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Abstract—Long Range (LoRa) wireless technology, character-
ized by low power consumption and a long communication range,
is regarded as one of the enabling technologies for the Industrial
Internet of Things (IIoT). However, as the network scale in-
creases, the energy efficiency (EE) of LoRa networks decreases
sharply due to severe packet collisions. To address this issue, it
is essential to appropriately assign transmission parameters such
as the spreading factor and transmission power for each end
device (ED). However, due to the sporadic traffic and low duty
cycle of LoRa networks, evaluating the system EE performance
under different parameter settings is time-consuming. Therefore,
we first formulate an analytical model to calculate the system EE.
On this basis, we propose a transmission parameter allocation
algorithm based on multiagent reinforcement learning (MALoRa)
with the aim of maximizing the system EE of LoRa networks.
Notably, MALoRa employs an attention mechanism to guide each
ED to better learn how much “attention” should be given to the
parameter assignments for relevant EDs when seeking to improve
the system EE. Simulation results demonstrate that MALoRa
significantly improves the system EE compared with baseline
algorithms with an acceptable degradation in packet delivery
rate (PDR).

Index Terms—Multiagent reinforcement learning, joint re-
source allocation, LoRa networks, energy efficiency

I. INTRODUCTION

Industrial Internet of Things (IIoT), enabling a massive
number of end devices (EDs) to communicate and exchange
information with each other, is regarded as a key technol-
ogy for smart grids [1], intelligent manufacturing [2], etc.
These EDs are usually battery-driven and designed to operate
for several years without battery replacement, imposing ever
higher requirements on their transmission energy efficiency
(EE). Long Range (LoRa) wireless technology, which operates
in the licence-free Industrial, Scientific and Medical (ISM)
band and provides long-range communication with low power
consumption, is very suitable for use in the IIoT [3].

The advantages of LoRa technology originate from the
design of the physical layer and the media access control
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(MAC) layer. In the physical layer, LoRa adopts chirp spread
spectrum (CSS) technology to modulate signals to improve
the communication range and resistance to interference. In
addition, CSS technology provides LoRa EDs with multiple
quasi-orthogonal spreading factors (SFs) for channel multi-
plexing, thereby increasing the network capacity [4], [5]. In
the MAC layer, LoRa Wide Area Network (LoRaWAN) adopts
a pure ALOHA mechanism for media access control [6].
Without carrier sensing, LoRaWAN can achieve low power
consumption, especially in small-scale networks. However, as
the network scale increases, the randomness of ALOHA leads
to severe packet collisions, thus substantially increasing the
energy consumption due to packet retransmission and reducing
the system EE [7].

Different combinations of the SF and transmission power
(TP) for LoRa EDs result in different system performance.
For example, selecting a large SF and TP can increase the
transmission range and make the transmission more resilient
to noise, but more energy will also be consumed. Therefore,
to adapt to different deployment scenarios and improve the EE
performance of LoRa networks, it is essential to optimize the
parameter assignments for EDs, which is a challenging task
for the following reasons:

1) Lack of instantaneous EE performance evaluation:
Most existing parameter assignment approaches rely on the
feedback of signal-to-noise ratio (SNR) to evaluate the EE
performance. However, LoRa EDs typically operate at a low
duty cycle and have a limited data rate, resulting in sporadic
packet transmission. This feature makes it time-consuming to
evaluate the EE performance under different parameter settings
in real LoRa networks, thus hindering the timely adjustment
of the transmission parameters.

2) Impact of co-channel interference: The co-channel
interference in LoRa networks includes co-SF and inter-SF
interference. The former is the interference generated between
EDs that select the same SF on the same channel. The latter
is the interference between EDs using different SFs, which is
also non-negligible due to the imperfect orthogonality between
SFs [4], [8]. The existence of this co-channel interference
leads to strong coupling of the transmission parameters, which
complicates system EE optimization in LoRa networks.

To address the above-mentioned challenges, we first for-
mulate an analytical model to evaluate the system EE under
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different parameter settings. On this basis, we treat each ED as
a learning agent and then elaborate a multiagent reinforcement
learning algorithm with an integrated attention mechanism
(MALoRa) to jointly optimize the SF and TP assignments
for LoRa EDs. Notably, the presented analytical model also
facilitates the training of MALoRa by providing immediate
EE performance feedback to guide each ED to learn a suitable
parameter assignment policy. The main contributions of this
paper can be summarized as follows:

• An analytical model to evaluate the system EE. We
propose an analytical model that considers the effects of
channel fading, the capture effect, imperfect orthogonality
between SFs and the duty cycle in practical deployment.
Simulation results confirm that the proposed model can
accurately evaluate the system EE of LoRa networks
under different parameter settings.

