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Abstract—In this paper, we aim to enable an intelligent traffic
(TS) steering application in the open radio access network (O-
RAN) by jointly optimizing the flow-split distribution, congestion
control and scheduling (i.e. so-called JFCS). To do so, we develop
a multi-layer optimization framework based on network utility
maximization and stochastic optimization methods. The proposed
algorithm provides fast convergence, long-term utility-optimality
and significantly low latency compared to state-of-the-art RAN
approaches. In particular, our main contributions are as follows:
i) we propose the novel JFCS framework to efficiently and
adaptively route traffic to indented users in appropriate radio
units, and ii) we develop low-complexity algorithms to effectively
solve the JFCS problem in different time scales, enabling a
closed-loop control of the TS in the O-RAN context. The insights
presented in this work will pave the way for O-RAN that are
completely automated, offering improved control and flexibility.

I. INTRODUCTION

With the great success of mobile Internet, fifth generation
(5G) cellular networks have been standardized to meet com-
peting demands (e.g. extremely high data rate, low-latency
and massive connectivity) and proliferation of heterogeneous
devices. However, the existing “one-size-fits-all” 5G architec-
ture lacks sufficient intelligence and flexibility to enable the
coexistence of these demands. As we move towards 6G, the
forefront of this endeavor lies in open radio access network
(O-RAN). This approach involves the separation of radio
access network components and the opening of interfaces,
which is currently regarded as the most promising approach
to transform wireless technology from “connected things” to
“connected intelligence” [1]

Multi-layer (a.k.a. cross-layer) optimization for traditional
cellular RAN architectures has been extensively studied in
the literature (see e.g., [2] and references therein). In general,
the existing works only optimize radio resources while other
factors at higher layers (e.g. congestion control and rout-
ing) are overlooked, making guaranteed multi-layer quality-
of-service (QoS) infeasible. In addition, the non-causal sta-
tistical knowledge of traffic demands is required to model
queue states, which is again impractical. So far, there have
been only few attempts to study the applicability of the O-
RAN architecture. Kumar et al. [3] proposed an automatic
neighbour relation (ANR) approach to manage neighbour cell
relationships by leveraging machine learning (ML) techniques,
hence improving gNodeB (gNB) handovers. The authors in
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[4] developed an RL-based dynamic function splitting which
is shown to be able to effectively decide the O-RAN’s func-
tion splits and reduce operating costs. In traditional RAN
architectures, the traffic steering (TS) solutions are typically
determined by users’ radio conditions of a serving cell while
treating signals from neighboring cells as interference [5]. The
authors in [6] proposed a distributed TS scheme through edge
servers, where the matrix-based shortest path selection and
matrix-based multipath searching algorithms are developed to
dynamically decide the best paths for traffic steering. Very
recently, Kavehmadavani et al. [7] showed that a dynamic
multi-connectivity (MC)-based TS scheme can help steer
traffic flows towards the most suitable cells based on user-
centric condition. However, this work does not embed AI/ML
solutions in Non-real-time RAN intelligent controller (Non-RT
RIC) and assumes that all network information are available
at Near-RT RIC to optimize radio resource allocation. In
this paper, different from the aforementioned works, we pro-
pose a fully multi-layer optimization framework that captures
interplays between the physical and higher layers, enabling
proactive optimization of network parameters through RICs
with periodic feedback loops.

We consider the fact that the complete information of the
RAN layer is not available at the beginning of each time-
frame. Instead, we assume that only their expected values
are available to approximately measure queueing delay. An
interesting question naturally arises: How does the incomplete
information of user traffic demands affect the optimal choices
of the TS scheme? To answer this question, we introduce
a holistic multi-layer optimization framework, which jointly
optimizes the flow-split distribution, congestion control and
scheduling (called JFCS). The proposed framework effec-
tively characterizes the complex interactions between layers
(e.g. flow-split selection, congestion control rate and power
allocation). In summary, we make the following two key
contributions:
• We propose a novel JFCS framework to efficiently and

adaptively route data traffic to appropriate radio units. Our
framework provides a synergy between reinforcement
learning (RL), QCS and updated network state informa-
tion, and thus enabling a closed-loop control of the TS
in the O-RAN context.

• To ensure the practicality and scalability, we identify
inherent properties of the JFCS problem and propose an
intelligent resource management algorithm to build the979-8-3503-1090-0/23/$31.00 © 2023 IEEE



smoothed best response while maximizing the long-term
utility for each data-flow under arbitrary changes in traffic
demands.

