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Abstract—A point-to-point communication is considered where
a roadside unite (RSU) wishes to simultaneously send messages
of enhanced mobile broadband (eMBB) and ultra-reliable low-
latency communication (URLLC) services to a vehicle. The eMBB
message arrives at the beginning of a block and its transmission
lasts over the entire block. During each eMBB transmission
block, random arrivals of URLLC messages are assumed. To
improve the reliability of the URLLC transmissions, the RSU
reinforces their transmissions by mitigating the interference of
eMBB transmission by means of dirty paper coding (DPC). In the
proposed coding scheme, the eMBB messages are decoded based
on two approaches: treating interference as noise, and successive
interference cancellation. Rigorous bounds are derived for the
error probabilities of eMBB and URLLC transmissions achieved
by our scheme. Numerical results illustrate that they are lower
than bounds for standard time-sharing.

I. INTRODUCTION

Enhanced mobile broadband (eMBB) and ultra-reliable low-

latency communication (URLLC) services enabled by 5G new

radio (NR) are considered as key enablers of the vehicle-

to-everything (V2X) technology [1]–[6]. Particularly, eMBB

services aim to provide high data rate for content delivery and

therefore improve the quality of experience (QoE) of in-vehicle

entertainment applications. URLLC services, however, are key

to guarantee the delivery of critical road safety information and

thus enable fully autonomous driving of connected vehicles [7],

[8].

Coexistence of eMBB and URLLC services in V2X com-

munications has been studied in the literature [9]–[11]. In [9],

a novel URLLC and eMBB coexistence mechanism for the

cellular V2X framework is proposed where at the begining

of the transmission interval eMBB users are associated with

a V2X base station, whereas, URLLC users are allowed to

puncture the eMBB transmissions upon arrival. The work in

[10] formulates an optimization problem for joint scheduling of

punctured eMBB and URLLC traffic to maximize the aggregate

utility of the eMBB users subject to latency constraints for the

URLLC users. Related to this work is [11], where resources

are allocated jointly between eMBB and URLLC messages

for a one-way highway vehicular network in which a vehicle

receives an eMBB message from the nearest roadside unit

(RSU) and URLLC messages from the nearest vehicle. During

each eMBB transmission interval, random arrivals of URLLC

messages are assumed. The eMBB time slot is thus divided

into mini-slots and the newly arrived URLLC messages are

immediately scheduled in the next mini-slot by puncturing the

on-going eMBB transmissions. To guarantee the reliability of

the URLLC transmission, guard zones are deployed around the

vehicle and the eMBB transmissions are not allowed inside such

zones.

In this work, the RSU wishes to transmit both eMBB and

URLLC messages to a vehicle. The eMBB message arrives at

the beginning of a block and its transmission lasts over the

entire block. The eMBB blocklength is again divided into mini-

slots and URLLC messages arrive randomly at the beginning of

these mini-slots. Specifically, at the beginning of each of these

mini-slots a URLLC message arrives with probability ρ ∈ [0, 1]
and the RSU simultaneously sends the eMBB message as well

as the newly arrived URLLC message over this mini-slot. With

probability 1−ρ no URLLC message arrives at the beginning of

the mini-slot and the RSU only sends the eMBB message. In our

work, we do not use guard zones, but instead the RSU reinforces

transmission of URLLC messages by mitigating the interference

of eMBB transmission by means of dirty paper coding [12]–

[14]. After each mini-slot, the receiving vehicle attempts to

decode a URLLC message, and after the entire transmission

interval it decodes the eMBB message. Given that the URLLC

transmissions interfere with the transmission of eMBB, we

employ two different eMBB decoding approaches. The first

approach, known as treating interference as noise (TIN), is to

treat the URLLC interference as noise. The second approach,

known as successive interference cancellation (SIC), is to first

subtract the decoded URLLC message and then decode the

eMBB message based on the received signal. Rigorous bounds

are derived for achievable error probabilities of eMBB (in

both approaches) and URLLC transmissions. Numerical results

illustrate that our proposed scheme significantly outperforms the

standard time-sharing scheme.

II. PROBLEM SETUP

Consider a point-to-point setup with one RSU (transmitter)

and one vehicle (receiver) communicating over a ne uses of

an AWGN channel. The transmitter (Tx) sends a single, so

called eMBB-type message M (e), over the entire blocklength

ne, where M (e) is uniformly distributed over a given set

M(e) := {1, . . . , Le}. Message M (e) is thus available at the

Tx at time t = 1 (and remains until time ne). Additionally,

prior to each channel use in

T (U) := {1, 1 + nU, 1 + 2nU, . . . , 1 + (η − 1)nU}, (1)
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where

η :=

⌊

ne

nU

⌋

, (2)

the Tx generates with probability ρ an additional, so called,

URLLC-type message that it wishes to convey to the Rx. With

probability 1 − ρ no URLLC-type message is generated. For

each b ∈ [η], if a URLLC message is generated at time t =
(b−1)nU+1, then we set Ab = 1, and otherwise we set Ab = 0.

Denote the time-instances from (b − 1) · nU + 1 to b · nU by

block b. If in block b a message is generated we denote it by

M
(U)
b and assume that it is uniformly distributed over the set

M(U) := {1, . . . , LU}.

During block b, the Tx computes its inputs as:

Xt =

{

f
(U)
t

(

M
(U)
b ,M (e)

)

, if Ab = 1,

f
(e)
t

(

M (e)
)

, if Ab = 0,
(3)

for t = (b− 1) ·nU+1, . . . , b ·nU and some encoding functions

f
(U)
t and f

(e)
t on appropriate domains. After the last URLLC

block, i.e. at times t = ηnU + 1, . . . , ne, the Tx produces the

inputs

Xt = f
(e)
t

(

M (e)
)

, t = ηnU + 1, . . . , ne. (4)

The sequence of channel inputs X1, . . . , Xne
has to satisfy

the average block-power constraint

1

ne

ne
∑

t=1

X2
t ≤ P, almost surely. (5)

The input-output relation of the network is described as

Yt = hXt + Zt, (6)

where {Zt} are independent and identically distributed (i.i.d.)

standard Gaussian for all t and independent of all messages;

h > 0 is the fixed channel coefficient between the Tx and Rx.

After each URLLC block b the receiver (Rx) decodes the

transmitted URLLC message M
(U)
b if Ab = 1. Moreover, at the

end of the entire ne channel uses it decodes the eMBB message

M (e). Thus, if Ab = 1 it produces

M̂
(U)
b = g(nU)

(

Y(b−1)nU+1, . . . , YbnU

)

, (7)

for some decoding function g(nU) on appropriate domains.

Otherwise, it sets M̂
(U)
b = 0. We define the average error

probability for each message M
(U)
b as:

ǫ
(U)
b := ρP

[

M̂
(U)
b 6=M

(U)
b

∣

∣

∣Ab = 1
]

+(1− ρ)P
[

M̂
(U)
b 6= 0

∣

∣

∣Ab = 0
]

. (8)

At the end of the ne channel uses, the Rx decodes its desired

eMBB message as:

M̂ (e) = ψ(ne) (Y ne) , (9)

where Y
ne := (Y1, . . . , Yne

) and ψ(ne) is a decoding function

on appropriate domains. We define the average error probability

for message M (e) as

ǫ(e) := P

[

M̂ (e) 6=M (e)
]

. (10)

ne

nU nU nU nU ne − ηnU

X
(U)
1 +X

(e,2)
1 X

(e,1)
2 X

(U)
3 +X

(e,2)
3 X

(e,1)
4 X

(e,1)
5

Fig. 1: Example of the coding scheme with η = 4 and Bsent =
{1, 3}.

The goal is to propose a coding scheme that simultaneously

has small error probabilities ǫ
(U)
b and ǫ(e).