• Multiagent-reinforcement-learning-assisted transmis-
sion parameter assignment. To maximize the system EE
of LoRa networks, a multiagent reinforcement learning
algorithm with an attention mechanism is customized
to determine the transmission parameter settings for the
EDs. The attention mechanism enables each ED to better
learn how much “attention” should be given to the
parameter assignments for relevant EDs when seeking to
improve the system EE.

• Significant improvement in system EE performance.
Simulation results demonstrate that MALoRa can learn a
good policy to help each ED determine the appropriate
transmission parameters, which leads to a significant im-
provement in system EE compared to existing algorithms.
Furthermore, the effect of the attention mechanism on im-
proving the system EE is confirmed through an ablation
study.

II. PROBLEM FORMULATION

Fig. 1 shows the LoRa network resource allocation frame-
work. In this article, we focus on uplink transmission in
a LoRa network consisting of N EDs, K gateways and
one server. Specifically, the gateways receive and decode
packets from EDs deployed within their transmission range
and forward them to the server. The LoRa EDs communicate
with the gateways through C channels and adopt different SFs
to share time slots and frequencies within the same channel.
The available TP levels for each ED vary by 2 dB increments
between 2 dBm and 16 dBm in the EU863–870 band and thus

LoRa Server

LoRa Gateway

LoRa End Device (ED)

Uplink Transmission

LoRa Gateway

Fig. 1: LoRa network resource allocation framework

can be expressed as P = {2, 4, 6, 8, 10, 12, 14, 16} dBm. Sim-
ilarly, the sets of available SFs, channels, EDs and gateways
are expressed as F = {7, 8, 9, 10, 11, 12}, C = {1, · · · , C},
N = {1, · · · , N} and K = {1, · · · ,K}, respectively.

In accordance with the CSS modulation technique, the LoRa
symbols are up-chirp signals that sweep linearly with time
over the available bandwidth. When the SF is set to f ∈ F ,
a LoRa symbol can encode f bits of information into a
chirp, and the data rate is given by Rf = f/T f

sym, where
T f

sym = 2f/Bc denotes the time duration of a symbol using SF
f and Bc denotes the bandwidth of channel c ∈ C. Selecting
a larger SF can increase the communication range and make
the transmission more resilient to noise but correspondingly
increases the symbol duration and reduces the data rate.

A. Randomness of the LoRa MAC Protocol

Since LoRa operates in the unlicensed spectrum, the trans-
mission of the EDs should comply with a maximum restriction
on the duty cycle. For example, in Europe, the maximum duty
cycle is mandated to be less than 1% for transmissions in the
868 MHz band. Under the assumption that the traffic pattern
of the LoRa network follows a Poisson distribution [9], the
probability of an ED initiating a packet transmission during a
given time interval T is defined as h = 1 − e−λT , where λ
denotes the packet generation rate. The experimental results
in [10] show that even when most of the preamble symbols
are corrupted by interference, packets can still be decoded as
long as the last five preamble symbols are correctly received.
To guarantee successful packet transmission by ED i, other
interfering EDs should not transmit during the following time
interval:

T ′
ij = Tj + Ti − (npr − 5)T fi

sym (1)

where T fi
sym denotes the symbol duration when using SF fi,

npr denotes the number of preamble symbols, and Ti and Tj
represent the time-on-air needed for ED i and the interfering
ED j, respectively, to transmit a packet. The time-on-air of ED
i can be defined as Ti = T fi

pr +T
fi
pl , where T fi

pr and T fi
pl denote

the preamble and payload durations and can be respectively
defined as:

T fi
pr = (npr + 4.25)T fi

sym, T fi
pl = nfipl T

fi
sym (2)

Here, nfipl denotes the number of payload symbols when using
SF fi and can be calculated as:

nfipl = 8 +max

(⌈
8L− 4fi + 28 + 16

4 (fi − 2DE)

