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Abstract—Guessing Random Additive Noise Decoding
(GRAND) is a family of hard- and soft-detection error
correction decoding algorithms that provide accurate decoding
of any moderate redundancy code of any length. Here we
establish a method through which any soft-input GRAND
algorithm can provide soft output in the form of an accurate
a posteriori estimate of the likelihood that a decoding is
correct or, in the case of list decoding, the likelihood that the
correct decoding is an element of the list. Implementing the
method adds negligible additional computation and memory
to the existing decoding process. The output permits tuning
the balance between undetected errors and block errors for
arbitrary moderate redundancy codes including CRCs.

Index Terms—GRAND, soft input, soft output

I. INTRODUCTION

For any channel coding scheme, it would be desirable if

error correction decoders could produce soft output in the form

of a confidence measure in the correctness of a decoded block.

Soft output could be used to to make control decisions such

as retransmission requests or to tag blocks as erasures for an

erasure-correcting code to rectify [1]. A common method for

establishing a binary measure of decoding confidence is to

append a Cyclic Redundancy Check (CRC) to a transmitted

message [2, 3] prior to error correction encoding that can

be used post-decoding to assess consistency. When the block

length is large, the addition of a CRC has a negligible effect on

the code’s rate. One of the goals of modern communications

standards, such as 3GPP 5G [4], however, is ultra-reliable low-

latency communication (URLLC), which requires the use of

short packets [5]. The addition of a CRC to short packets

has a significant effect on the code’s rate, and so alternative

solutions to evaluate decoding confidence are a topic of active

interest, e.g. [3].

In seminal work on error exponents, Forney [6] proposed

an approximate computation of the correctness probability of

a decoded block. Forney’s approach necessitates the use of

a list decoder, which significantly restricts its applicability,

and we shall show that the approach provides an inaccurate

estimate in channels with challenging noise conditions, which

is a primary region of interest as the output can be used to

trigger or suppress a retransmission request, but its potential

utility warranted further investigation, e.g. [7]. With the re-

cent introduction of CRC-Assisted Polar (CA-Polar) codes to

communications standards [4], Forney’s approximation has re-

ceived renewed interest [3] as one popular method of decoding

CA-Polar codes, CRC-Assisted Successive Cancellation List

(CA-SCL) decoding, generates a list of candidate codewords

as part of its execution, e.g. [8–11]. For convolution or trellis

codes, the Viterbi algorithm [12] can be modified to produce

soft output at the sequence level [13], which has been used in

coding schemes with multiple layers of decoding [14] and to

inform repeat transmission requests [15][13]. The method we

develop can be readily used with any moderate redundancy

code, can be evaluated without the need to list decode, and

the estimate remains accurate in noisy channel conditions.

GRAND is a recently developed family of code-agnostic

decoding algorithms that achieve maximum-likelihood de-

coding for hard detection [16–18] and soft detection [19–

23] channels. GRAND algorithms function by sequentially

inverting putative noise effects, ordered from most to least

likely according to channel properties and soft information,

from received signals. The first codeword yielded by inversion

of a noise effect is a maximum-likelihood decoding. Since this

procedure does not depend on codebook structure, GRAND

can decode any moderate redundancy code. Efficient hardware

implementations [24, 25] and syntheses [26–29] for both hard

and soft-detection settings have been translated into taped out

circuits that establish the flexibility and energy efficiency of

GRAND decoding strategies.

The soft output measure we develop for GRAND is an

extremely accurate estimate of the a posteriori probability that

a decoding is correct or, in the case of list decoding, the

probability that the correct codeword is in the list. We derive

these probabilities for uniform at random codebooks and

demonstrate empirically that the resulting formulae continue

to provide accurate soft output for structured codebooks. The

formulae can be used with any algorithm in the GRAND

family so long as soft input is available. Calculating the soft

output only requires knowledge of the code’s dimensions and

that the probability of each noise effect query be accumulated

during GRAND’s normal operation, so computation of the

measure does not increase the decoder’s algorithmic complex-

ity or memory requirements. In practical terms, the approach

provides accurate soft output for single- or list-decoding of any

moderate redundancy code of any length and any structure.