III. JOINT TRANSMISSION OF URLLC AND EMBB

MESSAGES

A. Construction of Codebooks

Define

Barrival := {b ∈ [η] : Ab = 1}. (11)

Choose βU and βe ∈ [0, 1] such that:

βU + βe = 1. (12)

Fix a value of α ∈ [0, 1]. For each block b ∈ [η], for each

j ∈ [Lv] and each realization m ∈ [LU], generate codewords

V b(m, j) by picking them uniformly over a centered nU-

dimensional sphere of radius
√
nUβvP independently of each

other and of all other codewords, for

βv := βU + α2βe. (13)

For each ℓ ∈ [Le] randomly draw a codeword X
(e,2)
b (ℓ)

uniformly distributed on the centered nU-dimensional sphere of

radius
√
nUβeP and a codeword X

(e,1)
b (ℓ) uniformly distributed

on the centered nU-dimensional sphere of radius
√
nUP. All

codewords are chosen independently of each other.

B. Encoding

1) Encoding at Blocks b ∈ Barrival: In each block b ∈ Barrival,

the Tx has both an eMBB and an URLLC message to send. It

first picks the codeword X
(e,2)
b (M (e)) and then employs DPC

to encode M
(U)
b while precanceling the interference of its own

eMBB codeword X
(e,2)
b (M (e)). Specifically, it chooses an index

j such that the sequence

X
(U)
b := V b(M

(U)
b , j)− αX

(e,2)
b (14)

lies in the set

Db :=

{

x
(U)
b : nUβUP− δb ≤

∥

∥

∥
x
(U)
b

∥

∥

∥

2

≤ nUβUP

}

(15)

for a given δb > 0. If multiple such codewords exist, the index

j⋆ is chosen at random from this set, and the Tx sends:

Xb = X
(U)
b +X

(e,2)
b . (16)

We also set Ab,sent = 1.



If no appropriate codeword exists, the Tx discards the arrived

URLLC message by setting Ab,sent = 0 and sends only the

eMBB message

Xb = X
(e,1)
b (M (e)) (17)

over this block.

Define

Bsent := {b ∈ Barrival : Ab,sent = 1}, (18)

where Bsent ⊆ Barrival and represents the set of blocks in which

an URLLC message is sent. See Figure 1.

2) Encoding at Blocks b ∈ [η]\Barrival and in Block η + 1
when ne > ηnU: In each Block b ∈ [η]\Barrival, the Tx sends

only eMBB message M (e):

Xb = X
(e)
b,1(M

(e)). (19)

Over Block b, the Tx thus transmits

Xb =

{

X
(U)
b +X

(e,2)
b if b ∈ Bsent,

X
(e,1)
b o.w.

(20)

C. Decoding

After each block b ∈ [η], the Rx attempts to decode a

URLLC message, and after the entire block of ne channel

uses it decodes the transmitted eMBB message. Given that the

URLLC transmissions interfere with the transmission of eMBB,

the Rx envisions two different approaches to decode the eMBB

message. The first approach, termed TIN approach, is to treat the

URLLC interference as noise. The second approach, termed SIC

approach, is to first subtract the decoded URLLC message and

then decode the eMBB message based on the received signal.

1) Decoding of URLLC Messages: At the end of each

block b ∈ [η], the Rx observes the following channel outputs

Y b := {Y(b−1)nU+1, . . . , YbnU
}:

Y b =

{

hX
(U)
b + hX

(e,2)
b +Zb if b ∈ Bsent

hX
(e,1)
b +Zb o.w.

(21)

with Zb ∼ N (0, InU
). Define the information density metric

between yb and vb by:

i
(U)
b (vb;yb) := ln

fY b|V b
(yb|vb)

fY b
(yb)

. (22)

After observing Y b, the Rx chooses the pair

(m′, j′) = argmax
m,j

i
(U)
b (vb(m, j);Y b). (23)

If for this pair

i
(U)
b (vb(m

′, j′);Y b) > γ(U) (24)

where γ(U) is a threshold over which we optimize, the Rx

chooses (M̂
(U)
b , ĵ) = (m′, j′) and sets Ab,detection = 1. Oth-

erwise the receiver declares that no URLLC message has been

sent and indicates it by setting M̂
(U)
b = 0 and Ab,detection = 0.

Define

Bdetect := {b ∈ [η] : Ab,detection = 1} (25)

that is the set of blocks in which an URLLC message is

detected. A detection error happens if Bdetect 6= Bsent.

In each block b ∈ Bdetect, set Ab,decode = 1 if (M̂
(U)
b , ĵ) =

(M
(U)
b , j), otherwise set Ab,decode = 0. Define

Bdecode := {b ∈ Bdetect : Ab,decode = 1} (26)

that is the set of blocks in which an URLLC message is decoded

correctly.

2) Decoding the eMBB Message under the TIN approach: To

decode its desired eMBB message under this approach, the Rx

treats URLLC transmissions as noise. Therefore, the decoding

of the eMBB message depends on the detection of URLLC

messages sent over the η blocks.

Let Bdt be the realization of the set Bdetect defined in

(25). Given Bdt, the Rx decodes its desired eMBB message

based on the outputs of the entire ne channel uses by look-

ing for an index m such that its corresponding codewords
{

{x(e,1)
b (m)}b/∈Bdt

, {x(e,2)
b (m)}b∈Bdt

}

maximize

i
(e)
TIN

(

{x(e,1)
b }b/∈Bdt

, {x(e,2)
b }b∈Bdt

;yne |Bdetect = Bdt

)

:= ln
∏

b/∈Bdt

f
Y b|X(e,1)

b

(yb|x(e)
b,1)

fY b
(yb)

+ ln
∏

b∈Bdt

f
Y b|X(e,2)

b

(yb|x(e)
b,2)

fY b
(yb)

(27)

among all codewords {{x(e,1)
b (m′)}b/∈Bdt

, {x(e,2)
b (m′)}b∈Bdt

}.

3) Decoding the eMBB Message under the SIC approach:

Under this approach, before decoding the desired eMBB mes-

sage, the Rx mitigates the interference of the correctly decoded

URLLC messages from its observed output signal. Therefore,

the decoding of the eMBB message depends not only on the

detection of the sent URLLC messages but also on the decoding

of such messages.

For each Block b ∈ Bdetect, we define Ab,decode = 1 if

(M̂
(U)
b , ĵ) = (M

(U)
b , j), otherwise set Ab,decode = 0. Define the

set of blocks in which an URLLC message is decoded correctly:

Bdecode := {b ∈ Bdetect : Ab,decode = 1}. (28)

Let Bdt be a realization of the set Bdetect and Bdc be a

realization of the set Bdecode. After observing the channel outputs

of the entire ne channel uses, the Rx decodes its desired eMBB

message by looking for an index m such that its corresponding

codewords
{

{x(e,1)
b (m)}b/∈Bdt

, {x(e,2)
b (m)}b∈Bdt

}

maximize

i
(e)
SIC

(

{x(e,1)
b }b/∈Bdt

, {x(e,2)
b }b∈Bdt

;yne |Bdt, Bdc, {V b}b∈Bdc

)

:= ln
∏

b/∈Bdt

f
Y b|X(e,1)

b

(yb|x(e,1)
b )

fY b
(yb)

+ ln
∏

b∈Bdt\Bdc

f
Y b|X(e,2)

b

(yb|x(e,2)
b )

fY b
(yb)

+ ln
∏

b∈Bdc

f
Y b|X(e,2)

b
,V b

(yb|x(e,2)
b ,vb)

fY b|V b
(yb|vb)

(29)

among all codewords {{x(e,1)
b (m′)}b/∈Bdt

, {x(e,2)
b (m′)}b∈Bdt

}.



