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Abstract—The internet of things (IoT) based wireless sensor
networks (WSNs) face an energy shortage challenge that could be
overcome by the novel wireless power transfer (WPT) technology.
The combination of WSNs and WPT is known as wireless
rechargeable sensor networks (WRSNs), with the charging ef-
ficiency and charging scheduling being the primary concerns.
Therefore, this paper proposes a probabilistic on-demand charg-
ing scheduling for integrated sensing and communication (ISAC)-
assisted WRSNs with multiple mobile charging vehicles (MCVs)
that addresses three parts. First, it considers the four attributes
with their probability distributions to balance the charging
load on each MCV. The distributions are residual energy of
charging node, distance from MCV to charging node, degree
of charging node, and charging node betweenness centrality.
Second, it considers the efficient charging factor strategy to
partially charge network nodes. Finally, it employs the ISAC
concept to efficiently utilize the wireless resources to reduce the
traveling cost of each MCV and to avoid the charging conflicts
between them. The simulation results show that the proposed
protocol outperforms cutting-edge protocols in terms of energy
usage efficiency, charging delay, survival rate, and travel distance.

Index Terms—Wireless rechargeable sensor networks, on-
demand, partial charging, ISAC, mobile charging vehicles.

I. INTRODUCTION

The internet of things (IoT) based wireless sensor networks

(WSNs) have seen significant growth in a broad range of

applications over the last decades, including industrial au-

tomation, military applications, smart cities, environmental

monitoring, and healthcare. A WSN is composed of numerous

battery-operated sensor nodes that continuously monitor the

state of the environment and send the sensed data to a sink

through single or multi-hop communication. A low battery

level in sensor nodes can reduce the lifetime of WSNs [1],

[2]. Due to the small batteries that power the sensor nodes,

energy consumption becomes a significant challenge for WSN

applications. In recent years, numerous research studies have

been conducted to extend network lifetime. These studies are

classified into two categories: energy replenishment [3] and

energy conservation [4].

Wireless Power Transfer (WPT) technology has made it pos-

sible to effectively replenish the energy in wireless recharge-

able sensor networks (WRSNs). A WRSN generally consists

of three components: a sink that also serves as a depot for

mobile charging vehicles (MCVs), single or multiple MCVs,

and sensor nodes with rechargeable batteries that allow MCVs

to recharge them by transmitting wireless signals [5]. The way

the sensor nodes are recharged allows the WRSNs to operate

continuously in an efficient manner [6].

The MCVs generally use one of two fundamental charging

scheduling strategies: on-demand charging [7] and periodic

charging [8]. In periodic charging, an MCV travels the network

according to a predetermined and known schedule. Unfor-

tunately, due to the dynamic energy depletion rate of the

nodes, this charging schedule is not ideal. On the contrary,

on-demand charging appears to be more realistic because it

makes real-time decisions based on the energy requirements of

the sensor nodes. Therefore, it can handle situations where the

node's energy depletion rate is highly unpredictable. Moreover,

charging strategies generally follow either full charging or

partial charging models. In a full-charging model, the sensor

nodes receive a full recharge to their battery capacity, resulting

in significant charging delays. In contrast, the partial charging

model allows for more sensor nodes to be recharged. However,

in a charging process, the traveling time and conflicting

between multiple MCVs must also be addressed properly.

To address the aforesaid issue, we intend to employ the

Integrated Sensing and Communication (ISAC) technique [9],

which combines sensing and communication functionality to

efficiently use wireless resources, realize wide area environ-

ment sensing, and even to pursue mutual benefits. Therefore,

ISAC can improve charging efficiency and reduce travel time

of MCVs by leveraging the benefits of wireless signal [10]. A

charging node can be in a priority queue of multiple MCVs but

with different priorities. Thus, whenever an MCV enters the

sensing range of a prioritized charging node, the node will send979-8-3503-1090-0/23/$31.00 © 2023 IEEE
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the ISAC signal to the MCV, receive the echo from the MCV

via wireless transmission, analyze it, and then communicate

with the sink node to update the priority queues of other

MCVs. This mechanism significantly reduces travel time and

avoids conflicts when multiple MCVs attempt to overcharge a

node in a single request.

