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Abstract—This article proposes a novel methodology for inter-
polating path-loss radio maps, which are vital for comprehending
signal distribution and hence planning indoor wireless networks.
The approach employs generative diffusion models and proves to
be highly effective in generating accurate radio maps with only
a small number of measurements. The experimental outcomes
demonstrate an average root-mean-square error of 4.23 dB using
only 10 percent of the reference points, highlighting the ability of
the generative diffusion model to achieve significant interpolation
accuracy in radio map generation.

Index Terms—Radio map interpolation, path loss calculation,
diffusion model, ray tracing

I. INTRODUCTION

The next generation of networks, including 5G and beyond,
will need to use dynamic spectrum sharing and power domain
multiple access to handle the rising amount of mobile data
traffic [1]. To make this possible, we need to develop more
accurate methods of estimating the radio environment, includ-
ing signal strength and spectrum availability in the proposed
service areas.

Path loss information indicating the signal quality in the
proposed service area owing to different access points (APs)
is an essential component of network deployment planning in
an indoor radio environment. Therefore, acquiring a predicted
indoor path loss map (IPM) or received signal strength (RSS)
map prior to the deployment of APs is essential as it allows
for accurate estimation of signal strength and coverage within
buildings and helps in the placement of APs. In addition, an
accurate IPM can enable applications such as precise indoor
localisation [2], cognitive radio networks [3], and mobile
robots [4].

Obtaining an accurate IPM can be a time-consuming and
labor-intensive process, as it requires taking measurements at
numerous reference points (RPs) in the proposed service area
and the installation of test APs. To address this issue, various
techniques have been proposed, such as interpolation methods
that predict the IPM based on measurements taken at reference
points, and generative methods that predict the IPM without
the use of RPs.

Racko et al. [5] employed linear and Delaunay interpolation
techniques for radio map generation. By measuring RSS at
designated positions, they were able to calculate the complete
RSS through the use of two distinct interpolation methods.

Moreover, [6] adopts an image-driven approach, which treats
radio propagation data as an image and estimates the RSS
geographical distribution using image processing techniques.
Through path loss regression, the proposed deep learning (DL)
framework converts the spatial interpolation problem into a
shadowing adjustment problem, which is then addressed by a
neural network (NN). Additionally, a gradual training method
is used for NN stability, in which the encoding/decoding
blocks are trained separately.

In [7], Jan et al. computed RSS values at unobserved
locations with kriging, creating an expanded RSS database at
a very small number of RPs in addition to RSS measurements
alone. By increasing the size of the database, i.e., the number
of basic RPs and kriging RPs, the interpolation error can be
reduced. Similarly, in [8], RSS values for interpolated points
are calculated using a Euclidean distance linear basis, multi-
quadratic, thin-plate spline, and poly-harmonic spline func-
tions. However, the method employed in the aforementioned
study had an interpolated area of limited dimensions due to
the proximity of the RPs to the AP and the restricted coverage
area.

Ray tracing or ray launching is a computational technique
extensively utilized in the simulation of radio maps to model
the propagation of electromagnetic waves in complex envi-
ronments [9]. The method involves tracing the path of rays
emanating from a transmitter as they interact with various ele-
ments within the environment, including reflection, refraction,
and diffraction. By accurately capturing these interactions,
ray tracing provides a reliable means to estimate radio signal
characteristics such as strength, delay, and angle of arrival.

Generative models make use of the same information re-
quired for ray tracing (environment and transmitter informa-
tion) and generate the IPM accordingly. Most of the existing
indoor propagation models use simple multilayer perceptrons
(MLPs) to generate IPMs [10], [11]. Some recent approaches
leverage more complex networks, for example, Ratnam et at.
[12] applied U-Net-like convolutional neural networks to path
loss prediction problems and reduced prediction time by 40 to
1000 times in comparison to industry prevalent methods such
as ray-tracing. Stefanos et al. [13] utilized a modified version
of the U-Net architecture and stacked dilated convolutions
to improve the accuracy of prediction by 2-4dB compared



with [12]. However, these works do not utilize path loss
measurements to calibrate the proposed models.

Considering the aforementioned challenges, we propose
a novel approach that employs generative diffusion models
(GDM) [14] to interpolate incomplete indoor path loss maps
using a limited number of RPs. By leveraging the advan-
tages of generative models and interpolation methods, our
approach facilitates the development of highly precise and
comprehensive indoor path loss maps that incorporate building
information with an accuracy that is not constrained by the
number of RPs. This interpolation method is expected to
provide valuable insights for wireless network planning and
deployment.