⌉
(CR+ 4) , 0

)
(3)

where L represents the payload size of the transmitted packets
and DE is the low data rate mode indicator; DE = 1 if
the low data rate mode is enabled, and DE = 0 otherwise.
Additionally, as the value of CR is varied from 1 to 4, the
coding rate 4/(4 +CR) can be configured as 4/5, 4/6, 4/7 or
4/8. Therefore, the probability that ED j interferes with ED i
becomes:

hij = 1− e−λT ′
ij (4)
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B. Analytical Model of Transmission Reliability

According to [11], the uplink packets transmitted from ED
i can be successfully decoded by the LoRa gateways when
the following two conditions are satisfied. First, the received
signal strength exceeds the LoRa gateway sensitivity. Second,
the packet is not corrupted due to co-channel interference.
Therefore, the PDR of ED i at gateway k ∈ K is defined as:

PDRik = ψikζik (5)

Here, the first factor ψik denotes the probability that the re-
ceived signal strength RSSik exceeds the gateway sensitivity.
Since the packets transmitted by ED i experience channel
fading and path loss before arriving at gateway k, the received
signal strength is defined as:

RSSik = pi − PL(d0)− 10γlog10 (dik/d0)−Nσ (6)

where pi represents the TP of ED i, PL(d0) is the mean path
loss at reference distance d0, γ is the path loss exponent, dik
is the distance between ED i and gateway k, and Nσ is a zero-
mean Gaussian random variable with a standard deviation of
σ. For simplicity, the received signal strength at gateway k can
be rewritten as RSSik = zik−Nik, where zik = pi−PL(d0)−
10γ log10 (dik/d0) and Nik = N (0, σ ̸= 0). Therefore, ψik is
calculated as:

ψik = P (RSSik ⩾ ηfi) = P (Nik ⩽ zik − ηfi)

=
1

2
+

1

2
erf

(
zik − ηfi√

2σ

)
(7)

where ηfi denotes the LoRa gateway sensitivity when the SF
is fi and erf (·) is the Gauss error function.

The second factor ζik in Eq. (5) denotes the probability
that the packet is not corrupted at gateway k due to co-channel
interference. Due to the randomness of ALOHA, packets from
EDs using the same or different SFs may overlap in time when
they arrive at gateway k. The capture effect allows packets
from an ED suffering such interference to be successfully
decoded even if they overlap in time with packets from the
interfering EDs, namely, when the signal-to-interference ratio
(SIR) of the packet of interest exceeds the threshold. The
SIR thresholds for different pairs of SFs, including co-SF
interference fi = fj and inter-SF interference fi ̸= fj , are
defined in Table I. The rows of Table I denote the SFs of the
ED suffering interference, denoted by ED i, and the columns
represent the SFs of the interfering ED j. Notably, the co-SF
capture threshold is equal to 6 dB for all SFs [12], [13]. Given
these SIR thresholds, the set of interfering EDs for ED i at
gateway k is defined as Jik =

{
j|RSSik −RSSjk < ωfifj

}
,

where ωfifj is the SIR threshold for packets using fi and fj .
For example, when fi = 8 and fj = 10, if the difference in
their received signal strengths at gateway k is below -12 dB,
then the packet from ED i is corrupted due to interference.
Therefore, ED i should avoid simultaneous transmission with
the EDs in Jik to guarantee successful packet transmission to
gateway k, and the probability ζik is defined as:

ζik =
∏

j∈Jik

(
1− hijP

(
RSSik −RSSjk < ωfifj

))
(8)

TABLE I: SIR thresholds in dB for different pairs of SFs [9]

fi
fj 7 8 9 10 11 12

7 6 -8 -9 -9 -9 -9
8 -11 6 -11 -12 -13 -13
9 -15 -13 6 -13 -14 -15

10 -19 -18 -17 6 -17 -18
11 -22 -22 -21 -20 6 -20
12 -25 -25 -25 -24 -23 6

where the probability function P (·) of Eq. (8) can be calcu-
lated as:

P(RSSik −RSSjk < ωfifj ) = P(N0 < ωfifj − (zik − zjk))

=
1

2
+

1

2
erf

(
ωfifj − (zik − zjk)

2
√
2σ

)
(9)

where N0 = Njk − Nik denotes the difference between two
zero-mean Gaussian distributions with standard deviation σ,
which itself is another zero-mean Gaussian distribution with
standard deviation 2σ [9], i.e., N0 = N (0, 2σ).

