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Abstract—Faster-than-Nyquist (FTN) signaling is a non-
orthogonal transmission technique, which brings in intentional
inter-symbol interference. This way it can significantly enhance
spectral efficiency for practical pulse shapes such as the root
raised cosine pulses. This paper proposes an achievable rate
region for the multiple antenna (MIMO) asynchronous multiple
access channel (aMAC) with FTN signaling. The scheme applies
waterfilling in the spatial domain and precoding in time. Water-
filling in space provides better power allocation and precoding
helps mitigate inter-symbol interference due to asynchronous
transmission and FTN. The results show that the gains due
to asynchronous transmission and FTN are more emphasized
in MIMO aMAC than in single antenna aMAC. Moreover,
FTN improves single-user rates, and asynchronous transmission
improves the sum-rate, due to better inter-user interference
management.

Index Terms—multiple-input multiple-output (MIMO), asyn-
chronous multiple-access channel (aMAC), faster-than-Nyquist
signaling.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) transmission

schemes have gained an increasing momentum over the

last 20 years [1]–[3]. MIMO is vitally important in 5G

and beyond since bandwidth resources are limited and the

number of devices keep growing [4]. MIMO transmission

offers a solution to this problem as it provides both spatial

multiplexing and diversity gains that drastically improve

transmission rates without needing more bandwidth [1].

Traditional multiple access technologies, such as time-

division multiple access (TDMA) or frequency-division mul-

tiple access (FDMA) are not sufficient to accommodate a

large number of devices with limited resources. Therefore,

alternative approaches, such as non-orthogonal multiple-access

(NOMA) technologies for both uplink and downlink, have

been proposed to improve spectral efficiency [5]. In the uplink,

NOMA is a special case of the multiple access channel (MAC).

This work was funded in part by a Discovery Grant awarded by the Natural
Sciences and Engineering Research Council of Canada (NSERC), in part
by the Scientific and Technological Research Council of Turkey, TUBITAK,
under grant 122E248 and in part by the Research Fund of the Middle East
Technical University, under project 11104.

Unlike traditional methods, multiple access transmission al-

lows multiple users to share the same frequency and time

resources [5], [6].

The capacity region for the conventional two-user single-

input single-output (SISO) MAC is found in [6], while its

MIMO counterpart is found in [7]. It is shown in [8] that

asynchronous MAC (aMAC) expands the synchronous MAC

capacity regions in [6] and [7] further. Asynchronous trasmis-

sion, or an intentional extra time delay between users enables

better inter-user interference mitigation and is beneficial to the

system. In [3], the authors study the downlink performance of

cell-free asynchronous massive MIMO and then apply rate

splitting to deal with multi-user interference.

Another promising technology for future communication

systems is faster-than-Nyquist (FTN) signaling [9]. FTN im-

proves spectral efficiency at the expense of computational

complexity. Due to the increased transmission rate, the trans-

mitted pulses do not satisfy Nyquist criterion and are not or-

thogonal to each other. This induces inter-symbol interference

(ISI). However, this intentional ISI can be controllable under

certain conditions [10], we can use precoding to detangle the

correlated symbols at the receiver. Therefore, it is reasonable to

employ MIMO, asynchronous transmission and FTN together

to boost the performance.

In this paper, we study the performance of MIMO aMAC

with FTN. We first develop the system model in Section II.

We then propose a power allocation scheme that induces an

achievable rate region in Section III. We present the achievable

regions and sum rate performance in Section IV. Finally, we

conclude the paper in Section V.

II. SYSTEM MODEL

The multiple-access communication system is assumed to

have two transmitters and one receiver. The transmitters have

L antennas each and the receiver is equipped with M antennas.

In order to reap the gains due to asynchronous transmission

[8], each user transmits with a fixed time delay τk, k = 1, 2.