The aforementioned studies have provided convincing mo-

tivations to address the issues of deploying multiple MCVs

and developing an effective on-demand charging strategy for

sensor nodes, as well as integrating the ISAC concept with

WRSNs to optimize network stability. Therefore, this paper

proposes a probabilistic on-demand charging scheduling for

ISAC-assisted WRSNs with multiple mobile charging vehicles

(Poised). The contribution of our paper lies in several unique

aspects. Firstly, it offers a balanced charging load strategy on

each MCV priority queue by utilizing four attributes with their

probability distributions, namely the residual energy of the

charging node, the distance from the MCV to the charging

node, the degree of a charging node, and the charging node

betweenness centrality. These attributes help achieve charg-

ing efficiency and network lifetime. Secondly, it employs a

charging factor strategy for each MCV queue, which partially

charges all nodes while further improving charging efficiency

and coverage. Lastly, the integration of the ISAC concept with

WRSNs efficiently utilizes wireless resources to reduce travel

time and avoid conflicts between multiple MCVs overcharging

the same node. The primary goal of our paper is to provide a

well-balanced charging strategy for multiple MCVs with an

efficient on-demand charging strategy to optimize charging

efficiency. Additionally, we integrate sensing and communica-

tion techniques to reduce MCV travel time within the network,

thereby improving network stability. The unique aspects and

contributions of our approach make our proposal an innovative

and effective solution to the identified issues.

II. RELATED WORK

This section provides a brief overview of several studies on

WRSNs energy replenishment that are relevant to our work.

The authors of [11] developed a charging method that

clusters the energy requirements of nodes in order to equally

distribute the charging load across the MCVs. It reduces the

charging delay to some extent by increasing the number of

recharged nodes. In [12] and [13], the authors introduced

charging scheduling approaches for the problem of minimizing

the longest delay. To prevent a sensor node from being charged

by two or more MCVs at once, they sought to identify a closed

charging tour for each MCV. However, the charging load

across the MCVs were unbalanced due to their methodology.

The authors of [7] introduced a distributed mobile charging

protocol to schedule multiple MCVs in dense WRSNs. They

focused on an on-demand partial charging strategy and applied

a game theory technique to address the multiple charging prob-

lem, which resulted in repetitive games played by the MCVs.

Their approach reduced charging delay to some extent by

improving charging coverage. The authors of [14] addressed

the problem of multiple MCVs coordination, which consists of

scheduling multiple chargers and optimizing travel time with

the goal of reducing the overall energy usage of MCVs by

modifying their mobility speed and charging time. The authors

of [15] introduced an uneven cluster-based mobile charging

approach that allocates nodes into clusters and then focuses on

the charging schedule for each MCV while taking remaining

energy and sensor node distance into account. Despite this,

their approach has a lower charging efficiency. The authors of

[6] introduced a charging scheduling approach based on fuzzy

logic with multiple MCVs. Their approach divides the network

to evenly distribute the charging load of sensor nodes on each

MCV, and it also determines a dynamic charging threshold for

each node depending on their respective energy usage rates.

Furthermore, for each MCV, the next node to be charged is

determined by combining fuzzy logic and multi-metric inputs.

However, due to an inefficient multi-metric strategy, their

approach falls short in the efficient selection of the next node

to be charged. The authors of [16] introduced an approach

for reducing charging delays by charging sensor nodes with

multiple MCVs. Unlike prior studies, the travel trajectories of

MCVs were predetermined, and their speed was varied.

The aforementioned approaches demonstrated the feasibility

and acceptability of charging scheduling strategies in WRSNs.

However, these approaches lacked a combined focus on an

effective multi-metric strategy for balancing the charging load

on the MCVs and an efficient charging factor strategy for each

MCV to partially charge the network nodes. Additionally, they

did not effectively address the issue of reducing travel time for

multiple MCVs and their charging conflicts in the network.