IV. MAIN RESULTS

Define σ2 := h2P + 1, σ2
2 := h2βvP + 1, σ2

3 := h2(1 −
α)2βeP+ 1 and

λ(x) :=
x

2
+
u2

4
− u

2

√

x+
u2

4
, (31a)

λ̃(x) :=
x

2
+
u2

4
+
u

2

√

x+
u2

4
, (31b)

u :=
2
√
nUP

(

σ2
3(
√
βU +

√
βe) + σ2

√
βe(1− α)

)

h(σ2 − σ2
3)

, (31c)

τ :=

√
nUP

(√
βv(σ

2 + σ2
2) + (1− α)

√
βeσ

2
2

)

σ2σ2
2

, (31d)

and for all integer values n = 1, 2, . . .:

κn(x) :=
x(1 − x2)n

2n+ 1
+

2n

2n+ 1
κn−1(x) (31e)

where κ0(x) := x. By employing the scheme proposed in

Section III, we have the following theorem on the upper bounds

on the URLLC and eMBB error probabilities ǫ
(U)
b , ǫ

(e)
TIN, and

ǫ
(e)
SIC.

Theorem 1: For fixed βe , βU ∈ [0, 1] and message set sizes

LU and Le, the average error probabilities ǫ
(U)
b , ǫ

(e)
TIN, and ǫ

(e)
SIC

are bounded by

ǫ
(U)
b ≤ ρ

(

(1 − ζ)Lv + q + 1− q2
)

+ (1 − ρ)q1 (32)

ǫ
(e)
TIN ≤

η
∑

k=0

(

η

k

)

qk3 (1− ρUq2)
η−k (1−∆+ T ) (33)

ǫ
(e)
SIC ≤

η
∑

k=0

(

η

k

)

qk4 (1− ρUq2)
η−k

·



1−∆+
k
∑

k̃=0

(

k

k̃

)

qk̃(1− q)k−k̃

(

µT

µ̃
− ν

)



 , (34)

where γ(U), γ(e), γ̃(e) are arbitrary positive parameters, G(·, ·)
denotes the regularized gamma function, k := |Bdt|, k̃ = |Bdc|,
ρU := ρ

(

1− (1− ζ)Lv
)

, q3 := ρUq4 + (1 − ρU)q1, and

q := LvL
U

√

1− q2 + (LvLU − 1)e−γ(U)

, (35a)

q1 := 1−
(

1− e−γ(U)
)LvLU

, (35b)

q2 := 1−
(

1−G
(nU

2
, λ(µU)

)

+G
(nU

2
, λ̃(µU)

))LvLU

(35c)

q4 := 1−
(

1−G
(nU

2
, λ̃(µ̃U)

)

+G
(nU

2
, λ(µ̃U)

))LvLU

(35d)

∆ :=
ρk
U
(1− ρU)

η−kqk2 (1− q1)
η−k

(ρU · q3 + (1 − ρU) · q1)k(1− ρU · q2)η−k
(35e)

JU :=
π
√
βvβe2

n
U
+1

2 e−
h2(1−α)2βePnU

2

9h2(1− α)(βv + (1− α)2βe)
, (35f)

J̃U :=
27

√
π(1 + h2(1− α)2βeP)e

nUh
2
P(βv+(1−α)2βe)

2(h2(1− α))nU−2
√

8(1 + 2h2(1− α)2βeP
. (35g)

and Je, J̃e, ζ, µU, µ̃U, µ, µ̃, T and ν are defined in (30).

Proof: See Section VI.

Je :=





π2
n
U
+1

2 e
−h2βvPnU

2

√
βvβe

9h2(1− α)nU−1(βv + (1− α)2βe)





k

·
(

√

8(1 + 2h2P)

27
√
π(1 + h2P)

)η−k

(30a)

J̃e :=





π2
n
U
+1

2 e
−h2βvPnU

2

√
βvβe

9h2(1− α)nU−1(βv + (1− α)2βe)





k−k̃

·
(

√

8(1 + 2h2P)

27
√
π(1 + h2P)

)η−k

·
(

√

8(1 + 2h2(1− α)2βeP)

27
√
π(1 + h2(1− α)2βeP)

)k̃

(30b)

ζ :=
1√
π

Γ(nU

2 )

Γ(nU−1
2 )

(

κn
U
−3

2

(

α
√

βe/βv + δb/(2αnUP

√

βvβe)
)

− κn
U
−3

2

(

α
√

βe/βv

))

(30c)

µU :=
2σ2σ2

3

h2(σ2 − σ2
3)

(

nU

2
ln
σ2

σ2
3

− γ(U) + ln JU

)

+
σ2
3

σ2 − σ2
3

(

nUP(
√

βU −
√

βe)
2 − δb

)

− σ2nUβeP(1− α)2

σ2 − σ2
3

(30d)

µ̃U :=
2σ2σ2

3

h2(σ2 − σ2
3)

(

nU

2
ln
σ2

σ2
3

− γ(U) + ln J̃U

)

+
σ2
3

σ2 − σ2
3

(

nUP(
√

βU +
√

βe)
2
)

− σ2nUβeP(1− α)2

σ2 − σ2
3

(30e)

µ :=
ne

2
lnσ2 − knU

2
lnσ2

2 −
η − k

2σ2
nUP+

k

2σ2
2

βvnUP− k

2σ2

(

√

βv + (1 − α)
√

βe

)2

nUP− γ(e) + ln Je (30f)

µ̃ :=
ne

2
lnσ2 + nUP

(

k − k̃

2

(

βv

σ2
2

−
(√
βv + (1− α)

√
βe
)2

σ2
− lnσ2

2

P

)

+
k̃

2P
ln
σ2
3

σ2
− η − k

2σ2
− k̃(1 − α)2βe

2σ2
3

)

+ ln e−γ̃(e)

J̃e (30g)

T :=
(ne − knU)(σ

2 − 1)

2σ2µ
+

(η + 1− k)
√
nUP

σ2µ

√
2Γ
(

nU+1
2

)

Γ
(

nU

2

) +
kτ

µ

√
2Γ
(

nU+1
2

)

Γ
(

nU

2

) +
knU(σ

2 − σ2
2)

2σ2σ2
2µ

+ (Le − 1)e−γ(e)

(30h)

ν :=
k̃

µ̃

(√
2Γ
(

nU+1
2

)

Γ
(

nU

2

)

(

τ − (1− α)
√
nUβeP

σ2
3

)

+ nU

(

σ2 − σ2
2

2σ2σ2
2

− σ2
3 − 1

2σ2
3

)

)

+ (Le − 1)

(

µ

µ̃
e−γ̃(e)

+ e−γ̃(e)

)

(30i)
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V. NUMERICAL ANALYSIS

In Figure 2, we numerically compare the bounds in The-

orem 1 with the time-sharing scheme where URLLC trans-

missions puncture the eMBB transmission upon arrival. In

this figure, we set the maximum error probability of URLLC

transmission to be equal to 10−5. For each value of ρ ∈
{0.2, 0.4, 0.6, 0.8, 1}, we then optimize the parameters α, βe
and βU to minimize the eMBB error probability under both

TIN and SIC approaches. As can be seem from this figure, our

schemes outperform the time-sharing scheme specifically for

large values of ρ, i.e., in regions with dense URLLC arrivals.

In Figure 3, we numerically compare the bounds in Theo-

rem 1 for ρ = 0.2 and ρ = 0.8. In this plot, nU = 20 · b and

ne = 3nU and the value of b varies from 10 to 2 with step size 2.

The values of α, βe and βU are optimized to minimize ǫ
(e)
TIN and

ǫ
(e)
SIC for a given maximum ǫ

(U)
b . As can be seen from this figure,

when ρ is high, the TIN scheme outperforms the SIC and the

time-sharing schemes. For low values of ρ, however, the SIC

scheme outperforms the other two schemes. The reason is that

for high values of ρ, more subtracted URLLC interference will

be wrong which introduces error in the eMBB decoding under

the SIC scheme.