The major contributions of this paper can be summarized
as follows:

1. As far as we are aware, our proposed approach represents
the first attempt to utilize a GDM for the task of interpolating
incomplete indoor path loss maps. In addition, we introduce
unique data processing methods that enable the generative
diffusion model to effectively capture the underlying signal
characteristics and generate accurate radio maps.

2. We propose a multi-stage training strategy along with an
online data augmentation method for improving the stability
and accuracy of the training phase. Furthermore, we introduce
an online data augmentation method to enhance the training
dataset and improve the generalization performance of the
model.

II. DATA COLLECTION AND DATA PRE-PROCESSING

A. Data Collection
The dataset comprises 10,000 samples, each representing

the output of an indoor radio propagation simulation having a
spatial resolution of 0.5m. To train our model, we simulated
path loss for multiple indoor environments, including the one
illustrated in Fig.1, using 3D-ray-tracing software (Ranplan
Professional) [15]. Due to the exponential increase in compu-
tational complexity associated with 3D ray-tracing algorithms,
we have opted not to collect radio map data at a higher
resolution. This decision is further justified by the considerable
time required to process extensive datasets. The sample grid
size for each simulation varies based on the building size, and
we cropped it to 64×64 pixels for data augmentation purposes.
The grayscale value of each pixel represents the path loss,
which is the difference between the transmitting signal power
and the received signal strength measured in decibels (dB) in
a 0.5×0.5 m2 area

Fig. 1. Example region showing three layers, i.e., geometry (left), IPM (mid),
positional encoding layer (right)

B. Data Post-Processing

In our dataset, each region is processed to produce two
equal-sized 2D images, both consisting of three layers. The
first layer and the third layer in both the training region and the
target are identical, as they only contain information about the
location of the APs and region geometry. The only difference
between the two images lies in the second layer, referred to
as the IPM layer, which records the path loss value for each
grid point based on a 3D ray tracing simulation.

These three layers are incorporated into separate channels,
as illustrated in Fig. 1. The geometry layer represents the
locations and types of indoor materials using appropriate
values for the various materials. The positional layer offers
a distance reference from the AP, using a 2D Gaussian kernel.

G(x, y) =
1

2πσ2
e
−
x2 + y2

2σ2 (1)

where x and y represent the distance from the transmitter
in the two axes, and σ is the standard deviation of the
Gaussian distribution. For our experiments, σ was set to 3.
This formula generates a surface with concentric circles that
follow a Gaussian distribution from the center of the AP,
emphasizing location information and avoiding a sparse matrix
in this layer.

The second layer represents the IPM layer, with path loss
calculated through ray tracing in the simulated indoor environ-
ment. We utilized omnidirectional antennas for transmission
and reception, with a transmitting frequency of 2.4 GHz. The
AP’s transmitting power is 30 dBm at an antenna height of
3m above the floor level, and the receive antenna is positioned
at a height of 1.5m above the floor level.

The training set was generated using an online data augmen-
tation technique, which involves randomly selecting a specific
fraction of RPs from the IPM layer and appending them to the
geometry and positional encoding layers during the training
phase. Additionally, the sampled map and target were rotated
randomly by 90◦, 180◦, or 270◦ for data enrichment purposes.

III. RADIO MAP GENERATION

A. Background on Generative diffusion model

Deep generative diffusion models such as the denoising
diffusion probabilistic models (DDPM) [16] have gained
prominence in the field of image processing due to their
exceptional ability to generate high-quality images through
a noise-to-signal process. These models employ a diffusion
process that gradually refines a noisy input, allowing for better
control and more effective removal of unwanted artifacts.
Their state-of-the-art performance in tasks such as image
synthesis, restoration, and generation has made them a subject
of extensive study and application.

Figure 2 illustrates how a DDPM model is constructed
for the image-denoising task, which can be seen to comprise
two intertwined processes. The first process, known as the
forward diffusion process, progressively injects noise into the



original data distribution through a sequence of time steps,
eventually converting it into a more straightforward to handle
Gaussian distribution after a predetermined number of steps.
The second process also referred to as the denoising or reverse
process seeks to recover the initial data from the noise-affected
samples by leveraging a neural network for parameterization.

Fig. 2. The diffusion model applies the forward diffusion process q to the
original data y in a gradual manner, adding noise until it matches a known
noise distribution z. Then, using a reversed inference process function p, it
reverses each step of the sampling process to produce a denoised image y.

DDPMs [?], [17] are latent variable models that have a form
similar to that illustrated in Fig.3,

pθ (y0) =

∫
pθ (y0:T ) dy1:T where

pθ (y0:T ) := pθ (yT )

T∏
t=1

p
(t)
θ

(
yt−1 | yt

)
and y1, ..., yt are latent variables in the same sample space

as y0. The parameters θ are learned to fit the data distribution
q(y0) by maximizing a variational lower bound:

max
θ

Eq(y0)
[log pθ (y0)] ≤

max
θ

Eq(y0,y1,...,yT ) [log pθ (y0:T )− log q (y1:T | y0)]

where q (y1:T | y0) is some inference distribution over the
latent variables.

