter-
esting direction is to study the mechanism design for other
ensemble learning frameworks such as boosting and stacking.
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