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Abstract—This paper considers a generalized multiple-input
multiple-output (GMIMO) with practical assumptions, such as
massive antennas, practical channel coding, arbitrary input dis-
tributions, and general right-unitarily-invariant channel matrices
(covering Rayleigh fading, certain ill-conditioned and corre-
lated channel matrices). Orthogonal/vector approximate message
passing (OAMP/VAMP) has been proved to be information-
theoretically optimal in GMIMO, but it is limited to high
complexity. Meanwhile, low-complexity memory approximate
message passing (MAMP) was shown to be Bayes optimal
in GMIMO, but channel coding was ignored. Therefore, how
to design a low-complexity and information-theoretic optimal
receiver for GMIMO is still an open issue. In this paper, we
propose an information-theoretic optimal MAMP receiver for
coded GMIMO, whose achievable rate analysis and optimal
coding principle are provided to demonstrate its information-
theoretic optimality. Specifically, state evolution (SE) for MAMP
is intricately multi-dimensional because of the nature of local
memory detection. To this end, a fixed-point consistency lemma
is proposed to derive the simplified variational SE (VSE) for
MAMP, based on which the achievable rate of MAMP is calcu-
lated, and the optimal coding principle is derived to maximize
the achievable rate. Subsequently, we prove the information-
theoretic optimality of MAMP. Numerical results show that the
finite-length performances of MAMP with optimized LDPC codes
are about 1.0 ∼ 2.7 dB away from the associated constrained
capacities. It is worth noting that MAMP can achieve the same
performance as OAMP/VAMP with 4‰ of the time consumption
for large-scale systems.

I. INTRODUCTION

With the rapid development of wireless communications,
6G networks are expected to provide performance superior
to 5G and satisfy emerging services and applications [1].
Accordingly, data types in various application scenarios be-
come more diverse, and practical communication scenarios
are more complex. However, most conventional multiple-input
multiple-output (MIMO) technologies are limited to ideal
communication assumptions, i.e., a limited number of anten-
nas, no coding constraint, Gaussian signaling, channel state
information (CSI) available at the transceiver, and independent
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identically distributed (IID) channel matrices, which cannot ef-
fectively support the complex 6G scenarios. Therefore, a more
practical generalized MIMO (GMIMO) [2] is considered in
this paper, including: 1) massive antennas, 2) practical channel
coding and decoding, 3) arbitrary input distributions, 4) CSI
only available at the receiver, and 5) general right-unitarily-
invariant channel matrices, covering Rayleigh fading, certain
ill-conditioned and correlated channel matrices. Meanwhile,
these generalized assumptions bring new challenges to the
design of receivers for GMIMO.

A. Advanced AMP-Type Receivers

Approximate message passing (AMP)-type algorithms have
been widely used in MIMO receivers [2], [3]. AMP is a
high-efficient signal recovery algorithm with a low-complexity
matched filter (MF) for arbitrary input distributions [4]. Re-
markably, AMP is proved to be Bayes optimal via a scalar
recursion called state evolution (SE) [4]. However, AMP is
only available for IID channel matrices. For more complex
non-IID channel matrices, AMP performs poorly or even
diverges [5]. To address this issue, orthogonal/vector AMP
(OAMP/VAMP) is developed in [6], [7] for right-unitarily-
invariant matrices, employing a linear minimum mean-square
error (LMMSE) detector to mitigate linear interference and
an orthogonalization to overcome the correlation problem
during iteration. The Bayes optimality of OAMP/VAMP is
proved via the replica methods in [8]. Due to the high-
complexity LMMSE, it is difficult to apply OAMP/VAMP
effectively to large-scale systems. To address this challenge, a
low-complexity convolutional AMP (CAMP) [9] is proposed,
which replaces the Onsager term of AMP with a convolu-
tion of all preceding messages. However, CAMP converges
slowly and even easily diverges for the channel matrices with
high condition numbers. Around the same time, another low-
complexity memory AMP (MAMP) [10] is presented and
adopts a long-memory MF (LM-MF) utilizing the information
from the previous iterations to replace the LMMSE detector
of OAMP/VAMP. Meanwhile, MAMP is proved to be Bayes
optimal for right-unitarily-invariant matrices.