We denote the sth symbol, s = 0, . . . , N −1 transmitted from

the lth antenna, l = 1, . . . , L, of the kth user, k = 1, 2, as

alk[s] . Both the transmitters use the same pulse shaping filter
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Fig. 1. System model for MIMO aMAC FTN.

p(t) and the receiver employs the matched filter p∗(−t). In our

paper, we assume p(t) is the root-raised cosine pulse with roll-

off factor β. Furthermore, there is quasi-static fading, denoted

with hmlk , indicating the channel coefficient between the lth
transmit antenna of the kth user to the mth receive antenna,

m = 1, . . . ,M . Both users transmit N symbols with symbol

period δT , where δ ∈ [0, 1] is the acceleration factor in FTN.

With the presence of complex additive white Gaussian noise

z(t) at the receiver, the signal at the output of the matched

filter of the mth receive antenna is

ym(t) =
2
∑

k=1

L
∑

l=1

hmlk

N−1
∑

s=0

alk[s]g(t− sδT − τk) + η(t). (1)

Here g(t) = p(t) ⋆ p∗(−t), and η(t) = z(t) ⋆ p∗(−t), where ⋆
represents the convolution operation. In order to have sufficient

statistics [8], we need to sample ym(t) according to each user’s

time delay. This requires us to sample at time instants nδT +
τk′ to obtain the set of samples ymk′ [n], k

′ = 1, 2. As a result,

there are 2MN samples in total, namely ymk′ [n] = ym(nδT +
τk′ ) where

ymk′ [n] =
2
∑

k=1

L
∑

l=1

hmlk

N−1
∑

s=0

alk[s]g((n− s)δT + (τk′ − τk))

+ η(nδT + τk′). (2)

This system model, shown in Fig. 1, can also be written in a

matrix multiplication form as
[

Y1

Y2

]

=

[

H1 ⊗Gδ H2 ⊗Gδ,12

H1 ⊗Gδ,21 H2 ⊗Gδ

] [

A1

A2

]

+

[

Ω1

Ω2

]

, (3)

or Y = HA+Ω, (4)

where Yk = [(y1
k)
T , . . . , (yMk )T ]T , Ak =

[(a1
k)
T , . . . , (aLk )

T ]T and Ωk = [(η1
k)
T , . . . , (ηMk )T ]T ,

k = 1, 2. We also have alk = [alk[0], a
l
k[1], . . . , a

l
k[N − 1]],

ylk = [ylk[0], y
l
k[1], . . . , y

l
k[N − 1]], ηlk =

[ηlk[0], η
l
k[1], . . . , η

l
k[N − 1]]. The matrix Hk is the M × L

channel coefficient matrix between the kth user and the

receiver. Its entries are given as (Hk)m,l = hmlk . The

matrices Gδ, Gδ,12 and Gδ,21 have their entries equal to

(Gδ)n,s = g((n−s)δT ), (Gδ,12)n,s = g((n−s)δT+(τ1−τ2))
and similarly (Gδ,21)n,s = g((n− s)δT + (τ2 − τ1)). We can

see that Gδ = G
†
δ, G

†
δ,12 = Gδ,21 and they are all Toeplitz

matrices [11]. Note that an N × N Toeplitz matrix TN has

entries (TN )n,s = tn−s, n, s = 0, . . . , N − 1.

A. The Mutual Information Expressions

The mutual information expression for the sum rate is

written as [6]

I(Y ;A1,A2) = h(Y )− h(Y |A1,A2) (5)

= log det
(

E
[

Y Y †
])

− log det
(

E
[

ΩΩ
†
])

,
(6)

where h(·) is the differential entropy. The covariance matrix

for the colored Gaussian noise samples Ω is

E
[

ΩΩ
†
]

, ΣΩ =

[

IM ⊗Gδ IM ⊗Gδ,12

IM ⊗Gδ,21 IM ⊗Gδ

]

, (7)

where IM is the M ×M identity matrix. As a result, we can

write (6) as

I(Y ;A1,A2)

= log2 det

(

I2MN +Σ
−1
Ω

H

[

ΣA1 0

0 ΣA2

]

H†

)

(8)

= log2 det

(

I2MN +H†
Σ

−1
Ω

H

[

ΣA1 0

0 ΣA2

])

(9)

where ΣAk is the covariance matrix for Ak.