DDPMs are learned with a fixed inference procedure, Ho et
al. [17] considered the following Markov chain with Gaussian
transitions parameterized by a decreasing sequence α1:T ∈
(0, 1]T

q (y1:T | y0) :=

T∏
t=1

q
(
yt | yt−1

)
, where

q
(
yt | yt−1

)
:= N

(√
αt

αt−1
yt−1,

(
1− αt

αt−1

)
I

)
This process is characterized by its autoregressive nature, in

which Gaussian noise is incrementally introduced to the image
through a fixed Markov chain, represented by q(yt | yt− 1).
In contrast, the denoising or reverse process focuses on the
iterative restoration of an image from its noisy observation.

It is worth mentioning that, in the forward process,

q (yt | y0) :=

∫
q (y1:t | y0) dy1:(t−1)

= N (yt;
√
αty0, (1− αt) I)

therefore, we can express yt as a linear combination of y0

and a noise variable ϵ:

yt =
√
αty0 +

√
1− αtϵ, where ϵ ∼ N (0, I).

When we set αt close to 0, q (yt | y0) converges to a
standard Gaussian for all y0, and it is thus natural to set
pθ (xT ) := N (0, I).

Since all the conditionals are modeled as Gaussian with
trainable mean function and fixed variances, the objective
function can be simplified to:

Lγ (ϵθ) :=

T∑
t=1

γtEy0
∼ q (y0) ,

ϵt ∼ N (0, I)

[∥∥∥ϵ(t)θ

(√
αty0 +

√
1− αtϵt

)
− ϵt

∥∥∥2
2

]
where ϵθ :=

{
ϵ
(t)
θ

}T

t=1
is a neural denoising model with a

set of T function, and θ represents the learnable parameters.
The denoising model is trained to reverse this diffusion process
by iteratively removing the noise in a series of steps. γ :=
[γ1, . . . , γT ] is a vector of positive coefficients in the objective
that depends on α1:T .

In [17], the objective with γ = 1 is optimized instead to
maximize the denoising performance of the trained model. For
a trained model, y0 is generated by first sampling yt based
on the prior pθ (yT ), and then generating yt − 1 iteratively.
The value of T , the length of generative steps, is an important
hyperparameter in DDPMs since a large T allows the reverse
process to be close to a Gaussian distribution, thus modeling
the generative process with Gaussian distributions becomes a
good approximation.

B. Radio diffusion model

A conditional diffusion model [18] makes the denoising
process conditional on an input signal, and further image-
to-image diffusion models are conditional diffusion models
of the form p(y|x) that leverage a dataset of input-output
image pairs. Inspired by Saharia et al. [19], we have elected
to apply diffusion models to the task of radio map generation.
We hypothesize that the diffusion process, renowned for its
capability to produce high-quality images through iterative
refinements, could similarly enhance the fidelity and accuracy
of radio maps. Given the model’s proven effectiveness in
complex image-based tasks, we believe it holds promise for
addressing challenges inherent to large-scale, high-resolution
radio map simulations.

In our study, we work with input-output image pairs in
our synthetic dataset, where the data distribution y includes
high-resolution (HR) images with complete IPMs and corre-
sponding low-resolution (LR) images x using sampled IPM
maps, as shown in Fig.4. The conditional distribution p(y|x)
denotes a many-to-one mapping for LR to HR image conver-
sion, meaning multiple source images can map to one target
image. We aim to learn a parametric approximation of p(y|x),
transforming a source image yt with the condition x into a
target image y0.



Fig. 3. Forward diffusion process q and reverse inference process p in radio diffusion model (RDM). The forward process q (left-to-right) incrementally
introduces Gaussian noise to the target IPM, while the reverse process p (right-to-left) successively refines the target IPM based on the sampled IPM image
x. ϵθ is a neural network that learns the denoising step.

Fig. 4. Full IPM (left) and sampled IPMs (remainder) with sample ratio of
0.5, 0.2, 0.1 moving from left to right

To achieve this, we employ a conditional diffusion model
known as the radio diffusion model (RDM), which is adapted
from the SR3 model proposed by Saharia et al. [18] for image
super-resolution.

Our RDM’s architecture resembles U-Net in DDPM [17]
with self-attention as the function ϵθ, and we reduce the
number of residual blocks to two from the three used in SR3 to
reduce processing time. Given geometry information as side
information, and incomplete IPMs (either sampled IPMs or
measurements), the goal of our model is to recover the full
IPM.