VI. PROOF OF THEOREM 1

A. Bounding ǫ
(U)
b

Recall the definition of the sets Barrival, Bsent and Bdetect from

(11), (18) and (25), respectively. Given that URLLC message

M
(U)
b arrives at the beginning of Block b, i.e., b ∈ Barrival, we

have the following error events:

EU,1 := {b /∈ Bsent} (36)

EU,2 := {b /∈ Bdetect} (37)

EU,3 :=
{(

M̂
(U)
b , ĵ

)

6=
(

M
(U)
b , j

)}

. (38)

Given that no URLLC message is sent over Block b, i.e., b /∈
Bsent, we have the following error event:

EU,4 := {b ∈ Bdetect}. (39)

The error probability of decoding URLLC message M
(U)
b of

Block b thus is bounded by

ǫ
(U)
b ≤ P[b ∈ Barrival]P[EU,1|b ∈ Barrival]

+P[b ∈ Barrival]P[EU,2|Ec
U,1, b ∈ Barrival]

+P[b ∈ Barrival]P[EU,3|Ec
U,2, Ec

U,1, b ∈ Barrival]

+P[b /∈ Barrival]P[EU,4|b /∈ Barrival]. (40)

1) Analyzing P[EU,1|b ∈ Barrival]: From (15) we notice that
(

V b − αX
(e,2)
b

)

∈ Db if and only if

nUβUP− δb ≤ ||V b − αX
(e,2)
b ||2 ≤ nUβUP. (41)

Recall that ||V k||2 = nUβvP almost surely.

Lemma 1: We can prove that

P[(V b − αX
(e,2)
b ) ∈ Db] = ζ (42)

where ζ is defined in (30c).

Proof: see Appendix A.

Since the Lv codewords are generated independently:

P[EU,1|b ∈ Barrival] = (1− ζ)
Lv . (43)

To analyze the remaining error events, we employ the fol-

lowing lemma.

Lemma 2: For any γ(U) > 0:

P[i
(U)
b (V b(m, j);Y b) ≤ γ(U)]

≤ 1−G
(nU

2
, λ(µU)

)

+G
(nU

2
, λ̃(µU)

)

, (44)

where G(·, ·) is the regularized gamma function and λ(·) and

λ̃(·) are defined in (31) and µU is defined in (30).

Proof: See Appendix B.



2) Analyzing P[EU,2|Ec
U,1, b ∈ Barrival]: This error event is

equivalent to the probability that for all j ∈ [Lv] and for all m ∈
[LU] there is no codeword Vb(m, i) such that i(V b(m, i);Y b) >
γ(U). Therefore,

P[EU,2|Ec
U,1, b ∈ Barrival]

=
(

P

[

i(V b(m, j);Y b) ≤ γ(U)
])LvLU

(45)

≤
(

1−G
(nU

2
, λ(µU)

)

+G
(nU

2
, λ̃(µU)

))LvLU

(46)

where the last inequality holds by Lemma 2.

3) Analyzing P[EU,3|Ec
U,2, Ec

U,1, b ∈ Barrival]: To evaluate this

probability, we use the threshold bound for maximum-metric

decoding. For any given threshold γ(U):

P[EU,3|Ec
U,2, Ec

U,1, b ∈ Barrival] (47)

≤ P[i(V b(M
(U)
b , j);Y b) ≤ γ(U)]

+(LvLU − 1)P[i(V̄ b(m
′, j′);Y b) > γU]

where m′ ∈ {1, . . . , LU}, j′ ∈ {1, . . . , Lv}, (M
(U)
b , j) 6=

(m′, j′), V̄ b ∼ fV b
and is independent of (V b,Y b).

Lemma 3: For any γ(U) > 0:

P[i(V̄ b;Y b) > γ(U)] ≤ e−γ(U)

. (48)

Proof: See Appendix C.

By Lemmas 2 and 3, we have

P[EU,3|Ec
U,2, Ec

U,1, b ∈ Barrival] (49)

≤ 1−G
(nU

2
, λ(µU)

)

+G
(nU

2
, λ̃(µU)

)

+ (LvLU − 1)e−γ(U)

.

4) Analyzing P[EU,4|b /∈ Barrival]: This error event is equiv-

alent to the probability that given no URLLC is arrived, there

exists at least one codeword Vb(m, i) with m ∈ [LU] and

j ∈ [Lv] such that i(V b(m, j);Y b) > γ(U). Therefore,

P[EU,4|b /∈ Barrival]

= 1−
(

P

[

i(V b(m, j);Y b) ≤ γ(U)
])LvLU

(50)

≤ 1−
(

1− e−γ(U)
)LvLU

. (51)

where the last inequality follows by Lemma 3.

By combining (43), (49), (46) and (51) we prove bound (32).

B. Bounding ǫ
(e)
TIN

Define

ρU := P[b ∈ Bsent], (52a)

ρdet,0 := P[b ∈ Bdetect|b ∈ Bsent], (52b)

ρdet,1 := P[b ∈ Bdetect|b /∈ Bsent]. (52c)

Lemma 4: We prove that

ρU = ρ
(

1− (1− ζ)Lv
)

, ρdet,1 ≤ q1, q2 ≤ ρdet,0 ≤ q3,

(53)

where q1, q2 and q3 are defined in (35) and ζ in (30c).

Proof: See Appendix D.

Given Bdetect = Bdt, we have the following two error events:

ETIN,1 = {Bdetect 6= Bsent} (54)

ETIN,2 = {M̂ (e) 6=M (e)}. (55)

The eMBB decoding error probability under the TIN ap-

proach thus is bounded by

ǫTIN
e ≤

∑

Bdt

P[Bdetect = Bdt] (56)

·
(

P[ETIN,1|Bdetect = Bdt] + P[ETIN,2|Bdetect = Bdt, Ec
TIN,1]

)

.

1) Analyzing P[Bdetect = Bdt]: Define

ρdet := P[b ∈ Bdetect, b ∈ Bsent] + P[b ∈ Bdetect, b /∈ Bsent] (57)

= ρUρdet,0 + (1 − ρU)ρdet,1, (58)

where ρU, ρdet,0 and ρdet,1 are defined in (52). By Lemma 4:

ρU · q2 ≤ ρdet ≤ ρU · q3 + (1− ρU) · q1, (59)

and thus by the independence of the blocks:

P[Bdetect = Bdt] (60)

= ρ
|Bdt|
det (1− ρdet)

η−|Bdt| (61)

≤ (ρU · q3 + (1 − ρU) · q1)|Bdt|(1− ρU · q2)η−|Bdt| (62)

2) Analyzing P[ETIN,1|Bdetect = Bdt]: Notice that the values

of ρU, ρdet,0 and ρdet,1 stay the same for all blocks in [η]. Thus

P[Bdetect 6= Bsent|Bdetect = Bdt] (63)

= 1− P[Bsent = Bdt|Bdetect = Bdt] (64)

= 1− P[Bsent = Bdt,Bdetect = Bdt]

P[Bdetect = Bdt]
(65)

= 1− P[Bsent = Bdt]P[Bdetect = Bdt|Bsent = Bdt]

ρ
|Bdt|
det (1− ρdet)η−|Bdt|

(66)

= 1−
ρ
|Bdt|
U

(1 − ρU)
η−|Bdt|ρ|Bdt|

det,0(1− ρdet,1)
η−|Bdt|

ρ
|Bdt|
det (1− ρdet)η−|Bdt|

(67)

≤ 1− ρ
|Bdt|
U

(1 − ρU)
η−|Bdt|q|Bdt|

2 (1− q1)
η−|Bdt|

(ρU · q3 + (1− ρU) · q1)|Bdt|(1− ρU · q2)η−|Bdt|

(68)

where ρU, q1, q2 and q3 are defined in (35). The inequality in

(68) follows by Lemma 4.