Given PDRik, the PDR of ED i in a LoRa network with
multiple gateways can be defined as:

PDRi = 1−
∏

k∈K
(1− PDRik) (10)

C. Optimal Problem Formulation

The EE of an ED is defined as the total number of bits of
information transmitted per unit of energy consumption and is
measured in units of bits/mJ. According to this definition, the
EE of ED i can be calculated as:

EEi =
L

Efix
i /PDRi

=
L

epi
Ti/PDRi

(11)

where Efix
i represents the fixed energy consumption for trans-

mitting a packet, which mainly depends on the TP of the
ED and the time-on-air related to the SF, and epi

denotes
the energy per unit time required for transmission with TP
pi. Because of the adoption of the ALOHA protocol in
LoRaWAN and the presence of interference in LoRa networks,
a packet may need to be retransmitted several times before
being successfully received by a gateway; the number of such
retransmission can be estimated as 1/PDRi [11].

Due to the low duty cycle of LoRa networks and the
randomness of ALOHA, to simulate a congested channel, we
assume that all EDs access the same channel. Therefore, the
main objective under consideration in this article is to jointly
optimize the SF and TP assignments for the EDs in a LoRa
network so as to maximize the system EE:

(P1) max
F,P

EEsys =
∑

i∈N
EEi (12)

s.t. Xfi
i ∈ {0, 1} ,∀fi ∈ F (12a)∑
fi∈F

Xfi
i ⩽ 1,∀i ∈ N (12b)

pmin ⩽ pi ⩽ pmax,∀pi ∈ P (12c)
PDRi ⩾ PDRth,∀i ∈ N (12d)
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Fig. 2: Architecture of the proposed MALoRa algorithm

Here, Constraints (12a) and (12b) define binary assignment
variables Xfi

i to ensure that only one SF can be selected for
each ED. Constraint (12c) states that the available TP levels
for each ED range from pmin to pmax. Constraint (12d) specifies
the PDR threshold PDRth to guarantee reliable transmission.

The formulated problem P1 is NP-hard due to the coupling
of the SF and TP assignments and the nonconvex optimization
objective. To address this problem, the MALoRa algorithm is
proposed in this paper to determine the transmission parameter
settings for the EDs with the aim of improving the system EE.

III. MAAC-BASED PARAMETER ALLOCATION
ALGORITHM

In this section, we design a multi-actor-attention-critic
(MAAC) [14] based algorithm called MALoRa to assign
transmission parameters to EDs. To describe how the MAAC
method is customized, we first reformulate problem P1 as a
Markov game and then detail the training process of MALoRa.

A. Markov Decision Process Framework

Problem P1 is first reformulated as a Markov game for the
multiagent scenario. Specifically, each ED acts as a learning
agent that aims to learn an appropriate policy for setting its
transmission parameters. The state, action and reward function
for each agent are modelled as follows:

1) State: The key features of the LoRa network environment,
including the EE and PDR of each agent, should be well
captured to ensure that each agent learns an appropriate policy.
The analytical model presented in Section III is used to
facilitate the training of MALoRa by providing immediate EE
performance feedback to guide each agent to learn a suitable
parameter setting policy. In time slot t, the observation of
agent i is defined as oti = {PDRt−1

i , EEt−1
i , EEt−1

sys }, where
PDRt−1

i and EEt−1
i are the PDR and EE of agent i in the

previous time slot, respectively, and EEt−1
sys denotes the system

EE in the previous time slot.
2) Action: Based on its observation in time slot t, agent

i chooses appropriate transmission parameters. The action of
agent i is defined as ati = {f ti , pti}, where f ti and pti denote the
SF and TP allocation decisions of agent i, respectively. Here,
the action space of each agent has dimensions of |F| × |P|.

3) Reward Function: In this paragraph, we design a reward
function that aims to maximize the nonconvex optimization
objective given in problem P1. It is specified that agent i can
receive a positive reward when the PDR constraint is satisfied;
otherwise, it obtains no reward. In time slot t, the reward of
agent i is defined as:

rti =

{
βEEsys + (1− β)EE−i PDRi ⩾ PDRth

0 otherwise
(13)

where β is used to adjust the weight between EEsys and
EE−i. EE−i =

EEsys

N − EEsys−EEi

N−1 denotes the effect of agent
i on the average EE, where the left fraction is the average EE
and the right fraction is the average EE without accounting
for agent i. With this reward function, each agent learns the
optimal parameter settings by considering not only the EE it
achieves but also the impact it causes on the system EE.