In order for (9) to be valid, we need to make sure

that the noise covariance matrix ΣΩ is invertible. We

start by inspecting the positive definiteness of ΣΩ.

Notice that the quadratic form A†
ΣΩA is the sum of

the energy of any M signals, which are in the form
∑N−1
n=0 [am1 [n]p(t− nδT − τ1) + am2 [n]p(t− nδT − τ2)],

m = 1, . . . ,M . We can see that as long as A is not a zero

vector, the quadratic form will not be zero as the energy

of the signal is not zero. Thus, we know that the noise

covariance matrix is positive definitive and it is invertible.

Remark 1: For root raised cosine pulses assumed in this

paper, we have to limit our discussion to δ ≥ 1
1+β , in order

to have numerical stability. Although Gδ is always positive

definite [10], some eigenvalues approach zero if δ < 1
1+β .

We can further simplify (9) by manipulating the inverse of

the noise covariance matrix in (7). Let us define

Q , Gδ −Gδ,12G
−1
δ Gδ,21. (10)

To find the inverse of ΣΩ (7), we still need Q to be invertible.

Therefore, we have the following lemma.

Lemma 1: The matrix Q in (10) is invertible as long as

δ ≥ 1
1+β .

Proof 1: Notice that the matrix Q in (10) is the Schur

complement of

[

Gδ Gδ,12

Gδ,21 Gδ

]

[12]. We know that the latter

matrix is positive definite [13], if Gδ is positive definite.

Since the matrix Gδ is always positive definite [10], by the

Schur complement lemma [12], we conclude that Q is positive

definite and thus invertible.

Then, using the definition of Q and Lemma 1, we can write

the inverse of ΣΩ in (7) as in (11) on the next page. Moreover,

we define
[

M11 M12

M21 M22

]

, H†
Σ

−1
Ω

H (12)

and by applying the mixed product property of Kronecker

product, we obtain a simplification for each block of the matrix



[

IM ⊗Gδ IM ⊗Gδ,12

IM ⊗Gδ,21 IM ⊗Gδ

]−1

=



















IM ⊗G−1
δ + (IM ⊗G−1

δ )(IM ⊗Gδ,12)
×
(

(IM ⊗Gδ)− (IM ⊗Gδ,12)(IM ⊗G−1
δ )

×(IM ⊗Gδ,21)
)−1

(IM ⊗Gδ,21)(IM ⊗G−1
δ )

−(IM ⊗G−1
δ )(IM ⊗Gδ,12)

(

(IM ⊗Gδ)

−(IM ⊗Gδ,12)(IM ⊗G−1
δ )(IM ⊗Gδ,21)

)−1

−
(

(IM ⊗Gδ)− (IM ⊗Gδ,12)(IM ⊗G−1
δ )

×(IM ⊗Gδ,21)
)−1

(IM ⊗Gδ,21)(IM ⊗G−1
δ )

(

(IM ⊗Gδ)− (IM ⊗Gδ,12)

×(IM ⊗G−1
δ )(IM ⊗Gδ,21)

)−1



















=

[

IM ⊗
(

G−1
δ +G−1

δ Gδ,12Q
−1Gδ,21G

−1
δ

)

−IM ⊗
(

G−1
δ Gδ,12Q

−1
)

−IM ⊗
(

Q−1Gδ,21G
−1
δ

)

IM ⊗Q−1

]

(11)

in (12) as

M11 = H
†
1H1 ⊗Gδ (13)

M12 = H
†
1H2 ⊗Gδ,12 (14)

M21 = H
†
2H1 ⊗Gδ,21 (15)

M22 = H
†
2H2 ⊗Gδ. (16)

Therefore, the simplified mutual information expression for

the sum rate in (9) becomes

I(Y ;A1,A2) = log2 det

(

I2MN

+

[

H
†
1H1 ⊗Gδ H

†
1H2 ⊗Gδ,12

H
†
2H1 ⊗Gδ,21 H

†
2H2 ⊗Gδ

] [

ΣA1 0

0 ΣA2

])

.