II. NETWORK MODEL AND PROBLEM FORMULATION
A. Network Model
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Fig. 1: Illustration of the system model enabling TS where each DU
connects to multiples RUs towards cost-effective deployment.

As in Fig. 1, we consider the O-RAN architecture with
one centralized unit (CU), I distributed units (DUs) and J
radio units (RUs), where each DU connects to multiple RUs
for cost-effective deployment. We consider a downlink multi-
user multiple-input single-output (MU-MISO) system, where
J RUs simultaneously serve the set K , {1, 2, · · · ,K} of
K = |K| single-antenna UEs. The j-th RU served by the i-
th DU is referred to as RU (i, j), which is equipped with
Mi,j antennas. The set of RUs served by DU i is denoted by
Ji , {(i, 1), · · · , (i, Ji)} with |Ji| = Ji and

∑
i∈I Ji = J .

The total set of RUs is denoted as J , ∪i∈IJi.
We consider that the system operates in discrete time-frame

indexed by t ∈ [1, 2, · · · , T ], which corresponds to one large-
scale coherence time with duration of Tc, as shown in Fig.
2. Each frame is divided into Tf time-slots of equal duration
τ = Tc/Tf , where the time-slot is indexed by ts = tTf + s
with s ∈ {1, · · · , Tf}. At CU, there exists K independent
data-flows where each of which is intended for one UE. The
CU splits data-flow of UE k, say flow k, into multiple sub-
flows which are possibly transmitted through the set of paths
and then aggregated at this UE, so-called “traffic steering”.
For each data-flow k, we denote by Pk , {(i, j)}∀(i,j)∈J
the set of path states, including queue states and routing
tables. A subset of separate paths in the set Pk (i.e., via
neighboring RUs indexed by (i, j)) should be appropriately
selected. Let us denote by ck[t] ,

[
ci,jk [t]

]
(i,j)∈Pk

the flow-
split selection (action) vector for data-flow k in time-frame
t, i.e., ci,jk [t] = 1 if path (i, j)∈ Pk (i.e., via RU (i, j)) is
selected to transmit data of flow k; otherwise, ci,jk [t] = 0. We
let βi,jk [t] ∈ [0, 1] be the fraction of data-flow k which is routed
via path (i, j) in time-frame (state) t by selecting action ci,jk [t],
where

∑
(i,j)∈Pk β

i,j
k [t] = 1. The global flow-split decision

is denoted by B[t] , {βk[t],∀k
∣∣∑

(i,j)∈Pk β
i,j
k [t] = 1,∀k},

where each column flow-split vector βk[t] ,
[
βi,jk [t]

]T
(i,j)∈Pk

∈
RJ corresponds to the flow-split vector of data-flow k.

1 2 t t+ 1

Frame t (Tc)

Update β[t]

ts = tTf + s tTf + TftTf + 1
Optimize w[ts]

time-slot ts (τ)

Fig. 2: Illustration of frame structure with each time-frame t.

1) Wireless Channel Model and Downlink Throughput
The channel vector between RU (i, j) and UE k ∈
K in time-slot ts is denoted by hi,jk [ts] ∈ CMi,j×1,
which follows the Rician fading model with the Ri-
cian factor κi,jk [t]. In particular, hi,jk [ts] is modeled

as hi,jk [ts] =
√
ξi,jk [t]

(√
κi,jk [t]/(κi,jk [t] + 1)h̄i,jk [t] +√

1/(κi,jk [t] + 1)h̃i,jk [ts]
)

where ξi,jk [t] represents the large-

scale fading; h̄i,jk [t] and h̃i,jk [ts] ∼ CN (0, I). Denoting by
xi,jk [ts] and wi,j

k [ts] ∈ CMi,j×1 a unit-power data symbol and
a linear beamforming vector transmitted from RU (i, j) to UE
k, respectively, the received signal at UE k can be written as
yk[ts] =

∑
(i,j)∈Pk

(hi,jk [ts])
Hwi,j

k [ts]x
i,j
k [ts]

+
∑

k′∈K\{k}

∑
(i,j)∈Pk′

(hi,jk [ts])
Hwi,j

k′ [ts]d
i,j
k′ [ts] + ωk[ts]

(1)
where ωk[ts] is the AWGN with power N0.