However, the above mentioned AMP-type algorithms [4],
[6], [7], [10] only focus on the detection of uncoded systems,
ignoring the effects of channel coding and decoding with no
guarantee of asymptotically error-free recovery.
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Fig. 1. An uplink GMIMO system: an N -antennas transmitter and an M -antennas iterative receiver consisting of an LD and an NLD. S/P and P/S denote
serial-to-parallel and parallel-to-serial conversion, respectively.

B. Information-Theoretic Optimality of AMP-Type Receivers

For coded MIMO with IID channel matrices and arbitrary
input signaling, the achievable rate analysis and information-
theoretic (i.e., constrained-capacity) optimality of AMP are
presented in [11] based on the scalar SE. Specifically, the
optimal coding principle is derived by tracking the scalar
estimated variance between linear detector (LD) and nonlin-
ear detector (NLD) while satisfying the error-free decoding
condition. On this basis, in [11], the maximum achievable
rate of AMP is proved to equal the associated constrained ca-
pacity [12]. For right-unitarily-invariant channel matrices and
arbitrary input signaling, OAMP/VAMP is shown to achieve
the constrained capacity of GMIMO in [2], [13]. Unlike AMP,
the orthogonalization in the LD and NLD of OAMP/VAMP
destroys the MMSE property, making it impossible to directly
calculate the achievable rates of OAMP/VAMP based on mu-
tual information-MMSE (I-MMSE) lemma [14]. To overcome
this difficulty, a variational SE (VSE) of OAMP/VAMP is
developed by incorporating all orthogonal operations into the
LD [13], based on which the achievable rate analysis and
optimal coding principle are obtained using I-MMSE lemma.

The information-theoretic optimality of AMP and
OAMP/VAMP is restricted to IID channel matrices and
high complexity, respectively, which are difficult to apply
effectively to large-scale GMIMO. How to design a low-
complexity and information-theoretic optimal receiver for
GMIMO is still an open issue.

C. Motivation and Contributions

A promising low-complexity candidate of GMIMO re-
ceivers is MAMP, which consists of a memory LD (MLD)
and an NLD. However, in [10], it only focused on the design
of Bayes optimal MAMP in uncoded systems while ignoring
the effect of channel coding and decoding. Meanwhile, the
Bayes optimal MAMP with a well-designed P2P channel code
is still suboptimal, as demonstrated in numerical results in this
paper. On the other hand, due to the memory involved in local
detectors, a covariance-matrix SE containing complex multi-
dimensional transfer functions is required for MAMP to evalu-
ate the asymptotic performance. However, the existing achiev-
able rate analysis and optimal coding principle are based on
single-input single-output (SISO) transfer functions [2], [11],
[13], which are infeasible to be directly extended to MAMP.

To address the above challenges, we propose an MAMP
receiver for coded GMIMO, in which the achievable rate
analysis and optimal coding principle are provided for MAMP

to prove its constrained-capacity optimality. To avoid the com-
plex multi-dimensional SE analysis of MAMP, a lemma about
the SE fixed-point consistency of MAMP and OAMP/VAMP
is proposed. According to this lemma, a simplified SISO VSE
for MAMP is derived, based on which the achievable rate of
MAMP is obtained. The optimal coding principle of MAMP is
derived with the goal of maximizing the achievable rate, and
the maximum achievable rate equals the constrained capacity
of GMIMO. Therefore, the constrained-capacity optimality of
MAMP is established. Moreover, we compare the maximum
achievable rates of MAMP and the existing cascading MAMP
(CAS-MAMP, i.e., with separate MLD and NLD) in GMIMO.
Furthermore, a kind of practical LDPC code is designed for
MAMP in GMIMO. The main contributions of this paper are
summarized as follows.

1) A simplified SISO VSE of MAMP is derived, from which
the achievable rate analysis and optimal coding principle
of MAMP are obtained.

2) The constrained-capacity optimality of MAMP is proved,
i.e., the maximum achievable rate of MAMP is equal to
the constrained capacity of GMIMO.

3) Taking the ill-conditioned channel matrices as examples,
the maximum achievable rates of MAMP are presented,
along with a comparison to the existing CAS-MAMP.

4) A kind of capacity-approaching LDPC code is designed
for MAMP. Numerical results show that the finite-length
performances of MAMP with optimized LDPC codes are
about 1.0 ∼ 2.7 dB away from the associated constrained
capacities. It is worth noting that MAMP only takes 4‰
of the execution time of OAMP/VAMP to achieve the
same performance for large-scale systems.