II. BACKGROUND

We first define notation used in the rest of the paper. Let C
be a codebook containing 2k binary codewords each of length
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n bits. Let Xn : Ω → C be a codeword drawn uniformly

at random from the codebook and let Nn : Ω → {0, 1}n

denote the binary noise effect that the channel has on that

codeword during transmission; that is, Nn encodes the binary

difference between the demodulated received sequence and the

transmitted codeword, rather than the potentially continuous

channel noise. Then Y n = Xn ⊕ Nn is the demodulated

channel output, with ⊕ being the element-wise binary addition

operator. Let Rn : Ω → R
n denote soft channel output.

Lowercase letters represent realizations of random variables,

with the exception of zn, which is the realization of Nn.

All GRAND algorithms operate by progressing through

a series of noise effect guesses zn,1, zn,2, . . . ∈ {0, 1}n,

whose order is informed by channel statistics, e.g. [18], or

soft input, e.g. [21], until it finds one, zn,q, that satisfies

x̂n
q = yn ⊖ zn,q ∈ C, where ⊖ inverts the effect of the noise

on the channel output. If the guesses are in channel-dependent

decreasing order of likelihood, then zn,q is a maximum-

likelihood estimate of Nn and x̂n
q is a maximum-likelihood

estimate of the transmitted codeword Xn. Since this guessing

procedure does not depend on codebook structure, GRAND

can decode any moderate redundancy code as long as it has

a method for checking codebook membership. For a linear

block code with an (n− k)× n parity-check matrix H , x̂n
q is

a codeword if Hx̂n
q = 0n [1], where x̂n

q is taken to be a column

vector and 0n is the zero vector. To generate a decoding list

of size L, GRAND continues until L codewords are found

[22, 30].

Underlying GRAND is a race between two random vari-

ables, the number of guesses until the true codeword is

identified and the number of guesses until an incorrect code-

word is identified. Whichever of these processes finishes first

determines whether the decoding identified by GRAND is

correct. The guesswork function G : {0, 1}n → {1, . . . , 2n},

which depends on soft input in the soft detection setting, maps

a noise effect sequence to its position in GRAND’s guessing

order, so that G(zn,i) = i. Thus G(Nn) is a random variable

that encodes the number of guesses until the transmitted

codeword would be identified. If W(i) : Ω → {1, . . . , 2n − 1}
is the number of guesses until the i-th incorrect codeword

is identified, not accounting for the query that identifies the

correct codeword, then GRAND returns a correct decoding

whenever G(Nn) ≤ W(1) and a list of length L containing

the correct codeword whenever G(Nn) ≤ W(L). Analysis of

the race between these two processes leads to the derivation

of the soft output in this paper.

Forney’s work on error exponents [6] resulted in an ap-

proximation for probabilistic soft output. Given channel output

rn and a maximum-likelihood decoding output cn,∗ ∈ C, the

probability that the decoding is correct is

P (Xn = cn,∗|Rn = rn) =
P (Rn = rn|Xn = cn,∗)

∑

cn∈C P (Rn = rn|Xn = cn)
.

Based on this formula, Forney derived an optimal threshold

for determining whether a decoding should be marked as an

erasure. Computing the sum in the formula is infeasible for

codebooks of practical size, so Forney suggested that, given

the second most likely codeword, cn,∗∗ ∈ C, the correctness

probability be approximated by

P (Rn = rn|Xn = cn,∗)

P (Rn = rn|Xn = cn,∗) + P (Rn = rn|Xn = cn,∗∗)
, (1)

which is necessarily no smaller than 1/2. More generally,

given a decoding list L ⊆ C, the denominator can be replaced

by
∑

cn∈L P (Rn = rn|Xn = cn) resulting in an estimate

of the correctness probability that is no smaller than 1/|L|.
Having the codewords of highest likelihood in the decoding list

will give the most accurate approximation as their likelihoods

dominate the sum. One downside of this approach is that it

requires a list of codewords, which most decoders do not

provide. For this reason, a method has recently been proposed

to estimate the likelihood of the second-most likely codeword

given the first [31]. A variety of alternative schemes have also

been suggested for making erasure decisions, a summary of

which can be found in [32].

III. GRAND SOFT OUTPUT

Throughout this section, we shall assume that the codebook,

C, consists of 2k codewords drawn uniformly at random

from {0, 1}n, although the derivation generalises to higher-

order symbols. For GRAND algorithms we first derive exact

expressions, followed by readily computable approximations,

for the probability that the transmitted codeword is not in

a decoding list and, as a corollary, that a single-codeword

GRAND output is incorrect. In Section IV we demonstrate the

formulae provide excellent estimates for structured codebooks.