In this work, we consider the zero-forcing beamforming
(ZFBF) for downlink transmisison. To make ZFBF efficient
and feasible, we consider that Mi,j > Ki,j ,

∑
k∈K c

i,j
k [t] ≤

K, ∀(i, j) ∈ J , which helps cancel the inter-user interference
caused by this RU. In addition, the system bandwidth is
equally allocated to each RU (i, j), i.e. W i,j = W/J , to
completely remove the intra-user interference and interference
caused by other RUs. Under the considered ZFBF tech-
nique, beamformer wi,j

k [ts] at RU (i, j) is designed to satisfy
(hi,jk′ [ts])

Hwi,j
k [ts] = 0,∀k′ ∈ K \ {k}. We let Vi,j

k [ts] ∈
CMi,j×(Mi,j−Ki,j+1) be the null space of Hi,j

−k[ts] ,[
hi,j1 [ts] · · ·hi,jk−1[ts] hi,jk+1[ts] · · ·hi,jK [ts]

]
∈ CM×(K−1). We

can then write wi,j
k [ts] = Vi,j

k [ts]w̃
i,j
k [ts], where w̃i,j

k [ts] ∈
C(Mi,j−Ki,j+1)×1,∀k, (i, j) are the solutions to the ZFBF-
based problem. By defining ν̃i,jk [ts] , ‖(h̃i,jk [ts])

H‖22
with h̃i,jk [ts] , (hi,jk [ts])

HVi,j
k [ts] ∈ C1×(Mi,j−K+1), we can

equivalently express w̃i,j
k [ts] as w̃i,j

k [ts] =
√
pi,jk [ts]

(h̃i,jk [ts])
H

√
ν̃i,jk [ts]

,

where pi,jk is the transmit power coefficient allocated to
UE k by RU (i, j). The downlink achievable rate (bits/s)
of UE k from RU (i, j) in time-slot ts can be written as
ri,jk (pi,jk [ts]) , W i,j log2

(
1 +

pi,jk [ts]ν̃
i,j
k [ts]

N0

)
. By pk[ts] ,[

pi,jk [ts]
]
(i,j)∈Pk

, the overall effective data rate of data-flow
k (or UE k) can be computed as rk(pk[ts]) =

∑
(i,j)∈Pk

ri,jk (pi,jk [ts]). Given H[ts] ,
[
h1[ts] · · ·hK [ts]

]
∈ CM×K with

hk[ts] ,
[
(hi,jk [ts])

H
]H
∀i,j ∈ CM×1 and βk[t], we define the



instantaneous achievable rate region under pk[ts] as

CH[ts] ,

 rk(pk[ts]),∀k

∣∣∣∣∣
rk(pk[ts]) =

∑
(i,j)∈Pk

ri,jk (pi,jk [ts])∑
k∈K

pi,jk [ts] ≤ P i,j
max, ∀(i, j)

 .

2) Queueing Model
Let Ak[t] (bits/s) be the total rate of instantaneous arrived

data destined for UE k in time-frame t with mean E{Ak} =
Āk. We assume that Ak[t] is upper bounded by a finite constant
Amax, such as Ak[t] ≤ Amax <∞,∀k, t, and unknown at the
beginning of time-frame t. As a result, the queue-length of
data-flow k at RU (i, j) in time-slot ts evolves as follows:

qi,jk [ts+1] =
[
qi,jk [ts]+βi,jk [t]Ak[t]τ−ri,jk (pi,jk [ts])τ

]+
, where

[x]+ , max{0, x}. By q[ts] ,
[
qi,jk [ts]

]T
k,(i,j)

and following
[8], a queueing network is stable if the steady-state total
queue-length remains finite: lim sup

ts→∞
E{‖q[ts]‖1} <∞.

B. Problem Formulation
Let r̄k , lim

ts→∞
1
ts

∑ts
`=1 rk(pk[`]) denote the long-term

average rate of data-flow k. Each UE k is associated with
a utility function, denoted by Uk(r̄k).

Assumption 1. The utility function Uk(·) is assumed to
satisfy the following conditions: i) Uk(·) is twice continu-
ously differentiable, increasing, and strictly concave; and ii)
There exist positive constants 0 < ψ < Ψ < ∞, such as
ψ ≤ −U ′′k (r̄k) ≤ Ψ,∀r̄k ∈ [0, r̄max], with r̄max being the
maximum long-term average rate of any data flow.