Therefore, this paper attempts to address the aforesaid issues

by employing an effective multi-metric and efficient charging

factor strategy. It also applies ISAC in WRSNs to reduce

travel time and avoid charging conflicts through sensing and

communication tasks between charging nodes and MCVs.

III. THE PROPOSED PROTOCOL

This paper proposes probabilistic on-demand charging for

ISAC-assisted WRSNs with multiple mobile charging vehicles

(Poised), and it goes into detail about effective strategies for

balancing the charging load on each MCV. It also partially

charges all of the nodes in their queues in an efficient manner

to improve charging coverage and efficiency. Furthermore, it

integrates the ISAC concept by utilizing wireless resources to

reduce the traveling time of each MCV in the network.

A. Network Model and Initialization

A standard wireless rechargeable sensor network is assumed

to consist of a set of randomly deployed sensor nodes,

N = {Sn0, Sn1, Sn2, ..., Snr} and a set of mobile charg-

ing vehicles (MCVs), V = {Cv1, Cv2, Cv3, ..., Cvm}, with

m = |V| in a two-dimensional region. When the energy level

of the sensor nodes (Sni) falls below a certain level called

threshold (Eth), charging requests are sent to the sink node

(Snb). The sink is positioned in the center of the region and

also serves as a depot for the MCVs. In this work, the initial

position of the MCVs is adapted from [7]. The Eq. (1) is



employed in particular to determine the coordinates (xi, yi)
of MCVs initial position in k different regions.

(xi, yi) =

(

Cc

2
cos

(

π

m
(2j − 1)

)

,
Cc

2
sin

(

π

m
(2j − 1)

)

)

(1)

Here, Cc is the radius of circumscribed circle of a two-

dimensional region. The MCV recharges one sensor node

(Sni) at a time. It should be noted that an MCV has a

substantially higher energy capacity than a sensor node (Sni).

Table I provides a summary of the notations used in this work.

TABLE I: Notations

Notation Definition

N N = {Sn0, Sn1, Sn2, ..., Snr};Sni ∈ N is a sensor
node; r is the size of N .

Ni The neighboring nodes of Sni; ri is the size of Ni.
V V = {Cv1, Cv2, Cv3, ...,Cvm};Cvj ∈ V is a mobile

charging vehicle;m is the size of V .
Sns The source node.
Snb The sink.
Rs The sensing range of node Sni.
Rc The communication range of node Sni.
Eth The residual energy threshold of node Sni.
CEth The minimum working energy threshold of MCV Cvj .

Φ
↓
i The residual energy of node below threshold Eth.

ζi The distance from MCV Cvj to node Sni.
ηi The degree of node Sni.
ßi The node Sni betweenness centrality.
Cc The radius of circumscribed circle.
e The Euler's Constant. Its approximate value is 2.71828.
π The default value of Pi is approximately equal to 3.14159.

B. Charging Queue Metric

This section describes the balanced charging load strategy

for each MCV queue, which considers the four important

attributes and their respective probability distributions to pri-

oritize the charging queue metric. These attributes are the

residual energy of charging node Eq. (3), distance from MCV

to charging node Eq. (6), degree of a charging node Eq.

(9), and charging node betweenness centrality Eq. (12). The

charging queue metric will prioritize the charging nodes with

highest value. Therefore, each MCV will have a different

sequence of prioritized charging nodes due to their different

locations in the network as described in Section III-A.

1) Residual Energy of Charging Node: The purpose of this

distribution is to prioritize the sensor nodes which have the

lower residual energy among all the charging sensor nodes.

Here, we express the residual energy of a charging sensor

node (i.e., ∀Sni ∈ N ) as a vector, Φ↓
i = (Φ↓

1,Φ
↓
2,Φ

↓
3, ...,Φ

↓
r),

where Φ↓
i is the residual energy of a charging sensor node

below the residual energy threshold Eth. The residual energy

vector is normalized into Φ̄↓
i = (Φ̄↓

1, Φ̄
↓
2, Φ̄

↓
3, ..., Φ̄

↓
r) between

[0−1] using Eq. (2). Based on it by curve fitting the normalized

vector, we obtain the probability distribution function using

Eq. (3), Φ̃i = (Φ̃↓
1, Φ̃

↓
2, Φ̃

↓
3, ..., Φ̃

↓
r). Furthermore, we included

a weighted factor λΦ to increase the impact of the distribution,

where λΦ ≥ 2 is set by default. Nodes with lower residual

energy will have higher charging priority.