3) Analyzing P[ETIN,2|Bdetect = Bdt, Ec
TIN,1]: To bound

P[M̂ (e) 6= M (e)|Bdetect = Bdt, Ec
TIN,1], we use the threshold

bound for maximum-metric decoding. For any given threshold

γ(e):

P[M̂ (e) 6=M (e)|Bdetect = Bdt, Ec
TIN,1]

≤ P

[

i
(e)
TIN

(

{X(e,1)
b }b/∈Bdt

, {X(e,2)
b }b∈Bdt

;Y ne |Bdt

)

< γ(e)
]

+ P

[

i
(e)
TIN

(

{X̄(e,1)
b }b/∈Bdt

, {X̄(e,2)
b }b∈Bdt

;Y ne |Bdt

)

≥ γ(e)
]

·(Le − 1) (69)



where for each b, X̄
(e,1)
b ∼ f

X
(e,1)
b

and X̄
(e,2)
b ∼ f

X
(e,2)
b

and

are independent of (X
(e,1)
b ,X

(e,2)
b ,Y b). We use the following

two lemmas to bound the above two probability terms.

Lemma 5: For any γ(e) > 0:

P

[

i
(e)
TIN

(

{X(e,1)
b }b/∈Bdt

, {X(e,2)
b }b∈Bdt

;Y ne |Bdt

)

< γ(e)
]

≤ T − (Lv − 1)e−γ(e)

(70)

where T is defined in (30h).

Proof: See Appendix E.

Lemma 6: For any γ(e) > 0:

P

[

i
(e)
TIN

(

{X̄(e,1)
b }b/∈Bdt

, {X̄(e,2)
b }b∈Bdt

; {Y b}η+1
b=1 |Bdt

)

≥ γ(e)
]

≤ e−γ(e)

. (71)

Proof: The proof is similar to the proof of Lemma 3 and

omitted.

Combining Lemmas 5 and 6 with (69) and defining k := |Bdt|
proves the bound in (33).

C. Bounding ǫ
(e)
SIC

Recall the definition of the sets Barrival, Bsent, Bdetect and

Bdecode from (11), (18), (25), and (28), respectively. Let Bdt

be a realization of the set Bdetect, and Bdc be a realization of

the set Bdecode. We have the following two error events:

ESIC,1 = {Bdetect 6= Bsent} (72)

ESIC,2 = {M̂ (e) 6=M (e)} (73)

The eMBB decoding error probability under the SIC approach

thus is given by

ǫSIC
e

≤
∑

Bdt

P[Bdetect = Bdt]

(

P[ESIC,1|Bdetect = Bdt]

+
∑

Bdc

P[Bdecode = Bdc|Ec
SIC,1,Bdetect = Bdt]

·P[ESIC,2|Bdetect = Bdt,Bdecode = Bdc, Ec
SIC,1]

)

. (74)

1) Analyzing P[Bdecode = Bdc|Ec
SIC,1,Bdetect = Bdt]: For any

subset Bc ⊆ Bd we have:

P[Bdecode = Bdc|Bdetect = Bsent = Bdt] (75)

=
∏

b∈Bdc

P[M̂
(U)
b =M

(U)
b |Bdetect = Bsent = Bdt]

·
∏

b∈Bdt\Bdc

(

1− P[M̂
(U)
b =M

(U)
b |Bdetect = Bsent = Bdt]

)

(76)

≤ q|Bdc|(1− q)|Bdt|−|Bdc| (77)

where q is defined in (35). Inequality (77) holds by (49) and

by the independence of the blocks.

2) Analyzing P[ESIC,2|Bdetect = Bdt,Bdecode = Bdc, Ec
SIC,1]:

To bound this probability, we use the threshold bound for

maximum-metric decoding. For any given threshold γ̃(e):

P[M̂ (e) 6=M (e)|Bdetect = Bdt,Bdecode = Bdc, Ec
SIC,1] (78)

≤ P

[

i
(e)
SIC({X

(e,1)
b }b/∈Bdt

, {X(e,2)
b }b∈Bdt

;

Y ne |Bdt, Bdc, {V b}b∈Bdc
) < γ̃(e)

]

+(Le − 1)P
[

i
(e)
SIC({X̄

(e)
b,1}b/∈Bdt

, {X̄(e)
b,2}b∈Bdt

;

Y
ne

b |Bdt, Bdc, {V b}b∈Bdc
) ≥ γ̃(e)

]

(79)

where for each b, X̄
(e,1)
b ∼ f

X
(e,1)
b

and X̄
(e,2)
b ∼ f

X
(e,2)
b

and

are independent of (X
(e,1)
b ,X

(e,2)
b ,Y ne). We use the following

two lemmas to bound the above two probability terms.

Lemma 7: Given γ̃(e), we prove that

P

[

i
(e)
SIC({X

(e,1)
b }b/∈Bdt

, {X(e,2)
b }b∈Bdt

; {Y b}η+1
b=1

|Bdt, {V b}b∈Bdt
) < γ̃(e)

]

≤ µT

µ̃
− ν (80)

where T , ν, µ and µ̃ are defined in (30).

Proof: See Appendix F.

Lemma 8: We can prove that

P

[

i
(e)
SIC({X̄

(e)
b,1}b/∈Bdt

, {X̄(e)
b,2}b∈Bdt

;

{Y b}η+1
b=1 |Bdt, {V b}b∈Bdt

) ≥ γ̃(e)
]

≤ e−γ̃(e)

. (81)

Proof: The proof is based on the argument provided in the

proof of Lemma 3.

Combining Lemmas 7 and 8 with (77) and defining k̃ = |Bdc|
proves the bound in (34).

VII. CONCLUSIONS

We considered a point-to-point scenario where a roadside

unite (RSU) wishes to simultaneously send eMBB and URLLC

messages to a vehicle. During each eMBB transmission interval,

random arrivals of URLLC messages are assumed. To improve

the reliability of the URLLC transmissions, we proposed a

coding scheme that mitigates the interference of eMBB trans-

mission by means of dirty paper coding (DPC). We derived

rigorous upper bounds on the error probabilities of eMBB and

URLLC transmissions achieved by our scheme. Our numerical

analysis shows that the proposed scheme significantly improves

over the standard time-sharing.
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APPENDIX A

PROOF OF LEMMA 1

By (41) and since X
(e,2)
b and V b are drawn uni-

formly on the nU-dimensional spheres of radii
√
nUβeP and

√

nU(βU + α2βe)P, the error event Eb,v holds whenever the

following condition is violated:

αβenUP ≤ 〈V b,X
(e,2)
b 〉 ≤ αβenUP+

δb
2α
. (82)

The distribution of 〈V b,X
(e,2)
b 〉 depends on V b only through

its magnitude, because X
(e,2)
b is uniform over a sphere and

applying an orthogonal transformation to V b and X
(e,2)
b does

neither change the inner product of the two vectors nor the

distribution of X
(e,2)
b . In the following we therefore assume

that V b = (||V b||, 0, . . . , 0), in which case (82) is equivalent

to:

αβenUP√
βvnUP

≤ X
(e)
b,2,1 ≤

αβenUP√
βvnUP

+
δb

2α
√
βvnUP

(83)

where X
(e)
b,2,1 is the first entry of the vector X

(e,2)
b .