Note: Due to the limitation of pages, detailed proofs of
Lemmas 1 and 2 are given in a full version of this paper.

II. SYSTEM MODEL

Fig. 1 illustrates an uplink GMIMO system with an N -
antennas transmitter and one receiver equipped with M anten-
nas. In the transmitter, message sequence d is encoded by a
forward error control (FEC) encoder. After modulation, length-
NL modulated sequence x is generated and transformed
into N sequences {xl

n}Ll=1, n = 1, ..., N, by serial-to-parallel
conversion, in which each entry of x is taken from a discrete
constellation set S. At the l-th time slot, symbol sequence
xl = [xl

1, ..., x
l
N ]T is transmitted to the channel, satisfying

the power constraint 1
NE{∥xl∥2} = 1.



The receiver obtains signal yl = [yl1, ..., y
l
M ]T given by

yl = Axl + nl, l = 1, . . . , L, (1)

where A ∈ CM×N is a channel matrix and nl ∼ CN (0, σ2I)
is an additive white Gaussian noise (AWGN) vector. Without
loss of generality, we assume 1

N tr{AHA} = 1, and define the
signal-to-noise ratio (SNR) as snr = σ−2.

Based on yl, an iterative receiver is implemented to recover
message sequence d, which consists of an LD and an NLD.
The LD corresponds to the linear constraint (1), and the NLD,
consisting of a demodulator and an a-posteriori probability
(APP) decoder, corresponds to the FEC coding constraint
x ∈ C (C is the set of codewords). To be specific, as
shown in Fig. 1, based on yl and xl

t = [xl,1
t , · · · , xl,N

t ]T,
the output estimation of LD is rlt = [rl,1t , · · · , rl,Nt ]T. After
parallel-to-serial conversion, rt = [r1

T

t , · · · , rLT

t ]T is input
to the NLD at t-th iteration and then the updated estimation
xt+1 = [x1T

t+1, · · · ,xLT

t+1]
T is fed back to the LD. The

iterative process stops when message sequence d̂ is recovered
successfully or the maximum number of iterations is reached.

The GMIMO system satisfies the following assumptions.
• There are huge numbers of transmit and receive antennas,

i.e., N,M → ∞ and channel load β = N/M is fixed.
• The entries of signal x are taken from an arbi-

trary distribution (e.g., quadrature phase-shift keying
(QPSK), quadrature amplitude modulation (QAM), Gaus-
sian, Bernoulli-Gaussian, etc.).

• Channel matrix A is right-unitarily-invariant, covering
various types of channel matrices, e.g., IID random
matrices (i.e., Rayleigh fading matrices), certain ill-
conditioned and correlated matrices [3]. Let the SVD of
A be A = UΛV H, where U ∈ CM×M and V ∈ CN×N

are unitary matrices, and Λ ∈ CM×N is a rectangular
diagonal matrix. UΛ and V are independent, and V
is Haar-distributed (uniformly distributed over all unitary
matrices) [15].

• Channel matrix A is only available to the receiver but
unknown to the transmitter.

III. MAMP RECEIVER AND STATE EVOLUTION

Since the detection process of (1) in each time slot is the
same, the time index l is omitted in the rest of this paper for
simplicity. Then, the received signal in (1) can be rewritten as:

Linear constraint Γ : y = Ax+ n, (2a)
Code constraint ΦC : x ∈ C and xi ∼ PX(xi),∀i. (2b)

A. MAMP Receiver

Based on (2), Fig. 2(a) shows the MAMP receiver for coded
GMIMO, i.e., starting with t = 1 and X1 = 0,

MLD : rt = γt(Xt) =
1
εγt
(γ̂t(Xt)−Xtpt), (3a)

NLD : xt+1 = ϕ̄t(rt) = [Xt, ϕt(rt)] · ζt+1. (3b)

In (3a), Xt = [x1, ...,xt], the local LM-MF γ̂t(·) corre-
sponds to the linear constraint Γ, and the normalized param-
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Fig. 2. Illustration of the MAMP receiver and its state evolution.

eters {εγt } and orthogonal parameters {pt} are designed to
ensure the orthogonality for MAMP [10]. Specifically, γ̂t(·) is
defined as

γ̂t(Xt) = AHγ̃t(Xt), (4)

with γ̃t(Xt) = θtBγ̃t−1(Xt−1) + ξt(y − Axt), where
γ̃0(X0) = 0, B = λ†I −AAH with λ† = (λmin + λmax)/2,
λmin and λmax denote the minimal and maximal eigenvalues of
AAH, and relaxation parameters {θt} and weights {ξt} can
be optimized to improve the convergence speed of the MAMP
receiver [10]. Noting that when γ̃t(·) tends to converge, the
output of γ̂t(Xt) converges to the LMMSE estimation in the
LD of OAMP/VAMP [13].