(17)

We can also obtain the single user mutual information expres-

sion from (17), since

I(Y ;A1|A2) = (18)

= h(Y |A2)− h(Y |A1,A2)

= log det
(

E
[

Y Y †
])

|A2=0 − log det
(

E
[

ΩΩ
†
])

(19)

= log2 det

(

I2MN +Σ
−1
Ω

H

[

ΣA1 0

0 0

]

H†

)

(20)

= log2 det

(

I2MN

+

[

H
†
1H1 ⊗Gδ H

†
1H2 ⊗Gδ,12

H
†
2H1 ⊗Gδ,21 H

†
2H2 ⊗Gδ

] [

ΣA1 0

0 0

])

(21)

= log2 det
(

I2MN +
(

H
†
1H1 ⊗Gδ

)

ΣA1

)

. (22)

As expected, (22) is the same as the MIMO FTN mutual

information expression in [10, (29)]. Similarly, the single user

rate expression for the second user is

I(Y ;A2|A1) = log2 det
(

I2MN +
(

H
†
2H2 ⊗Gδ

)

ΣA2

)

.

(23)

Each user in a multiple access channel is limited in trans-

mission power. Since users perform MIMO FTN transmission,

the power constraint for each user is equal to the single user

MIMO FTN power constraint [10], and is written as

1

NδT
tr ((IM ⊗Gδ)ΣAk) ≤ Pk, k = 1, 2. (24)

Thus, we can now write the capacity region for this channel

according to [13] as

C = closure
(

lim inf
N→∞

CN

)

, (25)

where CN is1

CN =
⋃

1

NδT
tr((IM⊗Gδ)ΣAk)≤Pk

ΣAk�0, k=1,2

{

(R1, R2) :
(26)

R1 ≤ log2 det
(

I2MN +
(

H
†
1H1 ⊗Gδ

)

ΣA1

)

(27)

R2 ≤ log2 det
(

I2MN +
(

H
†
2H2 ⊗Gδ

)

ΣA2

)

(28)

R1 +R2 ≤ log2 det

(

I2MN

+

[

H
†
1H1 ⊗Gδ H

†
1H2 ⊗Gδ,12

H
†
2H1 ⊗Gδ,21 H

†
2H2 ⊗Gδ

] [

ΣA1 0

0 ΣA2

])}

.

(29)

Remark 2: From (26)-(29) we can see that when δ = 1, the

Gδ matrix becomes the identity matrix IN and the (n,m)th
entries of Gδ,12 and Gδ,21 become g ((n−m)T + τ1 − τ2)
and g ((n−m)T + τ2 − τ1) respectively. The capacity region

of the MIMO asynchronous MAC with FTN reduces to the

MIMO asynchronous MAC capacity region without FTN [8],

[14].

III. PROPOSED ACHIEVABLE RATE REGION

Although (25) is the capacity region for MIMO asyn-

chronous MAC with FTN, it is not easy to calculate it in

closed form or to optimize it. This is due to the fact that there

is no single covariance matrix that satisfies both the single user

rate expressions (27) and (28), and the sum rate expression

(29) simultaneously. Therefore, the capacity region is not a

pentagon as in synchronous MAC [6], but has smooth corners

as in [8].

As the system includes MIMO, asynchronous transmission,

and FTN, we propose a power allocation scheme to optimize

over the MIMO channel, asynchronous transmission and FTN

to obtain an achievable rate region. Thus, we suggest a set

of input covariance matrices R. The set R consists of input

1Note that the symbol � means positive definite.



covariance matrix pairs parameterized by α ∈ R, 0 ≤ α ≤ 1,

namely,

R = {(Σα
A1,Σ

α
A2)} , (30)

where the covariance matrices Σ
α
Ak, k = 1, 2, have the

structure

Σ
α
Ak = Zk ⊗Ξ

α
k . (31)

The aim behind this structure is to adapt to the MIMO channel

via Zk and to provide precoding, or time correlation, against

inter-symbol interference due to asynchronous transmission

and FTN via Xiαk .