Inference of RDM is conducted using the trained reverse
process. The reverse process is designed to ensure that the
prior distribution p(yT ) closely approximates the interpolation
procedure.

We train the models with T equal to 2000 using a mini-
batch size of 16 for 2 million training steps. Overfitting is
not observed during training, and thus we use the final model
checkpoint at 2 million steps to report the final results. To
optimize the models, we use a standard Adam optimizer with
a fixed learning rate of 1e-4 and a linear learning rate warm-up
schedule of 10k samples.

IV. RESULT AND ANALYSIS

Results of the IPM interpolation at various steps are de-
picted in Fig.3, where the sampled IPM is initially considered
as a noisy, incomplete IPM, and then gradually denoised to
achieve completeness.

To evaluate the performance of RDM we use the root-mean-
squared error (RMSE) as is often employed for such tasks in
[20] and is defined as:

RMSE =

√∑N
n=1

∑W
i=1

∑H
j=1

(
y(n)(i,j) − ŷ(n)(i,j)

)2
NWH

(2)

where y and ŷ are the full IPM and IPM after interpolation
respectively, and N is the number of samples, W and H are
the width and height of IPMs separately.

A. Training from scratch

To evaluate the performance of our model, we conducted
three separate experiments and trained our model with sample
ratios of 0.1, 0.2, and 0.5, respectively, without using pre-
trained weights. Subsequently, we tested the trained models
with unknown geometries using the sampled IPM with the
same sample ratio as that used during training.

Fig. 5. Interpolation results generated by training the model from scratch
using varying sample ratios for 2 scenarios.

Table 1 summarizes the results of these experiments, and
Fig.5 visually depicts the interpolation results obtained with



each sample ratio for the two scenarios shown on the upper
and lower rows respectively.

TABLE I
RMSE RESULTS FOR IPMS HAVING DIFFERENT SAMPLE RATIOS

Sample Ratio RMSE (dB)
0.1 5.19
0.2 3.67
0.5 2.54

Our study indicates that RDM can achieve high accuracy
with relatively high sample ratios, demonstrating its efficacy
and robustness in handling diverse datasets. Nonetheless, as
the sample ratio decreases, the limitations of the RDM become
more pronounced, as indicated by the red circles in the image
shown in the final column of Fig.5. This is a result of
the scarcity of RPs in a specific region because of random
selection and low sample ratio. Moreover, decreasing the
sample ratio leads to a substantial increase in training time.
For example, training the RDM with a sample ratio of 0.1
requires twice the training time compared to training with a
sample ratio of 0.2.

B. Multi-stage training
In order to enhance interpolation performance at lower

sampling ratios and to minimize the training duration, a multi-
stage training approach is proposed. Initially, the model is
trained to employ a high sampling ratio, for instance, 0.5.
Subsequently, the pre-trained model undergoes fine-tuning,
with the sampling ratio being systematically reduced until the
desired ratio of 0.1 is attained.

Fig. 6. Result of IPM interpolation using different training approaches.

Fig. 6 shows the interpolation results for two different
scenarios with a 0.1 sampling ratio, highlighting the impact of
different methods. The use of a multi-stage training approach
led to a notable improvement in accuracy compared to starting
the training from scratch. Specifically, an RMSE of 4.23dB
was achieved, in contrast to the 5.19dB attained without
employing the multi-stage training technique.

V. CONCLUSION
This paper introduces a groundbreaking RDM for accurate

and reliable IPM interpolation with a limited number of RPs.

This innovative approach effectively addresses the limitations
of traditional interpolation methods in terms of accuracy and
coverage area. A multi-stage training strategy is proposed to
boost the model’s performance and stability, which represents
a significant advance in the field of IPM generation.

In addition to the novel RDM, the paper also presents a
unique data processing pipeline along with a pre-processing
technique that incorporates positional encoding with a Gaus-
sian kernel and an online data augmentation method to en-
hance the training dataset and improve the generalization per-
formance of the model, further differentiating it from existing
approaches.

The evaluation results highlight the potential of this state-
of-the-art approach to revolutionize the generation of IPMs
for wireless network planning and deployment. While this
paper presents a series of advances in IPM generation, it is
important to acknowledge certain limitations introduced by the
use of DDPM. Specifically, the requirement for a large number
of refinement steps can make the process relatively slow,
which could be a hindrance in time-sensitive applications.
However, we are optimistic that ongoing research focused on
accelerating generative models could mitigate this limitation.
Future work will explore these avenues to further enhance the
model’s speed without compromising its performance, thereby
continuing to advance the state-of-the-art in IPM generation
for wireless network planning and deployment.
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