The distribution of a given symbol in a length-nU random

sequence distributed uniformly on the sphere is [15]

f
X

(e)
b,2,1

(

x
(e)
b,2,1

)

=
1√

πnUβeP

Γ(nU

2 )

Γ(nU−1
2 )

(

1−
(x

(e)
b,2,1)

2

nUβeP

)

n
U
−3

2

×1{(x(e)b,2,1)
2 ≤ nUβeP}. (84)

Thus,

P

[

V b − αX
(e,2)
b ∈ Dk

]

=

∫

αβenU
P√

βvnU
P
+

δb

2α
√

βvnU
P

αβenU
P√

βvnU
P

f
X

(e)
b,2,1

(

x
(e)
b,2,1

)

dx
(e)
b,2,1 (85)

=
1√
π

Γ(nU

2 )

Γ(nU−1
2 )

κn
U
−3

2

(

2α2nUPβe + δb

2αnUP
√
βvβe

)

− 1√
π

Γ(nU

2 )

Γ(nU−1
2 )

κn
U
−3

2

(

α

√

βe
βv

)

, (86)

where

κn(x) =
x(1− x2)n

2n+ 1
+

2n

2n+ 1
κn−1(x) (87)

with κ0(x) = x. This concludes the proof.

APPENDIX B

PROOF OF LEMMA 2

Note that Y b and Y b|V b do not follow a Gaussian distribu-

tion. Define

QY b
(yb) = N (yk,1;0, InU

σ2) (88)

QY b|V b
(yb|vb) = N (yh;hV b, InU

σ2
3) (89)

with σ2 = h2P+ 1 and σ2
3 = h2(1− α)2βeP+ 1.

Introduce

ĩ
(U)
b (vb;yb) := ln

QY b|V b
(yb|vb)

QY b
(yb)

. (90)

Lemma 9: We can prove that

i
(U)
b (vb;yb) ≥ ĩ

(U)
b (vb;yb) + ln JU, (91)

where

JU :=
π
√
βvβe2

n
U
+1

2 e−
h2(1−α)2βePnU

2

9h2(1 − α)(βv + (1 − α)2βe)
(92)

Proof: By [16, Propsition 2]:

fY b
(yb)

QY b
(yb)

≤ 9((1− α)h)nU

2π
√
2

βvP+ (1− α)2βeP

(1 − α)P
√
βvβe

. (93)

By [17, Lemma 5]:

fY b|V b
(yb|vb)

QY b|V b
(yb|vb)

≥ 2
n
U
−2

2 (h(1− α))
nU−2

e−
h2(1−α)2βePnU

2 (94)

Combining the two bounds concludes the proof.

As a result, we have

P[i
(U)
b (V b;Y b) ≤ γ(U)] (95)

≤ P[̃i(V b;Y b) ≤ γ(U) − ln JU] (96)

= P

[

ln
QY b|V b

(Y b|V b)

QY b
(Y b)

≤ γ(U) − ln JU

]

(97)

= P

[

ln

1

(
√

2σ2
3π)

n
U

exp
(

− ||Y b−hV b||2
2σ2

3

)

1

(
√
2πσ2)nU

exp
(

− ||Y b||2
2σ2

) ≤ γ(U) − ln JU

]

(98)

= P

[

nU

2
ln
σ2

σ2
3

+
||Y b||2
2σ2

− ||Y b − hV b||2
2σ2

3

≤ γ(U) − ln JU

]

(99)

= P

[

h2

2σ2
||X(U)

b ||2 + h2

2

(

1

σ2
− (1− α)2

σ2
3

)

||X(e,2)
b ||2

+
h2

2

(

1

σ2
− 1

σ2
3

)

||Zb||2 +
h

σ2
〈X(U)

b ,X
(e,2)
b 〉

+
h

σ2
〈X(U)

b ,Zb〉+
(

h

σ2
+
h(1− α)

σ2
3

)

〈X(e,2)
b ,Zb〉

≤ γ(U) − ln JU − nU

2
ln
σ2

σ2
3

]

(100)

≤ P

[

h2(nUβUP− δb)

2σ2
+
h2nUβeP

2

(

1

σ2
− (1 − α)2

σ2
3

)

+
h2

2

(

1

σ2
− 1

σ2
3

)

||Zb||2 −
hnUP

√
βUβe

σ2

−h
√

nUP

(√
βU
σ2

+

√
βe
σ2

+

√
βe(1 − α)

σ2
3

)

||Zb||

≤ γ(U) − ln JU − nU

2
ln
σ2

σ2
3

]

(101)

= P
[

||Zb||2 + u||Zb|| ≥ µU

]

(102)

= P

[

(

||Zb||+
u

2

)2

≥ µU +
u2

4

]

(103)

= 1− F

(
√

µU +
u2

4
− u

2

)

+ F

(

−
√

µU +
u2

4
− u

2

)

(104)



where

µU :=
2σ2σ2

3

h2(σ2 − σ2
3)

(

nU

2
ln
σ2

σ2
3

− γ(U) + ln JU

)

+
σ2
3

σ2 − σ2
3

(

nUP(
√

βU −
√

βe)
2 − δb

)

−σ
2nUβeP(1 − α)2

σ2 − σ2
3

u :=
2
√
nUP

(

σ2
3(
√
βU +

√
βe) + σ2

√
βe(1− α)

)

h(σ2 − σ2
3)

Notice that in (104) we use the fact that ||Zb|| follows a chi-

distribution with degree nU and F (·) represents its CDF.
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By Bayes’ rule we have

fV b
(v̄b) =

fY b
(yb)fV b|Y b

(v̄b|yb)

fY b|V b
(yb|v̄b)

(106)

= fV b|Y b
(v̄b|yb) exp (−i(v̄b,yb)) . (107)

By multiplying both sides of the above equation by

1{i(v̄b,yb) > γ} and integrating over all v̄b, we have
∫

v̄b

1{i(v̄b,yb) > γ}fV b
(v̄b)dv̄b =

∫

v̄b

1{i(v̄b,yb) > γ}e−i(v̄b,yb)fV b|Y b
(v̄b|yb)dv̄b. (108)

Note that the left-hand side of (108) is equivalent to

P[i(v̄b,yb) > γ|Y b = yb]. Thus

P[i(v̄b,yb) > γ|Y b = yb] (109)

=

∫

v̄b

1{i(v̄b,yb) > γ}

× exp (−i(v̄b,yb)) fV b|Y b
(v̄b|yb)dv̄b (110)

=

∫

v̄b

1

{

fY b|V b
(yb|v̄b)

fY b
(yb)

e−γ > 1

}

× exp (−i(v̄b,yb)) fV b|Y b
(v̄b|yb)dv̄b (111)

≤
∫

v̄b

fY b|V b
(yb|v̄b)

fY b
(yb)

e−γ

× exp (−i(v̄b,yb)) fV b|Y b
(v̄b|yb)dv̄b (112)

=

∫

v̄b

e−γfV b|Y b
(v̄b|yb)dv̄b (113)

= e−γ . (114)
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We start by analyzing the quantities in ρU, ρdet,0 and ρdet,1

defined in (52a), (52b) and (52c).

1) Analyzing ρU:

ρU = ρ · P[∃ j ∈ [Lv] s.t. X
(U)
b (V b(M

(U)
b , j)) ∈ Db] (115)

= ρ(1− (1 − ζ)Lv ) (116)

where the last equality is by (43).

2) Bounding ρdet,0:

ρdet,0

= P[b ∈ Bdetect|b ∈ Bsent] (117)

= 1− P[∀m, ∀j : i(U)b (V b(m, j);Y b) ≤ γ(U)|b ∈ Bsent] (118)

≥ 1−
(

1−G
(nU

2
, λ(µU)

)

+G
(nU

2
, λ̃(µU)

))LvLU

(119)

where (119) is by (46).