In (31), α is introduced as an auxiliary variable to obtain all

rate pairs on the achievable rate region boundary. The L × L
matrix Zk is obtained by waterfilling [1] according to the

MIMO channel Hk with the power constraint

tr (Zk) ≤ Pk. (32)

The matrices Z1,Z2 remain the same for all α, 0 ≤ α ≤ 1.

Thus they are the same for all Σα
A1 and Σ

α
A2, respectively.

To obtain the N × N matrices Ξ
α
k , we first introduce the

matrices Ψ
α
k as

Ψ
α
1 = UΨ̃

α
1U

† = G
1

2

δ Ξ
α
1G

1

2

δ (33)

Ψ
α
2 = V Ψ̃

α
2V

† = G
1

2

δ Ξ
α
2G

1

2

δ , (34)

where U , and V are the unitary matrices in the singular value

decomposition of

G
− 1

2

δ Gδ,12G
− 1

2

δ = UΛV †. (35)

Here Λ is a diagonal matrix with the singular values

of the matrix G
− 1

2

δ Gδ,12G
− 1

2

δ on the diagonal. We de-

note those singular values by λ1, . . . , λN . The matrices

Ψ̃
α
1 and Ψ̃

α
2 are diagonal matrices, written as Ψ̃

α
1 =

diag[ψ1
1(α), . . . , ψ

N
1 (α)] and Ψ̃

α
2 = diag[ψ1

2(α), . . . , ψ
N
2 (α)].

The eigenvalues ψik(α), k = 1, 2, i = 1, . . . , N are obtained

from the mapping f(·), defined in (38) on the next page. f(·)
takes in α as a parameter and returns a set of eigenvalues
[

ψ1
1(α), . . . , ψ

N
1 (α), ψ1

2(α), . . . , ψ
N
2 (α)

]

, or

f(α) =
[

ψ1
1(α), . . . , ψ

N
1 (α), ψ1

2(α), . . . , ψ
N
2 (α)

]

. (36)

The mapping f(α) can be interpreted as a different op-

timization problem for each α value and the solution to

that specific problem is the desired set of eigenvalues
[

ψ1
1(α), . . . , ψ

N
1 (α), ψ1

2(α), . . . , ψ
N
2 (α)

]

2. For each α, we

plug the obtained eigenvalues back to (33), (34) and then (31)

to obtain a pair of input covariance matrices (Σα
A1,Σ

α
A2). We

can then compute a rate pair (R1, R2) on the achievable rate

region boundary by plugging (Σα
A1,Σ

α
A2) into (27)-(29).

The power constraint for each optimization problem is equal

to
∑N

i=1 ψ
i
k ≤ NδT, k = 1, 2. This way, it is guaranteed that

2From this point, we will drop the argument of ψi

k
(α) and write ψi

k
only

for a simpler notation.

the individual power constraints of (24) are satisfied for each

user, since

tr ((IM ⊗Gδ)Σ
α
Ak) = tr ((IM ⊗Gδ) (Zk ⊗Ξ

α
k ))

= tr (Zk ⊗GδΞ
α
k )

= tr (Zk) tr (GδΞ
α
k )

= tr (Zk) tr
(

G
1

2

δ Ξ
α
kG

1

2

δ

)

(a)
= tr (Zk)

(

N
∑

i=1

ψik

)

≤ PkNδT, k = 1, 2, (37)

where (a) is because of (33) and (34).

Remark 3: The intuition for the optimization problem f(α)
can be seen in the frequency domain. By applying Szegö’s

theorem [11] to (33)-(35), we obtain the spectrum domain

representations of the matrices Ψ
α
1 and Ψ

α
2 respectively as

Gδ(λ)S
α
1 (λ) and Gδ(λ)S

α
2 (λ). The function Gδ(λ) is the

folded spectrum [15], which is defined as a function of the

spectrum of the pulse shaping filter P (·); i.e.the continuous

time Fourier transform of p(t), as

Gδ(λ) =
1

δT

∞
∑

n=−∞

∣

∣

∣

∣

P

(

λ− n

δT

)∣

∣

∣

∣

2

=
1

δT

∞
∑

n=−∞

G

(

λ− n

δT

)

.