Based on the network utility maximization (NUM) frame-
work, the joint flow-split distribution, congestion control and
scheduling optimization problem (JFCS) is mathematically
formulated as

JFCS : max
β,r̄,p

∑
k∈K

Uk(r̄k) (2a)

s.t. lim sup
ts→∞

E{‖q[ts]‖1} <∞ (2b)

rk(pk[ts]) ∈ CH[ts],∀ts, k ∈ K (2c)
βk[t] ∈ B[t],∀t, k ∈ K (2d)

Prob
(qi,jk [ts]

Āk
≤ d̄k

)
≥ εk, ∀ts, k, (i, j) (2e)

where β ,
[
βT
k

]T
k∈K, r̄ ,

[
r̄k
]T
k∈K and p ,

[
pk
]
k∈K.

Constraint (2e) ensures different minimum outage delay re-
quirements for sub-flows, where d̄k and εk (0 � εk ≤ 1)
are the maximum allowable average delay and the required
reliable communication for each UE, respectively.

III. JFCS-BASED NETWORK UTILITY OPTIMIZATION
A. Tractable Form of the JFCS Problem (2)

Challenges of Solving JFCS Problem (2): We can ob-
serve that that constraint (2c) is nonconvex while (2e) is a
nonconvex probabilistic constraint, generally making problem
(2) NP-hard. In addition, the expectations in the constraints
cause the stochastic nature of the problem, which cannot be
solved directly. The classical optimization approaches, such
as successive convex approximation (SCA) [9], are often
applied to solve the optimization problems of nonconvex and

deterministic constraints. However, the stochastic SCA-based
algorithms can no longer guarantee a feasible and (sub)-
optimal solution of all subsequent time intervals (TTIs) due to
dynamics of physical layer at small timescales.

Towards a safe design, we consider the replacement of con-
straint (2e) by its deterministic constrain. From the well-known
Markov inequality [10], we can show that Prob

(
qi,jk [ts] ≥

Ākd̄k
)
≤ E{qi,jk [ts]}/Ākd̄k, yielding∑t

`=1
βi,jk [`]Ākτ − (1− εk)Ākd̄k −

∑ts−1

`=1
ri,jk (pi,jk [`])τ

≤ ri,jk (pi,jk [ts])τ, ∀ts, k ∈ K, (i, j) ∈ Pk (3)
where each queue-length is always non-negative.

To facilitate the following optimization, we introduce con-
gestion control variables a[ts] ,

[
ak[ts]

]T
k∈K, satisfying

āk − r̄k ≤ 0,∀k, where āk , lim
ts→∞

1
ts

∑ts
`=1 ak[`]. Problem

(2) is then rewritten as
max
β,ā,r̄,p

∑
k∈K

Uk(āk) (4a)

s.t. (2b), (2c), (2d), (3) (4b)
āk − r̄k ≤ 0,∀k. (4c)

We also introduce a new auxiliary queue-length vector
q̂[ts] ,

[
q̂k[ts]

]T
k∈K, where q̂k[ts+1] =

[
q̂k[ts] + ak[ts]τ −

rk(pk[ts])τ
]+

to associate constraint (4c) with a penalty
function and ak[ts] ∈ [0, Amax]. We define the total queue
backlog of all UEs in time-slot ts as L[ts] = 1

2

(∑
k∈K∑

(i,j)∈Pk
qi,jk [ts]

2

τ2 +
∑
k∈K

q̂k[ts]
2

τ2

)
. For given (q[ts], q̂[ts]),

the Lyapunov drift from time-slot ts to ts+1 is given as
∆L[ts] = L[ts+1]−L[ts]. To guarantee joint network stability
and penalty minimization, we adopt the drift-plus-penalty
procedure [11] to minimize the drift of a quadratic Lyapunov
function and rewrite (4) as

max
β,ā,r̄,p

ϕ
∑
k∈K

E{Uk(ak[ts])} −E{∆L[ts]}, s.t. (2c), (2d), (5)

where ϕ is a scaling factor to balance two objective functions.

B. Overall Intelligent Resource Management Algorithm
From the inequality ([x]+)2 ≤ x2 and (x + y)2 − x2 =

2xy + y2, we have

∆LUB[ts] ,
∑

k∈K

∑
(i,j)∈Pk

qi,jk [ts]

τ

(
βi,j
k [t]Ak[t]− ri,jk (pi,jk [ts])

)
+
∑

k∈K

q̂k[ts]

τ

(
ak[ts]− rk(pk[ts])

)
+B[ts] ≥ ∆L[ts] (6)

where B[ts] , 1
2

∑
k∈K

∑
(i,j)∈Pk

(
βi,jk [t]Ak[t] −

ri,jk (pi,jk [ts])
)2

+ 1
2

∑
k∈K

(
ak[ts] − rk(pk[ts])