Theorem 1 (A posteriori likelihood of an incorrect GRAND

list decoding for a uniformly random codebook). Let G(Nn)
be the number of codebook queries until the noise effect

sequence Nn is identified. Let W1, . . . ,W2k−1 be selected

uniformly at random without replacement from {1, . . . , 2n−1}
and define their rank-ordered version W(1) < · · · < W(2k−1).

With the true noise effect not counted, W(i) corresponds to

the location in the guesswork order of the i-th erroneous

decoding in a codebook constructed uniformly-at-random.

Define the partial vectors W j

(i) = (W(i), . . . ,W(j)) for each

i ≤ j ∈ {1, . . . , 2k − 1}
Assume that a list of L ≥ 1 codebooks are identified by a

GRAND decoder at query numbers q1 < . . . < qL. Define the

associated partial vectors qji = (qi, . . . , qj) for each i ≤ j ∈
{1, . . . , 2k − 1}, and

q
L,{i}
1 = (q1, . . . , qi−1, qi+1 − 1, . . . , qL − 1), (2)

which is the vector qL1 but with the entry qi omitted and one

subtracted for all entries from qi+1 onwards. Define

P (A) = P (G(Nn) > qL)P (WL
(1) = qL1 ),

which is associated with the transmitted codeword not being

in the list, and, for each i ∈ {1, . . . , L− 1},

P (Bi) = P (G(Nn) = qi)P (WL−1
(1) = q

L,{i}
1 ),



which is associated with the transmitted codeword being the

i-th element of the list, and

P (BL) = P (G(Nn) = qL)P (WL−1
(1) = qL−1

1 ,W(L) ≥ qL),

which is associated with the transmitted codeword being the

final element of the list. Then the probability that the correct

decoding is not in the list is

P (A)

P (A) +
∑L

i=1 P (Bi)
. (3)

Proof. For q ∈ {1, . . . , 2n}, define W(i),q = W(i)+1{W(i)≥q},

so that any W(i) that is greater than or equal to q is incre-

mented by one. Note that W(i),G(Nn) encodes the locations of

erroneous codewords in the guesswork order of a randomly

constructed codebook given the value of G(Nn) and, in

particular, W(i),G(Nn) corresponds the number of queries until

the i-th incorrect codeword is found given G(Nn).
We identify the event that the decoding is not in the list as

A =
{

G(Nn) > qL,W
L
(1) = qL1

}

and the events where the decoding is the i-th element of the

list by

Bi =
{

W i−1
(1) = qi−1

1 , G(Nn) = qi,

WL−1
(i) + 1 = qLi+1,W(L) ≥ qL

}

where the final condition is automatically met for i =
{1, . . . , L− 1} but not for i = L. The conditional probability

that a GRAND decoding is not one of the elements in the list

given that L elements have been found is

P

(

A

∣

∣

∣

∣

∣

A
L
⋃

i=1

Bi

)

= P (A)

/

P

(

A
L
⋃

i=1

Bi

)

. (4)

As all of the A and Bi events are disjoint, to compute eq. (4)

it suffices to simplify P (A) and P (Bi) for i ∈ {1, . . . , L}
to evaluate the a posteriori likelihood that the transmitted

codeword is not in the list.

Consider the numerator,

P (A) = P (G(Nn) > qL,W
L
(1) = qL1 )

= P (G(Nn) > qL)P (WL
(1) = qL1 ),

where we have used the fact that G(Nn) is independent of

WL
(1) by construction. In considering the denominator, we need

only be concerned with the terms P (Bi) corresponding to a

correct codebook being identified at query qi, for which

P (Bi) =P (G(Nn) = qi,

W i−1
(1) = qi−1

1 ,WL−1
(i) + 1 = qLi+1,W(L) ≥ qL)

=P (G(Nn) = qi,W
L−1
(1) = q

L,{i}
1 ,W(L) ≥ qL)

=P (G(Nn) = qi)P (WL−1
(1) = q

L,{i}
1 ,W(L) ≥ qL),

where we have used the definition of q
L,{i}
1 in eq. (2) and the

independence. Thus the conditional probability that the correct

answer is not found in eq. (4) is given in eq. (3).

Specializing to a list size L = 1, the formula in eq. (3) for

the a posteriori likelihood that decoding is incorrect can be

expressed succinctly, as presented in the following corollary.