(38)

The function Sαk (λ) is the spectrum domain representation

of the matrix Ξ
α
k . We also convert G

− 1

2

δ Gδ,12G
− 1

2

δ into the

spectrum domain to obtain G12,δ(λ)/Gδ(λ), where G12,δ(λ)
is defined as

G12,δ(λ) =
∞
∑

n=∞

g(nδT + (τ1 − τ2))e
j2πλn (39)

=
1

δT

∞
∑

n=−∞

G

(

λ− n

δT

)

ej2π(τ1−τ2)
λ−n

δT . (40)

Given these definitions, we can say that solving f(α) is equiv-

alent to finding the optimal input spectrum Gδ(λ)S
α
k (λ), k =

1, 2, at each one of the users according to the equivalent

channel G12,δ(λ)/Gδ(λ).

Remark 4: We can show that the suggested power allocation

scheme achieves the optimal single-user rate; i,e. the MIMO

FTN capacity in [10].

To see this, we can look into α = 0 and α = 1. When

α = 0, the optimization problem in (38) reduces to

argmax
∑

N

i=1
ψi

k
≤NδT,

ψi≥0,i=1,...,N,k=1,2

1

N

N−1
∑

i=0

log2

(

1 +
ψi2
σ2
0

)

. (41)

The solution to this problem is ψi2 = δT, i = 1, . . . , N . Then,

Ξ
0
2 = δTG−1

δ , and the corresponding covariance matrix for

the second user becomes Σ
0
A2 = Z2 ⊗

(

δTG−1
δ

)

, which

is the capacity-achieving covariance matrix for single-user

MIMO FTN channel discussed in [10]. When α = 1, the

same discussion applies and we get the capacity-achieving

covariance matrix for the first user.



f(α) =



































































argmax
∑

N

i=1
ψi

k
≤NδT,

ψi≥0,i=1,...,N,k=1,2

1− 2α

N

N−1
∑

i=0

log2

(

1 +
ψi2
σ2
0

)

+
α

N

N−1
∑

i=0

log2

(

1 +
ψi1
σ2
0

+
ψi2
σ2
0

+
ψi1ψ

i
2

σ4
0

(1− |λi|
2)

)

,

if 0 ≤ α ≤
1

2

argmax
∑

N

i=1
ψi

k
≤NδT,

ψi≥0,i=1,...,N,k=1,2

2α− 1

N

N−1
∑

i=0

log2

(

1 +
ψi1
σ2
0

)

+
1− α

N

N−1
∑

i=0

log2

(

1 +
ψi1
σ2
0

+
ψi2
σ2
0

+
ψi1ψ

i
2

σ4
0

(1− |λi|
2)

)

,

if
1

2
< α ≤ 1
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Fig. 2. Achievable rate regions for MIMO asynchronous MAC with and
without FTN, MIMO synchronous MAC with FTN, and the capacity region of
MIMO MAC without FTN [7]. Achievable rate regions for SISO transmission
are also provided for comparison.

IV. NUMERICAL RESULTS

In this section we plot the achievable rate region proposed in

the previous section for different scenarios. We assume both

the transmitters and the receiver have 3 antennas each. The

transmitters employ root-raised cosine pulses for signaling and

matched filtering. We set the symbol period T = 1 and both

users have signal to noise ratio (SNR) Pk

σ2

0

= 20dB, k = 1, 2.

All the regions are computed and averaged over the same 100

random channel realizations, where the power of the channel

is normalized to 1. Furthermore, we set the time difference

τ = τ2 − τ1 = 0.5δT for the asynchronous transmission and

we set δ = 0.8, β = 0.25 for FTN.

In Fig. 2, we plot the achievable region of MIMO aMAC

FTN and compare it with the achievable region of MIMO

aMAC to show the benefit of FTN. The MIMO aMAC region

is obtained by performing waterfilling and asynchronous MAC

power optimization. Since there is no FTN for this curve, we

obtain the Ξ
α
k matrices in (33)-(34) by replacing Gδ with

IN and by evaluating Gδ,12 in (35) at δ = 1 respectively.