In (3b), ϕt(rt) ≡ 1

εϕt
(ϕ̂t(rt)−wtrt), where the local detec-

tor ϕ̂t(·) corresponds to the code constraint ΦC , and parameters
{εγt } and {wt} are utilized to guarantee the orthogonality for
MAMP [10]. Specifically, ϕ̂t(·) is defined as

ϕ̂t(rt) ≡ E{x|rt,ΦC}, (5)

which corresponds to the demodulation and APP channel
decoding [3, Equation(10)]. It is noted that ϕ̂t(·) is assumed to
be Lipschitz-continuous in this paper. Meanwhile, a damping
vector ζt+1 = [ζt+1,1, ..., ζt+1,t+1]

T with
∑t+1

i=1 ζt+1,i = 1
is employed to guarantee and improve MAMP convergence
while also preserving orthogonality, as demonstrated in [10].

B. State Evolution (SE)

Since the LM-MF is employed in MLD, a covariance-matrix
SE is required to evaluate the asymptotic performance.

Define the covariance matrices as:

V γ
t ≡ [vγi,j ]t×t, V ϕ̄

t ≡ [vϕ̄i,j ]t×t, (6)

where vγt,t′ = (vγt′,t)
∗ ≡ 1

NE{gH
t g

′
t} with gt = rt−x, vϕ̄t,t′ =

(vϕ̄t′,t)
∗ ≡ 1

NE{fH
t f ′

t} with ft = xt − x, and 1 ≤ t′ ≤ t.
Based on the orthogonality and IID Gaussianity prop-

erty [10], the asymptotic MSE performance of MAMP can



be predicted by the MSE functions γSE(·) and ϕ̄SE(·), i.e.,

MLD : V γ
t = γSE(V

ϕ̄
t ), (7a)

NLD : V ϕ̄
t+1 = ϕ̄SE(V

γ
t ), (7b)

where V γ
t and V ϕ̄

t are defined in (6), and γSE(·) and ϕ̄SE(·)
correspond to constraints (3a) and (3b), respectively. More-
over, Fig. 2(b) gives a graphical illustration of the SE in (7).

It is worth noting that the MSE functions in (7) are multi-
dimensional. Therefore, it is very challenging to design FEC
codes and analyze the information-theoretic limit for MAMP.

Note: It has been proved that γ̂t(·) is Lipschitz-continuous
in [10]. The ϕ̂t(·) corresponds to the coding constraint for
coded GMIMO. Since the LDPC decoder is proved to be
Lipschitz-continuous in [16, Appendix B], the SE holds for
MAMP receiver with LDPC decoding ϕ̂t(·). Therefore, based
on SE, a kind of LDPC code is designed for MAMP receiver
in simulation results. Although there is no strict proof for other
types of FEC codes, we conjecture that ϕ̂t(·) is also Lipschitz-
continuous for the majority of FEC codes (e.g., Turbo code,
Polar code, Reed-solomon (RS) code, etc.).

IV. INFORMATION-THEORETIC OPTIMALITY OF MAMP

In this section, we present the achievable rate analysis and
optimal coding principle of MAMP. The information-theoretic
optimality proof for MAMP is also presented.

A. Achievable Rate Analysis and Coding Principle

To circumvent the complex multi-dimensional SE analysis
of MAMP, we first provide the fixed-point consistency of
MAMP and OAMP/VAMP as follows.

Lemma 1 (Fixed-Point Consistency): Let the SE fixed point
of MAMP in (7) be (vγ∗ , v

ϕ̄
∗ ), where vγ∗ = lim

t→∞
vγt,t and vϕ̄∗ =

lim
t→∞

vϕ̄t,t. MAMP and OAMP/VAMP have the same SE fixed

point (vγ∗ , v
ϕ̄
∗ ) for arbitrary fixed Lipschitz-continuous ϕ̂t(·).