)2
. Following

[12], we consider that B[ts] is finite and bounded by B̄ for
all ts, i.e., E{B[ts]

∣∣q[ts], q̂[ts]} ≤ B̄. As a result, problem
(5) is simplified to

max
β,ā,r̄,p

ϕ
∑
k∈K

E{Uk(ak[ts])} − E{∆LUB[ts]} (7a)

s.t. (2c), (2d), (3). (7b)
Long-term subproblem (L-SP): Given Lk[t] =∑
(i,j)∈Pk q

i,j
k [ts]/τ(ri,jk (pi,jk [ts])−βi,jk [t]Ak[t]), the flow-split



distribution subproblem at time-frame t is given as
L-SP : max

βk[t]∈B[t],∀k

∑
k∈K

Lk[t]. (8)

Although problem (8) is a linear program in β, it cannot be
solved directly by standard optimization techniques because
Ak[t],∀k are incompletely known at the beginning of time-
frame t.

Short-term subproblems (S-SPs): The congestion control
subproblem at time-slot ts is

S-SP1 : max
a[ts]≥0

∑
k∈K

(
ϕUk(ak[ts])−

q̂k[ts]

τ
ak[ts]

)
(9)

which is an unconstrained convex problem. The optimal
solution of (9) exists and is unique that is a∗k[ts] =

U
′−1
k

( q̂k[ts]
ϕτ

)
,∀k, where U

′−1
k (·) denotes the inverse function

of the first derivation of Uk(·). Given the optimal solution
β∗[t], the short-term power control optimization subproblem
(i.e., the weighted queue-length-based scheduling) at time-slot
ts is given as

S-SP2 : max
r[ts],p[ts]

∑
k∈K

q̂k[ts]

τ
rk(pk[ts]), s.t. (2c), (3). (10)

The overall intelligent resource management algorithm for
solving the JFCS problem (2) is summarized in Algorithm
1, where the solutions of subproblems will be provided next.

Algorithm 1: Intelligent Resource Management Algorithm
for Solving JFCS Problem (2), compliant with O-RAN

Initialization: Set t = 1 and select a positive scaling factor ϕ. Initialize
βk[1] =

1
|Pk|

[1, · · · , 1] and all queues are set to be empty:

qi,jk [11] = 0 and q̂k[11] = 0,∀(i, j), k.
Main Loop:

1: for each frame t = 1, 2, · · · , T do {/*Long-term scale t*/}
2: Flow-Split Distribution: Given {q[t− 1],A[t− 1]}, CU splits

data-flows of all UEs based on the optimal flow-split decisions
β∗[t] by solving L-SP at Non-RT RIC:

max
βk[t]∈B[t],∀k

∑
k∈K

Lk[t].

3: for each time-slot ts = tTf + s with s ∈ {1, · · · , Tf} do
{/*Short-term scale ts*/}

4: Congestion Controller: Given q̂[ts], solve S-SP1 (9) to obtain
the optimal congestion control variables:

a∗k[ts] = min
{
U
′−1
k

( q̂k[ts]
ϕτ

)
, Amax

}
, ∀k.

5: Weighted Queue-Length-Based Scheduler: Given q̂[ts] and
β∗[t], each RU (i, j) ∈ Pk schedules the service rate
ri,jk (pi,jk [ts]) for UE k ∈ K by solving S-SP2:

max
r[ts],p[ts]

∑
k∈K

q̂k[ts]

τ
rk(pk[ts]), s.t. (2c), (3).

6: Queue-Length Updates: Queue-Lengths are updated as
qi,jk [ts+1] =

[
qi,jk [ts] + βi,j

k [t]Ak[t]τ

− ri,jk (pi,jk [ts])τ
]+
, ∀k, (i, j)

q̂k[ts+1] =
[
q̂k[ts] + ak[ts]τ − rk(pk[ts])τ

]+
, ∀k.

7: Set s = s+ 1
8: end for
9: Update {q[t],A[t]} := {qi,jk [t], Ak[t]}k,(i,j) to Non-RT RIC.