B. MALoRa Algorithm

The MAAC algorithm is an RL approach that combines
value-based and policy-based approaches based on the actor–
critic (AC) algorithm [14]. Fig. 2 shows the proposed MAL-
oRa algorithm, which is based on the MAAC algorithm and
consists of a centralized training phase and a distributed
execution phase.

In the distributed execution phase, each agent i chooses
action ati in accordance with its current observation oti by
means of its local actor network. When agent i obtains a new
observation ot+1

i , a reward rt+1
i is calculated, and then the

corresponding transition tuple (oti, a
t
i, o

t+1
i , rt+1

i ) is collected.
Once the transition tuples of all agents have been collected in
time slot t, the transition tuple (ot,at,ot+1, rt+1) is stored
in the experience replay buffer D.

In the centralized training phase, a minibatch of tuples B
is randomly sampled from the experience replay buffer D
every Tupdate time slots for training. Due to the coupling of the
transmission parameters, the performance of an agent can be
greatly affected by the actions of other agents. Therefore, each
agent needs to attend to the actions and observations of other
agents with different weights to obtain the appropriate param-
eter settings. To this end, a multihead attention mechanism
is adopted in MALoRa. By selectively attending to transition

4
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Fig. 3: (a) MAE values between the proposed analytical model and the NS-3 simulator for different numbers of EDs (the red
solid line represents the median value); (b) System EE versus the number of iterations (N = 10, 20, 30, 40; K = 4; C = 1);
(c) Comparison of the system EE and average PDR results achieved with different numbers of EDs under different algorithms
(K = 4; C = 1; the error bars represent the standard deviation)

tuples from B with suitable attention weights, MALoRa can
efficiently train a critic network for each agent. The critic
network of agent i receives information from other agents,
including their observations and actions, and then incorporates
this information to calculate the Q-value function Qϕ

i (o,a),
which can be represented as:

Qϕ
i (o,a) = Fi (gi (oi, ai) , xi) (14)

where ϕ represents the weight parameters of the critic network
and Fi and gi are two-layer and one-layer multilayer percep-
tron (MLP), respectively. In addition, xi denotes the weighted
influence of other agents and can be calculated as:

xi =
∑

j∈N ,j ̸=i
ρjh(V gj (oj , aj)) (15)

where h is the leaky rectified linear unit (ReLU) function and
gj (oj , aj) is transformed into a “value” by a shared matrix V .
ρj denotes the j-th attention weight, which is calculated by
comparing the similarity between embeddings ej = gj (oj , aj)
and ei = gi (oi, ai) as follows:

ρj = exp(eTj W
T
k Wqei)/

∑N

j=1
exp(eTj W

T
k Wqei) (16)

where ei and ej are transformed into “query” and “key” by Wq

and Wk, respectively. In the multihead attention mechanism
adopted in MALoRa, the set of parameters (Wk,Wq, V ) is
shared among all critic networks to minimize a joint regression
loss function LQ(ϕ), which is defined as:

LQ (ϕ) =
∑N

i=1
E(o,a,r,ô)∼D[(Q

ϕ
i (o,a)− yi)

2] (17)

where yi = ri+µEâ∼πθ̄(ô)

[
−α log

(
πθ̄i (âi|ôi)

)
+Qϕ̄

i (ô, â)
]

and ϕ̄ and θ̄ are the weights of the target critic and actor
networks, respectively.

To update the individual policies, the gradient ascent algo-
rithm is used. The gradient is defined as:

∇θiJ (θ) = Eo∼D,a∼π[∇θi log (πθi(ai|oi))
(−α log (πθi(ai|oi)) +Ai(o,a))]

(18)

where Ai (o,a) = Qϕ
i (o,a)−b (o,a−i) denotes a multiagent

advantage function indicating whether the action of agent i
will lead to an increase in its expected return, and b(o,a−i) =

Eai∼πi(oi)

[
Qϕ

i (o, (ai,a−i))
]

is the multiagent baseline and
a−i = a\{ai} is the actions of all agents except agent i.

IV. PERFORMANCE ANALYSIS

This section investigates the accuracy of the analytical
model and the performance of the MALoRa algorithm through
numerical results. In our simulations, the LoRa EDs are
randomly distributed in an area of 8 km×8 km. The average
sending rate λ is set to 0.01 s−1. The number of preamble
symbols equals to 8 bytes and the coding rate is set to 4/5.
The parameters of the path loss model are determined from
measurements taken in the remote neighbourhood [15], where
PL(d0) = 98.0729 dB, d0 = 40 m, γ = 2.1495, and σ = 10.0.
The PDR constraint is set to 0.7 and the weight of reward
function β equals to 1/N . The EE of each ED is estimated
according to the parameters in [5], which measure the energy
consumption of Semtech’s SX1276 chip during transmission.