Corollary 1 (A posteriori likelihood of an incorrect GRAND

decoding for a uniformly random codebook). The conditional

probability that a GRAND decoding is incorrect given a

codeword is identified on the q-th query is

P (G(Nn) > q)P (W(1) = q)

P (G(Nn) = q)P (W(1) ≥ q) + P (G(Nn) > q)P (W(1) = q)
.

where W(1) is equal in distribution to the minimum of 2k − 1
numbers selected uniformly at random without replacement

from {1, . . . , 2n − 1}.

In order to compute the a posteriori probability of an

incorrect decoding in Theorem 1, we need to evaluate or

approximate: 1) P (G(Nn) = q) and P (G(Nn) ≤ q); and

2) P (WL
(1) = qL1 ) and P (WL−1

(1) = qL−1
1 ,W(L) ≥ qL).

During a GRAND algorithm’s execution, the precise evalu-

ation of 1) can be achieved by calculating the likelihood of

each noise effect query as it is made, P (G(Nn) = q) =
P (Nn = zn,q), and retaining a running sum, P (G(Nn) ≤
q) =

∑q

j=1 P (Nn = zn,j). For 2), geometric approximations

whose asymptotic precision can be verified using the approach

described in [16][Theorem 2] can be employed, resulting in

the following corollaries for list decoding and single-codeword

decoding, respectively.

Corollary 2 (Approximate a posteriori likelihood of an incor-

rect GRAND list decoding for a uniformly random codebook).

If each W(i) given W(i−1) is assumed to be geometrically

distributed with probability of success (2k−1)/(2n−1), eq. (3)

describing the a posteriori probability that list decoding does

not contain the transmitted codeword can be approximated as


1−

qL
∑

j=1

P (Nn = zn,j)





(

2k − 1

2n − 1

)

L
∑

i=1

P (Nn = zn,qi) +



1−

qL
∑

j=1

P (Nn = zn,j)





(

2k − 1

2n − 1

)

(5)

Proof. Define the geometric distribution’s probability of suc-

cess to be φ = (2k − 1)/(2n − 1). Under the assumptions of

the corollary, we have the formulae

P
(

WL
(1) = qL1

)

= (1− φ)
qL−L

φL,

for i ∈ {1, . . . , L− 1}

P
(

WL−1
(1) = q

L,{i}
1

)

= (1− φ)qL−L φL−1,

and

P
(

WL−1
(1) = qL−1

1 ,W(L) ≥ qL

)

= (1− φ)
qL−L

φL−1.

Using those expressions, simplifying eq. (3) gives eq. (5).



To a slightly higher precision, one can use the following

approximation, which accounts for eliminated queries and is

most succintly expressed for a single-codeword decoding.

Corollary 3 (Approximate a posteriori likelihood of an incor-

rect GRAND decoding for a uniformly random codebook). If

W(1) is assumed to be geometrically distributed with proba-

bility of success (2k − 1)/(2n − q) after q − 1 failed queries,

eq. (3) describing the a posteriori probability that a decoding

found after q1 queries is incorrect can be approximated as


1−

q1
∑

j=1

P (Nn = zn,j)





2k − 1

2n − q1

P (Nn = zn,q1) +



1−

q1
∑

j=1

P (Nn = zn,j)





2k − 1

2n − q1

. (6)

Proof. Under the conditions of the corollary,

P (W(1) = q1) =

q1−1
∏

i=1

(

1−
2k − 1

2n − i

)

2k − 1

2n − q1
,

from which eq. (3) simplifies to (6).

IV. PERFORMANCE EVALUATION

Accuracy of soft output. Armed with the approximate a

posteriori probabilities in eq. (5) and (6), we investigate their

precision for random and structured codebooks. Fig. 1 depicts

the accuracy of formula (6) when used for random linear

codes RLC(64, 56). For context, Forney’s approximation with

a list size L ∈ {2, 4} is also shown. Transmissions were

simulated using a Additive White Gaussian Noise (AWGN)

channel with Binary Phase-Shift Keying (BPSK) modulation.

Ordered Reliability Bits GRAND (ORBGRAND) [21] was

used for soft-input decoding, which produced decoding lists

of the appropriate size for both soft output methods.

Fig. 1 plots the empirical block error rate (BLER) given

the predicted block error probability evaluated using eq. (6).