10: Set t = t+ 1
11: end for

IV. PROPOSED ALGORITHMS FOR SOLVING SUBPROBLEMS
A. Reinforcement Learning Algorithm for Solving L-SP (8)

Let us denote by ui,jk [t] ,
qi,jk [ts]

τ

(
ri,jk (pi,jk [ts]) −

βi,jk [t]Ak[t]
)

the instantaneous utility observation of data-flow
k at time-frame t when selecting path (i, j) ∈ Pk. The total
utility observation of data-flow k, denoted by uk[t], is thus
uk[t] =

∑
(i,j)∈Pk u

i,j
k [t]. Inspired by [13], we denote ûi,jk [t]

as the estimated utility of data-flow k at time-frame t when
selecting path (i, j). In addition, the actual utility observed
by data-flow k at time-frame t, denoted by ūk[t], is given as
ūk[t] = uk[t− 1], which is based on feedback from Near-RT
RIC at time t − 1. By initializing ûi,jk [1] = 0, the estimated
utility of data-flow k is updated for action ck[t] = ci,jk [t] as
follows:
ûi,jk [t] = ûi,jk [t− 1] + ηu[t]1{ck[t]=ci,jk [t]}

(
ūk[t]− ûi,jk [t− 1]

)
(11)

for ∀t > 1 where ηu > 0 is the decreasing step size (learning
rate).

Next, we denote θ̂k[t] , [θ̂i,jk [t]](i,j)∈Pk as the estimated
regret vector of data-flow k, where each element is updated
as

θ̂i,jk [t] =θ̂i,jk [t− 1] + ηθ[t]1{ck[t]=ci,jk [t]}
(
ūk[t]

− ûi,jk [t]− θ̂i,jk [t− 1]
)
, ∀t > 1 (12)

with θ̂i,jk [1] = 0 and ηθ[t] being the learning rate. We note
that trying all possible actions to choose the best paths (e.g.
exploration) can offer the highest payoff, but with the cost
of slow convergence and even computationally prohibitive.
During the exploitation process, playing an action associated
with the highest estimated utility in (11) will likely result in a
very sub-optimal solution. To make this tradeoff more efficient,
let us define the best response function β̂[t] = f(θ̂[t]) as
f(θ̂[t]) := argmin

βk[t]∈B[t]

{
h
(
β[t]

)
−λ

∑
k∈K

∑
(i,j)∈Pk

βi,j
k [t]θ̂i,jk [t]

}
. (13)

Here λ is the so-called trade-off factor (a.k.a. Boltzmann
temperature) and h

(
β[t]

)
denotes the regularization function.

We note that when λ→ 0, it leads to uniform probabilities of
all actions, i.e., βi,jk [t] = 1/|Pk|,∀(i, j) ∈ Pk. For λ→∞, the
second term in (13) will dominate the best response function
and then the actions associated with highest estimated regret
will be selected [13].

Regularization function: The solutions of problem (8) lie
in the unit simplex for each data-flow. Therefore, we adopt
the Gibbs-Shannon entropy as the regularization function,
i.e. h

(
β[t]

)
=
∑
k∈K

∑
(i,j)∈Pk β

i,j
k [t] ln

(
βi,jk [t]

)
, which is K-

strongly convex. Substituting h
(
β[t]

)
into (13), we have

f(θ̂[t]) := argmin
βk[t]∈B[t],∀k

{∑
k∈K

∑
(i,j)∈Pk

βi,jk [t] ln
(
βi,jk [t]

)
− λ

∑
k∈K

∑
(i,j)∈Pk

βi,jk [t]θ̂i,jk [t]
}
. (14)

The function f(θ̂[t]) is convex and separable for each βi,jk [t].
By solving ∂f(θ̂[t])/∂βi,jk [t] = ln

(
βi,jk [t]

)
+ 1− λθ̂i,jk [t] = 0,

we have βi,jk [t] = f(θ̂i,jk [t]) = exp
(
λθ̂i,jk [t]− 1

)
. To ensure∑

(i,j)∈Pk β
i,j
k [t] = 1,∀k, we normalize f i,jk (θ̂k[t]) through



the exponentiated mirror function as

f i,jk (θ̂k[t]) =
exp

(
λ
[
θ̂i,jk [t]

]+)∑
(i′,j′)∈Pk exp

(
λ
[
θ̂i
′,j′

k [t]
]+) . (15)

As a result, the estimate value of each element of flow-split
vector βk[t] is updated for all actions with the regret as
βi,jk [t] = βi,jk [t−1]+ηβ [t]

(
f i,jk (θ̂k[t])−βi,jk [t−1]

)
for t > 1,

where βk[1] =
1
|Pk|

[1, · · · , 1] and ηβ [t] is the learning rate.
B. Proposed Solution for Solving S-SP2 (10)

Given the optimal solution β∗k[t],∀k, the short-term power
optimization problem (10) with ZFBF can be reformulated as

max
p[ts]