We can see that FTN improves both the single-user rate as

well as the sum-rate. In this figure, we also plot the MIMO
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Fig. 3. Maximum sum rate versus SNR for MIMO asynchronous MAC with
and without FTN, MIMO synchronous MAC with FTN, and the sum capacity
for MIMO MAC without FTN [7].

MAC FTN achievable rate region by setting the time difference

τ = 0, and the capacity region of MIMO MAC. We compare

the MIMO aMAC region with MIMO MAC region, and

also the MIMO aMAC FTN region with the MIMO MAC

FTN region. Both of these comparisons show the gain from

asynchronous transmission, either with or without FTN. We

observe that asynchronous transmission improves sum rate but

does not improve the single-user rate. In Fig. 2 we also plot

the SISO counterparts for the above four regions and observe

that gains due to asynchronous transmission and FTN are more

emphasized in MIMO.

To understand how the achievable rate regions change with

SNR, in Fig. 3, we plot the maximum sum rate versus

SNR for MIMO asynchronous MAC with and without FTN,

MIMO synchronous MAC with FTN and the sum capacity

for MIMO MAC without FTN. We observe that asynchronous

transmission with FTN starts presenting significant gains at

moderate SNR values and this gain increases with SNR.

In order to understand how each component of the proposed

power allocation scheme contributes individually, in Fig. 4,

we compare the MIMO aMAC FTN achievable rate region

obtained with the power allocation scheme proposed in Sec-
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Fig. 4. Achievable regions for MIMO aMAC FTN with different power
allocation schemes.

tion III with regions obtained by not omitting one or more

components. The aMAC FTN region does not incorporate

spatial power optimization and there is no waterfilling for

the MIMO channels Hk, k = 1, 2. The matrices Zk of (31)

are set to Zk = Pk

L
IL, and we apply equal power allocation

for each eigen-channel. On the other hand, the MIMO only

curve means that we only perform waterfilling for the MIMO

channels Hk and set the time difference τ = 0. We also do not

perform power allocation for FTN, which means we replace

Gδ and Gδ,12 in (33)-(35) with IN and Gδ,12|δ=1 respectively

to obtain the Ξ
α
k matrices in (31). Similarly, the FTN only

curve is obtained by performing equal power allocation for

the MIMO channels and setting the time difference τ to be

0. Finally, the no power optimization curve is obtained by

performing equal power allocation for the MIMO channels

Hk, setting τ = 0 and replacing Gδ and Gδ,12 in (33)-

(35) with IN and Gδ,12|δ=1 respectively. We also plot the

MIMO aMAC FTN with (δ, β) = (1, 0) curve as an upper

bound. As a rescdult, we conclude the following. If there

are limited computational complexity resources to optimize

power, we find that waterfilling for MIMO is a better approach

to have reasonable performance. The MIMO only and FTN

only curves have similar sum-rates, and it is easier to perform

MIMO power allocation only. This is because larger matrices

(N × N ) matrices need to be inverted for precoding against

inter-symbol interference due to FTN, whereas L×L matrices

are inverted to for waterfilling in space. However, if an increase

in single-user rates is required, then FTN is helpful. Since

the complexity for FTN only and aMAC FTN curves are

similar, it is more meaningful to employ power optimization

for asynchronous transmission with FTN together. This is

because asynchronous transmission provides better inter-user

interference mitigation and enhances the sum rate significantly.

Obviously, it is the best if all power allocation mechanisms are

utilized and the MIMO aMAC with FTN achieves the largest

region among all.

V. CONCLUSION

In this paper, we studied the performance of MIMO aMAC

transmission with FTN. The system model is simplified by

applying matrix manipulation techniques, then a novel power

optimization scheme is proposed to obtain an achievable rate

region. In the end, we show that our proposed power optimiza-

tion scheme outperforms traditional MIMO MAC transmission

and the gain brought by each part of the power optimization

scheme. Future work includes studying asynchronous trans-

mission among antennas [16], [17] and different acceleration

factors among users. The extension of MIMO channel to

massive MIMO will also be studied.
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