If the estimate was precise, then the plot would follow

the line x = y, as the predicted error probability and the

BLER would match. As RLCs are linear, codewords are

not exactly distributed uniformly in the guesswork order,

but the formula provides an accurate estimate. In contrast,

Forney’s approximation significantly underestimates the error

probability, degrades in noisier channels, and has an estimate

of no greater than 1/L. Moreover, GRAND’s prediction has

been made having only identified a single potential decoding.

Fig. 2 is similar to Fig. 1 except for lists, where a list error

occurs when the transmitted codeword is not in the decoding

list. The measured list-BLER is plotted against the predicted

list-BLER in eq. (5). The prediction can be seen to be robust

to channel condition, list size, and code structure.

Application to error detection. A common method used to

detect errors is to append a CRC to a message and declare an

erasure at receiver if there is an inconsistency. As GRAND

algorithms can decode any code, one use of GRAND soft

output is to upgrade CRCs so that they are used for both
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Fig. 1: The accuracy of soft output when ORBGRAND is used

to decode RLC(64, 57). The predicted block error probability

is compared to the measured BLER. If the soft output was

perfectly accurate, then the data would follow the line x = y.
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Fig. 2: The accuracy of the predicted list error probability

compared to the measured list-BLER. Parameters as in Fig.

1, but with varying the channel noise, list size L ∈ {2, 4}, and

the code types of RLC(64, 57) and eBCH(64, 57).

error correction and error detection, by decoding the block

but returning an erasure if the decoding is too unreliable.

The BLER that results from this process is composed of both

undetected block errors and erasures.

Fig. 3 depicts undetected error rate (UER) and BLER

of a CRC(64, 56) code. Two methods of error control are

compared: 1) the CRC is checked for consistency and an

erasure is declared if it fails; 2) ORBGRAND is used to
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Fig. 3: The UER (dotted lines) and BLER (solid lines) of

a CRC(64, 56) code with two methods of error control: 1)

CRC used for error detection; 2) ORBGRAND performs error

correction using the CRC, then erasures are declared if the

predicted block error probability exceeds ǫ.

correct errors and an erasure is declared if the estimated error

probability is greater than a threshold ǫ. The advantage of 2)

is that error correction with GRAND results in significantly

reduced BLER while tailoring the error detection to a target

UER by modifying the threshold accordingly.

As another example, Fig. 4 depicts the error detection

and correction performance of an eBCH(64, 51) code with

ORBGRAND decoding when an error probability threshold

ǫ is used for erasure decisions. Shown for comparison is

CA-SCL decoding [33] of a (64, 51 + 6) 5G polar code [4]

concatenated with the 6-bit CRC 0x30, generating a list of 8
candidates from which the most likely of those whose CRC

is consistent is declared to be the decoding. If no element of

the CA-SCL list has a CRC that matches, it is treated as an

erasure. With an appropriately chosen ǫ, both methods achieve

a similar BLER, but ORBGRAND is shown to achieve a UER

that is almost an order of magnitude lower than CA-SCL in

the 2 to 3dB Eb/N0 range. In less noisy conditions, it still

achieves a gain of 0.5dB.

V. DISCUSSION

We have established that soft input GRAND algorithms

can, during their execution, evaluate a predicted likelihood

that the decoded block or list is in error. We have derived

exact formulae along with readily computable approximations.

While the formulae assume random codebooks, we have

empirically shown them to make accurate predictions for

structured codebooks.

There are many potential applications of this soft output.

It can be used to reduce the rate of undetected errors dur-

ing decoding or, for URLLC, to do so more cheaply as
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ORBGRAND, ǫ = 0.3

ORBGRAND, ǫ = 0.6

Fig. 4: The error detection and correction performance of: 1)

a (64, 51+ 6) 5G polar code concatenated with the 6-bit CRC

0x30 and with CA-SCL decoding; (2) an eBCH(64, 51) code

with ORBGRAND decoding and a threshold-based erasure

decision with threshold ǫ = 0.15. Solid lines correspond to

BLER, dashed lines to UER.

ORBGRAND can use a CRC or any other code for both

error correction and reduction of undetected errors. In Hybrid

Automatic Repeat Request (HARQ) schemes, the predicted

correctness probability could be used to determine whether

to request retransmission, reducing the number of requests. It

has been shown [34] that GRAND soft output can be used to

compromise the security of wiretap channels. The confidence

measure could also be used to determine the most reliable

decoding from a collection of decodings, which could help to

select a lead channel in noise recycling [35, 36].
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