Based on Lemma 1, the multi-dimensional SE of MAMP
can converge to the same SE fixed point as the SISO SE of
OAMP/VAMP for the same APP decoder ϕ̂t(·). This inspires
us to attempt to analyze the achievable rate of MAMP with
the aid of the SISO SE of OAMP/VAMP.

Specifically, an equivalent transformation of MAMP is ob-
tained by incorporating all orthogonal and damping operations
into the MLD, in which the equivalent MAMP is given by

MLD : rt = ηt(x̂t), (8a)

NLD : x̂t+1 = ϕ̂t(rt), (8b)

where ηt(·) is a multi-dimensional MLD involving γt(·) in
(3a), damping, and orthogonal operations, and x̂t denotes the
output a posteriori estimation of APP decoder ϕ̂t(·). Note
that this equivalent transformation does not change the SE
fixed point (i.e., convergence performance) of MAMP. As a
result, the equivalent MAMP is also referred to as MAMP
for simplicity. In contrast to the multi-dimensional transfer
function in (7b), the transfer function of ϕ̂t(·) in NLD is SISO.
However, since the memory is required in ηt(·), the transfer
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Fig. 3. Graphical illustration of VSE for MAMP, where η−1
SE (·) is the inverse

function of ηSE(·). ϕ̂S
SE(·) and ϕ̂C

SE(·) with ϕ̂C
SE(ρ

C
∗ ) = 0 denote the MMSE

functions of constellation and code constraint in NLD, respectively. (ργ∗ , v
ϕ̂
∗ )

denotes the VSE fixed point between η−1
SE (·) and ϕ̂S

SE(·). Moreover, ϕ̂C∗
SE(·)

is the optimal coding function of MAMP.

function of ηt(·) remains intricately multi-dimensional. This
continues to impede the theoretical analysis of MAMP.

To overcome the above issue, a SISO variational transfer
function ηSE of MLD ηt(·) is derived with the aid of Lemma 1
and the SE of OAMP/VAMP. Therefore, a SISO variational SE
(VSE) of MAMP is presented in the following lemma, which
is adopted to simplify the achievable rate analysis and optimal
code design for MAMP.

Lemma 2 (VSE of MAMP): Let ργt = 1/vγt,t denote the input
signal-to-interference-plus-noise ratio (SINR) of the NLD, the
VSE of MAMP can be written as

MLD : ργt = ηSE(v
ϕ̂
t ) = (vϕ̂t )

−1 − [γ̂−1
SE (v

ϕ̂
t )]

−1, (9a)

NLD : vϕ̂t+1 = ϕ̂C
SE(ρ

γ
t ) = mmse{x|

√
ργt x+ z,ΦC}, (9b)

where γ̂SE(v) = 1
N tr{[snrAHA+v−1I]−1} denotes the MSE

function of LMMSE detector, γ̂−1
SE (·) the inverse of γ̂SE(·), and

z ∼ CN (0, I) an AWGN vector independent of x.
Note that the VSE transfer functions in (9) are not equivalent

to the SE transfer functions in (7). Although VSE cannot be
utilized to characterize the MSE performance of MAMP in
each iteration, it can be employed to accurately analyze the
achievable rate and coding principle.

Due to the coding gain, the decoding transfer function
ϕ̂C
SE(·) is upper bounded by the demodulation transfer function

ϕ̂S
SE(·), i.e.,

ϕ̂C
SE(ρ

γ
t ) < ϕ̂S

SE(ρ
γ
t ), for 0 ≤ ργt ≤ ρmax, (10)

where ϕ̂S
SE(ρ

γ
t ) = mmse{x|

√
ργt x+ z,ΦS} and ρmax = snr

As shown in Fig. 3, assume that there is a unique fixed
point (ργ∗ , v

ϕ̂
∗ ) between η−1

SE (·) and ϕ̂S
SE(·). Since vϕ̂∗ > 0, the

converge performance of MAMP is not error-free.
Therefore, to achieve the error-free performance, a kind of

proper FEC code should be well-designed to guarantee an
available decoding tunnel between η−1

SE (·) and ϕ̂C
SE(·), i.e.,

ϕ̂C
SE(ρ

γ
t ) < η−1

SE (ρ
γ
t ), for 0 ≤ ργt ≤ ρmax. (11)

Therefore, based on (10) and (11), we obtain the error-free
condition of MAMP in the following lemma.
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Lemma 3 (Error-Free Decoding): MAMP can achieve error-
free decoding if and only if

ϕ̂C
SE(ρ

γ
t ) < min{ϕ̂S

SE(ρ
γ
t ), η

−1
SE (ρ

γ
t )}, for 0 ≤ ργt ≤ ρmax.