Lemma 10: For any γ(U) > 0:

P[i
(U)
b (V b(m, j);Y b) ≤ γ(U)]

≥ 1−G
(nU

2
, λ̃(µ̃U)

)

+G
(nU

2
, λ(µ̃U)

)

(120)

where G(·, ·) is the regularized gamma function, λ(·) and λ̃(·)
are defined in (31) and µ̃U is defined in (30).

Proof: The proof is similar to the proof of Lemma 2. We

present a sketch of the proof.

We start by upper bounding

i
(U)
b (vb;yb) ≤ ĩ

(U)
b (vb;yb) + ln J̃U, (121)

where by [16, Propsition 2] and [17, Lemma 6] we can prove

that

J̃U :=
27

√
π(1 + h2(1− α)2βeP)e

nUh
2
P(βv+(1−α)2βe)

2(h2(1 − α))nU−2
√

8(1 + 2h2(1− α)2βeP
. (122)

Thus

P[i
(U)
b (V b;Y b) ≤ γ(U)] (123)

≥ P[̃i(V b;Y b) ≤ γ(U) − ln J̃U] (124)

= P
[

||Zb||2 − u||Zb|| ≥ µ̃U

]

(125)

= P

[

(

||Zb|| −
u

2

)2

≥ µ̃U +
u2

4

]

(126)

= 1− F

(
√

µ̃U +
u2

4
+
u

2

)

+ F

(

−
√

µU +
u2

4
+
u

2

)

(127)

where

µ̃U :=
2σ2σ2

3

h2(σ2 − σ2
3)

(

nU

2
ln
σ2

σ2
3

− γ(U) + ln J̃U

)

+
σ2
3

σ2 − σ2
3

(

nUP(
√

βU +
√

βe)
2
)

−σ
2nUβeP(1 − α)2

σ2 − σ2
3

(128)

By Lemma 10:

ρdet,0 ≤ 1−
(

1−G
(nU

2
, λ̃1

)

+G
(nU

2
, λ̃2

))LvLU

.(129)

3) Upper Bounding ρdet,1:

ρdet,1

= P[b ∈ Bdetect|b /∈ Bsent] (130)

= P[∃m ∈ [LU], j ∈ [Lv] : i
(U)
b (V b(m, j);Y b) ≥ γ(U)|b /∈ Bsent]

= 1− P[∀m, ∀j : i(U)b (V b(m, j);Y b) ≤ γ(U)|b ∈ Bsent] (131)

≤ 1−
(

1− e−γ(U)
)LvLU

(132)

where (132) is by (51).
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Notice that for each b ∈ [1 : η + 1], Y b and for b ∈
Bdt, Y b|X(e,2)

b do not follow a Gaussian distribution. Define

QY b
(yb) as in (88) and

Q
Y b|X(e,2)

b

(yb|x(e,2)
b ) = N (yb;h(1− α)X

(e,2)
b , InU

σ2
2) (133)

with σ2
2 = h2βvP+ 1.

Introduce

ĩ
(e)
TIN

(

{x(e,1)
b }b/∈Bdt

, {x(e,2)
b }b∈Bdt

; {yb}η+1
b=1 |Bdt

)

:= ln
∏

b/∈Bdt

f
Y b|X(e,1)

b

(yb|x(e,1)
b )

QY b
(yb)

+ ln
∏

b∈Bdt

Q
Y b|X(e,2)

b

(yb|x(e,2)
b )

QY b
(yb)

(134)

Lemma 11: We can prove that

i
(e)
TIN

(

{x(e,1)
b }b/∈Bdt

, {x(e,2)
b }b∈Bdt

; {yb}η+1
b=1 |Bdt

)

≥ ĩ
(e)
TIN

(

{x(e,1)
b }b/∈Bdt

, {x(e,2)
b }b∈Bdt

; {yb}η+1
b=1 |Bdt

)

+ ln Je, (135)

where

Je :=





π2
n
U
+1

2 e
−h2βvPnU

2

√
βvβe

9h2(1 − α)nU−1(βv + (1− α)2βe)





k

·
(

√

8(1 + 2h2P)

27
√
π(1 + h2P)

)η−k

(136)

Proof: similar to the proof of Lemma 9 and by [16,

Proposition 2], for b /∈ Bdt:

fY b
(yb)

QY b
(yb)

≤ 27
√
π(1 + h2P)

√

8(1 + 2h2P)
. (137)

As a result, we have

P

[

i
(e)
TIN

(

{X(e,1)
b }b/∈Bdt

, {X(e,2)
b }b∈Bdt

;Y ne |Bdt

)

< γ(e)
]

≤ P

[

ĩ
(e)
TIN

(

{X(e,1)
b }b/∈Bdt

, {X(e,2)
b }b∈Bdt

;Y ne |Bdt

)

< γ(e) − ln Je

]

= P

[

ln
∏

b/∈Bdt

f
Y b|X(e,1)

b

(yb|x(e,1)
b )

QY b
(yb)

+ ln
∏

b∈Bdt

Q
Y b|X(e,2)

b

(yb|x(e,2)
b )

QY b
(yb)

< γ(e) − ln Je

]

= P

[

ln
∏

b/∈Bdt\η+1

1
(
√
2π)nU

e−
||Zb||

2

2

1

(
√
2πσ2)nU

e−
||X

(e,1)
b

+Zb||
2

2σ2

+ ln
∏

b∈Bdt

1

(
√

2πσ2
2)

n
U

e
− ||V b+Zb||

2

2σ2
2

1

(
√
2πσ2)nU

e−
||X

(U)
b

+X
(e,2)
b

+Zb||
2

2σ2

+ ln

1
(
√
2π)ne−ηn

U
e−

||Zη+1||2

2

1

(
√
2πσ2)ne−ηn

U
e−

||X
(e)
η+1,1

+Zη+1||2

2σ2

< γ(e) − ln Je

]

= P

[

1

2

∑

b/∈Bdt

||Zb||2 −
1

2σ2
||X(e,1)

b +Zb||2

+
∑

b∈Bdt

||V b +Zb||2
2σ2

2

− ||V b + (1− α)X
(e,2)
b +Zb||2

2σ2

> −γ(e) + ln Je +
ne

2
lnσ2 − nUk

2
lnσ2

2

]

(138)

≤ P

[

σ2 − 1

2σ2

∑

b/∈Bdt

||Zb||2 +
√
nUP

σ2

∑

b/∈Bdt

||Zb||

+τ
∑

b∈Bdt

||Zb||+
σ2 − σ2

2

2σ2σ2
2

∑

b∈Bdt

||Zb||2 > µ

]

(139)

(a)
= P

[

σ2 − 1

2σ2
Z̃1 +

√
nUP

σ2

∑

b/∈Bdt

||Zb||

+τ
∑

b∈Bdt

||Zb||+
σ2 − σ2

2

2σ2σ2
2

Z̃2 > µ

]

(140)

(b)

≤
E

[

σ2−1
2σ2 Z̃1 +

√
nUP

σ2

∑

b/∈Bdt
||Zb||

]

µ

+
E

[

τ
∑

b∈Bdt
||Zb||+ σ2−σ2

2

2σ2σ2
2
Z̃2

]

µ
(141)

=
(ne − knU)(σ

2 − 1)

2σ2µ
+

(η + 1− k)
√
nUP

σ2µ

√
2Γ
(

nU+1
2

)

Γ
(

nU

2

)

+
kτ

µ

√
2Γ
(

nU+1
2

)

Γ
(

nU

2

) +
knU(σ

2 − σ2
2)

2σ2σ2
2µ

(142)

where

τ :=

√
nUP

(√
βv(σ

2 + σ2
2) + (1− α)

√
βeσ

2
2

)

σ2σ2
2

µ := −γ(e) + ln Je +
ne

2
lnσ2 − knU

2
lnσ2

2 −
η + 1− k

2σ2
nUP

+
k

2σ2
2

βvnUP− k

2σ2

(

√

βv + (1 − α)
√

βe

)2

nUP

In step (a), we define

Z̃1 :=
∑

b/∈Bdt

||Zb||2 ∼ X 2(ne − knU) (143)

Z̃2 :=
∑

b∈Bdt

||Zb||2 ∼ X 2(knU) (144)

where X 2(n) represents chi-squared distribution of degree n.