∑
k∈K

q̂k[ts]

τ
rk(pi,jk [ts]) (16a)

s.t. R̄i,jk [ts] ≤ ri,jk (pi,jk [ts])τ, ∀k, (i, j) (16b)∑
k∈K

pi,jk [ts] ≤ P i,jmax, ∀(i, j). (16c)

The function ri,jk (pi,jk [ts]) is concave in pi,jk [ts], leading to the
convexity of problem (16). From (16b), one can show that

pi,jk [ts] ≥ pi,jk,min[ts] := N0

ν̃i,jk [ts]
2
R̄
i,j
k

[ts]

Wi,jτ
−1. We now formulate

the partial Lagrangian as

L(p[ts],µ) =
∑

k∈K

q̂k[ts]

τ
rk(pi,jk [ts])

+
∑

(i,j)∈J
µi,j
(
P i,jmax −

∑
k∈K

pi,jk [ts]
)

(17)

where µ , {µi,j ≥ 0}(i,j)∈J are the Lagrange multipliers
of constraint (16c). The dual function can be written as
g(µ) = max{L(p[ts],µ)|pi,jk [ts] ≥ pi,jk,min[ts],∀k, (i, j)}. We
note that L(p[ts],µ) is separable with respect to pi,jk [ts]. Thus,
by solving

pi,j∗k [ts] = argmax
pi,jk [ts]≥pi,jk,min[ts]

{ q̂k[ts]

τ
W log2

(
1 +

pi,jk [ts]ν̃
i,j
k [ts]

N0

)
− µ∗i,jp

i,j
k [ts]

}
(18)

for a given optimal Lagrange multiplier µ∗i,j , the optimal
solution of pi,j∗k [ts] is determined as

pi,j∗k [ts] = max
{
pi,jk,min[ts],

q̂k[ts]W
i,j

τµ∗i,j ln 2
− N0

ν̃i,jk [ts]

}
. (19)

The optimal Lagrange multiplier µ∗i,j is efficiently found
by applying the bisection search method between µ

i,j
=

0 and a sufficiently large µi,j . At iteration n, each RU
(i, j) computes µ

(n)
i,j = (µ

i,j
+ µi,j)/2 and p

i,j(n)
k [ts] as

in (19). If
∑
k∈K p

i,j(n)
k [ts] − P i,jmax ≤ 0, then compute

µ′i,j = (µ
i,j

+ µi,j)/2 and update µi,j := µ′i,j ; otherwise,
compute µ′i,j = (µ

i,j
+ µi,j)/2 and then update µ

i,j
:=

µ′i,j . This procedure is repeated until convergence. As a
result, the optimal ZFBF solution is recovered as wi,j∗

k [ts] =(√
p̃i,j∗k [ts]/

√
ν̃i,jk [ts]

)
Vi,j
k [ts](h̃

i,j
k [ts])

H, ∀k, (i, j).

V. NUMERICAL RESULTS
A. Simulation Setups and Parameters

We consider a system topology which includes 8 RUs and
12 UEs located within a circle of 1-km radius. There are

two DUs, each connected to 4 RUs. The large-scale fading
coefficient ξ[t] ∈ {ξi,jk [t]}∀(i,j),k, is modeled as the three-
slope path loss model, such as ξ[t] = ξ0 − 35 log10(d[t]) +
20c0 log10(d/d0)+15c1 log10(d/d1) where ξ0 = −140.7+SF
dB, d0 = 10 m, d1 = 50 m, and d is the distance between an
RU and a UE; here ci = max{0, di−d|di−d|} with i ∈ {0, 1}
and SF ∼ CN (0, σSF) denotes the shadowing factor with
σSF = 8 dB. The Rician factor κ[t] ∈ {κi,jk [t]}∀(i,j),k is
given as κ = PLoS(d[t])/

(
1 − PLoS(d[t])

)
, where the LoS

probability follows the 3GPP–UMa model as PLoS(d[t]) =

min
(

18
d[t] , 1

) (
1 − exp(−d[t]

36 )
)

+ exp(−d[t]
36 ). The array re-

sponse vector is generated as h̄i,jk [t] = a(φi,jk [t]), where
each element m is given as

[
a(φi,jk [t])

]
m

= exp
(
jπ(m −

1) sinφi,jk [t]
)

with φi,jk [t] ∈ [−π/2, π/2) being the angle-of-
departure (AoD) at RU (i, j). The noise power is modeled as
N0 = −170 + 10 log10(W ) + NF dBm with the noise figure
NF = 9 dB.