(12)
Then, based on Lemma 3 and I-MMSE lemma [14], we

give the achievable rate of MAMP as follows.
Lemma 4 (Achievable Rate of MAMP): The achievable rate

of MAMP with fixed ϕ̂C
SE(·) is

RMAMP =

∫ ρC
∗

0

ϕ̂C
SE(ρ

γ
t )dρ

γ
t ,

s.t. ϕ̂C
SE(ρ

γ
t ) < ϕ̂C∗

SE(ρ
γ
t ), for 0 ≤ ργt ≤ ρmax,

(13)

where ϕ̂C∗

SE(ρ
γ
t ) = min{ϕ̂S

SE(ρ
γ
t ), η

−1
SE (ρ

γ
t )} and ρC∗ =

ϕ̂C−1

SE (0).
Therefore, based on Lemma 4, the optimal code design

principle of MAMP can be obtained in the following lemma.
Lemma 5 (Optimal Code Design): The optimal coding

principle of MAMP is

ϕ̂C
SE(ρ

γ
t ) → ϕ̂C∗

SE(ρ
γ
t ), for 0 ≤ ργt ≤ ρmax, (14)

enabling MAMP to achieve error-free performance as well as
the maximum achievable rate.

B. Information-Theoretic Optimality Proof of MAMP

Based on Lemma 5, the maximum achievable rate of
MAMP is obtained directly in the following theorem.

Theorem 1 (Maximum Achievable Rate): The maximum
achievable rate of MAMP is

Rmax
MAMP →

∫ ρmax

0

ϕ̂C∗

SE(ρ
γ
t )dρ

γ
t , (15)

where ϕ̂C∗

SE(ρ
γ
t ) = min{ϕ̂S

SE(ρ
γ
t ), η

−1
SE (ρ

γ
t )}.

Due to the constrained-capacity optimality of OAMP/VAMP
[2], [13], based on Lemma 2, Lemma 5, and Theorem 1, the
information-theoretic (i.e., constrained-capacity) optimality of
MAMP is verified in the following theorem.

Theorem 2 (Constrained-Capacity Optimality): MAMP can
achieve the same maximum achievable rate as OAMP/VAMP,
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Fig. 5. BER performance of MAMP and OAMP/VAMP with optimized
LDPC codes and MAMP with P2P LDPC codes for Aill, where β = 1.5,
κ = {10, 50}, N = {500, 5000} and code length = {1 × 105, 2 × 105}.
“Opt-LDPC” is the optimized LDPC code, “Re-LDPC” the P2P-regular (3,6)
LDPC code with code rate = 0.5 [18], “Ire-LDPC” the well-designed
P2P-irregular code with code rate = 0.5 [19], and “limit” the associated
constrained capacity.

which indicates MAMP is constrained-capacity optimal in
GMIMO, i.e.,

Rmax
MAMP = Rmax

OAMP/VAMP →
∫ ρmax

0

ϕ̂C∗

SE(ρ)dρ, (16a)

s.t. ϕ̂C
SE(ρ) → ϕ̂C∗

SE(ρ) = min{ϕ̂S
SE(ρ), η

−1
SE (ρ)}, (16b)

where Rmax
MAMP is equal to the constrained capacity of GMIMO

given in [2], [13].
To demonstrate the advantages of MAMP, we also present

the maximum achievable rates of the conventional CAS-
MAMP receiver [17], in which the MLD and NLD are
implemented sequentially without iteration over each other.
Based on I-MMSE lemma [14], Fig. 3 shows that the max-
imum achievable rate of CAS-MAMP is Rmax

CAS−MAMP =∫ ργ
∗

0
ϕ̂C∗

SE(ρ
γ
t )dρ

γ
t for given snr. Therefore, compared with

Rmax
MAMP, the rate loss of CAS-MAMP is Rloss =∫ ρmax

ργ
∗

ϕ̂C∗

SE(ρ
γ
t )dρ

γ
t .