In step (b), we use the following Markov’s inequality:

P[X > a] ≤ E[X ]

a
. (145)

In step (c):

E[Z̃1] = ne − knU, (146)



E[Z̃2] = knU, (147)

E[||Zb||] =
√
2Γ
(

nU+1
2

)

Γ
(

nU

2

) . (148)

APPENDIX F

PROOF OF LEMMA 7

Define QY b
(yb) as in (88), QY b|V b

(yb|vb) as in (89) and

Q
Y b|X(e,2)

b

(yb|x(e,2)
b ) as in (133).

Introduce

ĩ
(e)
SIC

(

{x(e,1)
b }b/∈Bdt

, {x(e,2)
b }b∈Bdt

;yne |Bdt, Bdc, {V b}b∈Bdc

)

:= ln
∏

b/∈Bdt

f
Y b|X(e,1)

b

(yb|x(e,1)
b )

QY b
(yb)

+ ln
∏

b∈Bdt\Bdc

Q
Y b|X(e,2)

b

(yb|x(e,2)
b )

QY b
(yb)

+ ln
∏

b∈Bdc

f
Y b|X(e,2)

b
,V b

(yb|x(e,2)
b ,vb)

QY b|V b
(yb|vb)

(149)

Lemma 12: We can prove that

i
(e)
SIC

(

{x(e,1)
b }b/∈Bdt

, {x(e,2)
b }b∈Bdt

;yne |Bdt, Bdc, {vb}b∈Bdc

)

≥ ĩ
(e)
SIC

(

{x(e,1)
b }b/∈Bdt

, {x(e,2)
b }b∈Bdt

;yne |Bdt, Bdc, {vb}b∈Bdc

)

+ ln J̃e, (150)

where

J̃e :=





π2
n
U
+1

2 e
−h2βvPnU

2

√
βvβe

9h2(1− α)nU−1(βv + (1− α)2βe)





k−k̃

·
(

√

8(1 + 2h2P)

27
√
π(1 + h2P)

)η−k

·
(

√

8(1 + 2h2(1− α)2βeP)

27
√
π(1 + h2(1 − α)2βeP)

)k̃

(151)

Proof: similar to the proof of Lemmas 9 and 11.

As a result, we have

P

[

i
(e)
SIC

(

{X(e,1)
b }b/∈Bdt

, {X(e,2)
b }b∈Bdt

;

Y ne |Bdt, Bdc, {V b}b∈Bdc

)

≤ γ̃(e)
]

(152)

≤ P

[

ĩ
(e)
SIC

(

{X(e,1)
b }b/∈Bdt

, {X(e,2)
b }b∈Bdt

;

Y
ne |Bdt, Bdc, {V b}b∈Bdc

)

< γ̃(e) − ln J̃e

]

(153)

= P

[

ln
∏

b/∈Bdt

f
Y b|X(e,1)

b

(yb|x(e,1)
b )

QY b
(yb)

+ ln
∏

b∈Bdt\Bdc

Q
Y b|X(e,2)

b

(yb|x(e,2)
b )

QY b
(yb)

+ ln
∏

b∈Bdc

f
Y b|X(e,2)

b
,V b

(yb|x(e,2)
b ,vb)

QY b|V b
(yb|yb)

< γ̃(e) − ln J̃e

]

(154)

= P

[

ln
∏

b/∈Bdt\η+1

1
(
√
2π)nU

e−
||Zb||

2

2

1

(
√
2πσ2)nU

e−
||X

(e,1)
b

+Zb||
2

2σ2

+ ln
∏

b∈Bdt\Bdc

1

(
√

2πσ2
2)

n
U

e
− ||V b+Zb||

2

2σ2
2

1

(
√
2πσ2)nU

e−
||X

(U)
b

+X
(e,2)
b

+Zb||
2

2σ2

+ ln
∏

b∈Bdc

1
(
√
2π)nU

e−
||Zb||

2

2

1

(
√

2πσ2
3)

n
U

e
− ||(1−α)X

(e,2)
b

+Zb||
2

2σ2
3

+ ln

1
(
√
2π)ne−ηn

U
e−

||Zη+1||2

2

1

(
√
2πσ2)ne−ηn

U
e−

||X
(e)
η+1,1

+Zη+1||2

2σ2

< γ̃(e) − ln J̃e

]

(155)

= P

[

1

2

∑

b/∈Bdt

||Zb||2 −
1

2σ2
||X(e,1)

b +Zb||2

+
∑

b∈Bdt\Bdc

(

||V b +Zb||2
2σ2

2

−||V b + (1 − α)X
(e,2)
b +Zb||2

2σ2

)

+
∑

b∈Bdc

||Zb||2
2

− ||(1− α)X
(e,2)
b +Zb||2

2σ2
3

> −γ̃(e) + ln J̃e +
ne − knU

2
lnσ2

+
(k − k̃)nU

2
ln
σ2

σ2
2

+
nUk̃

2
lnσ2

3

]

(156)

(a)

≤ P

[

σ2 − 1

2σ2

∑

b/∈Bdt

||Zb||2 +
√
nUP

σ2

∑

b/∈Bdt

||Zb||

+τ
∑

b∈Bdt\Bdc

||Zb||

+
σ2 − σ2

2

2σ2σ2
2

∑

b∈Bdt\Bdc

||Zb||2

+
(1− α)

√
nUβeP

σ2
3

∑

b∈Bdc

||Zb||

+
σ2
3 − 1

2σ2
3

∑

b∈Bdc

||Zb||2 > µ̃

]

(157)

≤
E

[

σ2−1
2σ2

∑

b/∈Bdt
||Zb||2 +

√
nUP

σ2

∑

b/∈Bdt
||Zb||

]

µ̃

+
τE
[

∑

b∈Bdt\Bdc
||Zb||

]

µ̃

+
E

[

σ2−σ2
2

2σ2σ2
2

∑

b∈Bdt\Bdc
||Zb||2

]

µ̃



+
E

[

(1−α)
√
nUβeP

σ2
3

∑

b∈Bdc
||Zb||

]

µ̃

+
E

[

σ2
3−1

2σ2
3

∑

b∈Bdc
||Zb||2

]

µ̃

=
(ne − knU)(σ

2 − 1)

2σ2µ̃
+

(η + 1− k)
√
nUP

σ2µ̃

√
2Γ
(

nU+1
2

)

Γ
(

nU

2

)

+
kτ

µ̃

√
2Γ
(

nU+1
2

)

Γ
(

nU

2

) +
knU(σ

2 − σ2
2)

2σ2σ2
2 µ̃

− k̃
µ̃

√
2Γ
(

nU+1
2

)

Γ
(

nU

2

)

(

τ − (1− α)
√
nUβeP

σ2
3

)

−nUk̃

µ̃

(

σ2 − σ2
2

2σ2σ2
2

− σ2
3 − 1

2σ2
3

)

(158)

where

µ̃ :=
ne − knU

2
lnσ2 +

(k − k̃)nU

2
ln
σ2

σ2
2

+
k̃nU

2
lnσ2

3

−η − k

2σ2
nUP+

k − k̃

2σ2
2

βvnUP− k̃(1− α)2nUPβe
2σ2

3

−k − k̃

2σ2

(

√

βv + (1− α)
√

βe

)2

nUP− γ̃(e) + ln J̃e.

This concludes the proof.
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