Since the EE of an ED is mainly related to the PDR, we
compare the PDRs calculated using the proposed analytical
model with those generated by the NS-3 simulator to verify the
accuracy of the model. In our simulations, we assume that each
ED randomly initiates an uplink packet transmission. Each
experiment was run in NS-3 for seven days and repeated ten
times independently. The accuracy of the proposed model is
measured by the mean absolute error (MAE), which is defined
as 1

N

∑N
i=1 |x̂i − xi|, where x̂i and xi are the PDRs of ED i

calculated from the analytical model and obtained using the
NS-3, respectively. The PDR of ED i in NS-3 is defined as
the number of packets successfully received by the gateways
divided by the total number of packets sent by ED i. Fig. 3(a)
shows MAE values between the analytical model and NS-3
simulator for each iteration with a 95% confidence interval.
Each ED in this simulation uses the smallest SF based on
the distance to the nearest gateway and the highest TP level
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of 16 dBm. The number of EDs varies from 200 to 1000,
with all EDs randomly distributed around the four gateways.
Simulation results show that for different numbers of EDs,
the proposed analytical model calculates the PDR for each
ED with an average error of less than 1.25%. As the number
of EDs increases, the randomness of the ALOHA and the
increase in packet collisions lead to a slight increase in MAE
values.

We then evaluate the convergence and the performance of
MALoRa under different numbers of EDs. Due to the low duty
cycle of LoRa networks and the randomness of ALOHA, to
simulate a congested channel, we assume that all EDs access
the same channel. Fig. 3(b) illustrates the system EE versus
the number of iterations for varying numbers of EDs. Each
setting was simulated ten times independently, and the results
are shown with 95% confidence intervals. For comparison,
we consider a variant denoted by MALoRaU, which adopts
fixed uniform attention weights and thus treats all agents
equally. Through continuously exploring the environment,
both MALoRa and MALoRaU can guide the EDs to gradually
learn parameter setting policies. Notably, the system EE gap
between MALoRa and MALoRaU is enlarged as the number
of EDs increases. This is not surprising because the uniform
attention weights hinder the EDs from obtaining valuable
information from other EDs during the training process, and
thus, MALoRaU cannot effectively mitigate the co-channel
interference caused by the increasing number of EDs.

Fig. 3(c) shows the system EE and average PDR results of
MALoRa compared with four baseline algorithms (including
MALoRaU, EFLoRa [11], ADR [16], and Random) for dif-
ferent number of EDs. The simulation results demonstrate that
the MALoRa is capable of maximizing the system EE with
an acceptable PDR degradation compared to other algorithms.
This is attributed to the attention mechanism employed in
MALoRa, which enables each ED to appropriately attend to
the parameter assignments of relevant EDs, thus better coping
with the coupling of the transmission parameters and reducing
co-channel interference to further improve the system EE. The
EFLoRa algorithm achieves limited performance in terms of
the system EE because it is designed to solve the max-min
problem to achieve EE fairness among the EDs. The ADR
algorithm, on the other hand, tends to select larger SFs and
higher TP levels to ensure that the SNR of each ED is above
the demodulation floor, which leads to a limited effect in
mitigating interference.

V. CONCLUSION

This article aims to improve the system EE in LoRa
networks by optimizing the resource allocation for uplink
transmission. We first establish a comprehensive analytical
model to calculate the system EE of a LoRa network with
multiple gateways. Simulation results confirm that the pro-
posed model can be used to accurately evaluate the system
EE of LoRa networks under different settings compared to
the NS-3 simulator. On this basis, we propose a multiagent
reinforcement learning algorithm with an integrated attention

mechanism, i.e., MALoRa, to jointly optimize the SF and
TP assignments of the EDs. Simulation results demonstrate
that the MALoRa algorithm exhibits good convergence under
different settings. Meanwhile, the attention mechanism em-
ployed in MALoRa enables each ED to appropriately attend
to the parameter assignments of relevant EDs, thus helping
to mitigate interference and further improve the system EE.
In particular, MALoRa significantly improves the system EE
compared with four baseline algorithms at the cost of an
acceptable degradation in the PDR.
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