Taking ill-conditioned channel matrices Aill as examples,
Fig. 4 shows the maximum achievable rate comparison be-
tween MAMP and CAS-MAMP. Let the SVD of Aill be
Aill = UΛV H. U and V are generated by unitary matrices
of SVD decomposition of an IID Gaussian matrix. We set the
eigenvalues {ei} in Λ as [5]: ei/ei+1 = κ1/T , i = 1, ..., T −1,
and

∑T
i=1 e

2
i = N , where κ ≥ 1 denotes the condition number

of Aill and T =min{M,N}. As shown in Fig. 4, the maximum
achievable rates of MAMP are higher than those of CAS-
MAMP, and increase with the modulation order and SNR.
Moreover, different from MAMP, the achievable rate of CAS-
MAMP with high-order modulation (e.g., Gaussian signaling
and 16QAM) is lower than that of low-order modulation (e.g.,
QPSK). This similar phenomena has been discussed in [11].

V. NUMERICAL RESULTS

In this section, we present the bit error rate (BER) per-
formances and running time complexity of MAMP with op-
timized LDPC codes in GMIMO. Meanwhile, BER perfor-
mance comparisons with existing schemes are provided.
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Fig. 6. Running time comparison between MAMP and OAMP/VAMP, where
target BER = 2× 10−4, κ = 50, β = 1.5, and N = {500, 5000} .

We assume channel matrix is ill-conditioned. A kind of
irregular LDPC code with code rate ≈ 0.5 is optimized based
on Lemma 5 and QPSK modulation is employed.

As shown in Fig. 5, the BER comparisons between MAMP
and OAMP/VAMP with optimized LDPC codes are presented.
When N = 500, the gaps between BER curves at 10−5

of MAMP and OAMP/VAMP are within 0.1 dB, since the
optimality analysis for MAMP is based on infinite length
assumption. Meanwhile, we provide the BER comparisons
between MAMP and OAMP/VAMP for large-scale systems,
i.e., N = 5000. It is worth noting that MAMP can achieve
the same BER performances as OAMP/VAMP in large-scale
systems, but with much lower complexity than OAMP/VAMP.

To validate the advantages of the optimized LDPC codes,
the BER performances of MAMP with P2P regular and well-
designed irregular LDPC codes are also present. As shown in
Fig. 5, the gaps between BER curves of the optimized LDPC
codes and the associated constrained capacities are about
1.0 ∼ 2.7 dB, which verifies the capacity-approaching perfor-
mances of the optimized LDPC codes. Moreover, MAMP with
the optimized codes have 1.6 ∼ 5.0 dB gains over the MAMP
with P2P LDPC codes. This indicates that the Bayes-optimal
MAMP with well-designed P2P LDPC codes are not optimal
anymore with significant performance losses in GMIMO.

To intuitively highlight the low-complexity advantage
of MAMP, the running time comparison of MAMP and
OAMP/VAMP is shown in Fig. 6. The running time is
obtained by Matlab 2021a on a PC with an Intel Core i7-
11700F CPU and 16 GB of RAM. For N = 500, Fig. 6
shows that the running time of MAMP is just 30% of that
of OAMP/VAMP. When N increases to 5000, MAMP can
achieve the same performance as OAMP/VAMP with only 4‰
of the time consumption. The reason is that the complexity
of MAMP and OAMP/VAMP is determined by MLD with
complexity O(MNτ + Nτ2 + τ3) and LD with complexity
O
(
(M2N +M3)τ

)
, respectively [10], where τ is the num-

ber of iterations. The complexity of NLD is identical for
MAMP and OAMP/VAMP due to the same demodulation and
LDPC decoder employed in NLD. Therefore, compared with
OAMP/VAMP, MAMP can achieve the information-theoretic
limit of GMIMO with significantly lower implementation
complexity, making it a very promising candidate for large-
scale systems.

VI. CONCLUSION

This paper studies the achievable rate analysis and coding
principle of the low-complexity MAMP in GMIMO, demon-
strating its information-theoretic optimality. To overcome the
difficulty in multi-dimensional SE analysis of MAMP, a sim-
plified SISO VSE is derived for MAMP, based on which its
achievable rate is calculated and optimal coding principle is
established to maximize the achievable rate. Moreover, the
information-theoretic optimality of MAMP is proved. Numer-
ical results show that the BER performances of MAMP with
optimized LDPC codes approach the constrained capacities
and MAMP achieve the same performance with 4‰ of running
time compared to OAMP/VAMP for large-scale systems.
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