We run Algorithm 1 over T = 10000 frames, where each
frame consists of Tf = 10 time-slots (subframes) and has
duration of Tc = 10 ms, followed by 5G NR Frame structure.
In each time-frame t, UE k is served by a subset of four RUs.
To illustrate the heterogeneity of UEs, we assume that the
arrival rate Ak[t] is uniformly distributed in [1, 3] Gbps. The
step sizes (learning rates) are set to decrease after each frame
as ηu[t] = 1/(t + 1)0.51, ηθ[t] = 1/(t + 1)0.55 and ηβ [t] =
1/(t+1)0.6 [14]. We adopt the proportional fairness metric to
model the utility function as: Uk(rk) = log(0.001 + rk),∀k
[15]. The other parameters are given as W = 20 MHz, Mi,j ≡
M = 16, P i,jmax ≡ Pmax = 43 dBm, ∀(i, j), d̄k ≡ d̄ = 10 ms
and εk ≡ ε = 0.95, ∀k. In the following figures, results are
averaged over the last 6000 frames.

Benchmark schemes: To demonstrate the benefits of the
proposed JFCS algorithm, we consider the following three
benchmark schemes: i) “NUM with fixed resource allocation
(NUM-FRA)” [16]: Under Algorithm 1, RUs allocate power
equally to UEs, ii) “NUM with equal flow-split distribu-
tion (NUM-EFSD):” CU splits data-flows of all UEs equally
among the selected paths, i.e., βi,jk [t] = 1/|Pk|,∀(i, j) ∈ Pk,
and iii) “NUM with the nearest RU selection (NUM-NRU):”
Under Algorithm 1, each UE k selects only the nearest RU
for the data transmission, i.e. βi,jk [t] = 1 if RU (i, j) is the
nearest RU to UE k.

B. Numerical Results and Performance Comparison
From Fig. 3(a), it can be observed that the congestion

control rates for different values of the scaling factor ϕ
converge to the same optimal solution, and ‖a[ts]‖ is almost
independent of ϕ. In addition, increasing ϕ results in a smaller
divergence of the steady-state congestion control rate, but
also slows down the convergence rate of Algorithm 1. The
reason is attributed to the fact that for a large ϕ, the network
utility function

∑
k∈K Uk(ak[ts]) in (5) will prevail over the

Lyapunov drift function ∆L[ts], which requires more iterations
to guarantee network stability. In Fig. 3(b), we increase the
trade-off factor λ (i.e. Boltzmann temperature) from 0.05 to
0.7. The result shows that the larger the value of λ, the better
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Fig. 4: The steady-state congestion control rate w.r.t. M .

the estimated utility that can be achieved with the cost of
lower convergence speed of the RL process. Conversely, a
low value of λ can speed up convergence by allocating traffic
data uniformly to all paths, but leads to a very sub-optimal
solution.

We show the performance comparison in terms of the
steady-state congestion control rate E{‖a∞(25)‖} among the
considered schemes versus the number of antennas at RUs
in Fig. 4. We fix ϕ = 25 and vary M ≡ Mi,j ,∀(i, j) from
16 to 128 to investigate the impact of the physical factor.
As M increases, the downlink instantaneous achievable rates
of all UEs also significantly increase since more degrees of
freedom are added to leverage multi-user diversity, resulting
in lower queue-lengths. For a fixed value of ϕ, the steady-
state congestion control rate vector increases monotonically
with M . Next, the impact of scaling factor ϕ on the steady-
state total queue-length E{‖q̂∞(ϕ)‖1} is plotted in Fig. 5. It can
be seen that the steady-state total queue-length of all schemes
monotonically scales as O(ϕ)+O(

√
ϕ). Clearly, Algorithm 1

outperforms the benchmark schemes in all ranges of M , and
the gap is deeper when M is small and ϕ is large.

VI. CONCLUSION
We have proposed a new holistic multi-layer optimization

framework, called JFCS, to enable intelligent traffic steering
in a hierarchical O-RAN architecture. By leveraging network
utility maximization and stochastic optimization methods, we
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Fig. 5: The steady-state total queue-length with respect to ϕ.

have developed an intelligent resource management algorithm
to efficiently and dynamically guide traffic to appropriate RUs
by jointly optimizing the flow-split distribution, congestion
control and scheduling. The proposed algorithm is proven
to achieve rapid convergence, long-term utility-optimality and
significantly low delay existing state-of-the-art methodologies.
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