Φ̄↓
i =

Φ↓
i

Eth
∀Sni ∈ N (2)

Φ̃↓
i =















α+ β ∗ e

(

γ∗(Φ̄↓

i )
λΦ

)

α = 4.1997; β = −3.16759;

γ = 0.27897; λΦ = 2;

∀Sni ∈ N (3)

2) Distance from MCV to Charging Node: The purpose

of this distribution is to prioritize the sensor nodes which

have the shortest distance among all the charging sen-

sor nodes to MCV. Here, we use the Euclidean Distance

to express the distance from each MCV (i.e., ∀Cvj ∈
V) to charging sensor node (i.e., ∀Sni ∈ N ) as a

vector, ζvj ,i = (ζvj ,1, ζvj ,2, ζvj ,3, ..., ζvj ,r), which is ob-

tained in Eq. (4). The distance vector is normalized into

ζ̄vj ,i = (ζ̄vj ,1, ζ̄vj ,2, ζ̄vj ,3, ..., ζ̄vj ,r) between [0 − 1] us-

ing Eq. (5). The probability distribution function is used

to curve fit the normalized vector, as stated in Eq. (6),

ζ̃vj ,i = (ζ̃vj ,1, ζ̃vj ,2, ζ̃vj ,3, ..., ζ̃vj ,r). Furthermore, we included

a weighted factor λζ to increase the impact of the distribution,

where λζ ≥ 1 is set by default. The shorter the distance to

MCV will have higher priority of a charging sensor node.

ζvj ,i =
√

(xj − xi)2 + (yj − yi)2 (4)

ζ̄vj ,i =
ζvj ,i

ζvj ,i +Rc
∀Sni ∈ N (5)

ζ̃vj ,i =































α+ β ∗ e





(

(ζ̄vj,i)
λζ−γ

)

µ





α = 1.83283; β = −0.69354;

γ = −0.24143; µ = 1.28078;

λζ = 1;

∀Sni ∈ N

(6)

3) Degree of Charging Node: The purpose of this dis-

tribution is to prioritize the sensor nodes which have max-

imum number of neighbors among all the charging sensor

nodes. Here, we express the degree of charging sensor node

(i.e., ∀Sni ∈ N ) as a vector, ηi = (η1, η2, η3, ..., ηr), which

is obtained in Eq. (7). The degree vector is normalized into

η̄i = (η̄1, η̄2, η̄3, ..., η̄r) between [0 − 1] using Eq. (8). The

normalized vector is curve fitted with the probability distribu-

tion function, as indicated in Eq. (9), η̃i = (η̃1, η̃2, η̃3, ..., η̃r).
Furthermore, we included a weighted factor λη to increase the

impact of the distribution, where λη ≥ 1 is set by default.

The charging sensor node with the maximum number of

neighboring nodes will have a higher priority.

ηi =

ri
∑

v=1

Sni,v (7)

η̄i =
ηi

max{ηi|Sni ∈ N}
∀Sni ∈ N (8)



η̃i =



































α+ β ∗





(

e(γ∗(η̄i)
λη )

−µ

)

γ





α = 0.02098; β = 1.29332;

γ = −0.4591; µ = 0.978;

λη = 1;

∀Sni ∈ N (9)

4) Charging Node Betweenness Centrality: The purpose

of this distribution is to prioritize the sensor nodes, which

act as a bridge between the source node and sink node

most of the time. Here, we express the betweenness cen-

trality of a charging sensor node (i.e., ∀Sni ∈ N ) as a

vector, ßi = (ß1, ß2, ß3, ..., ßr), which is obtained in Eq.

(10). The betweenness centrality vector is normalized into

ß̄i = (ß̄1, ß̄2, ß̄3, ..., ß̄r) between [0 − 1] using Eq. (11). The

probability distribution function, as described in Eq. (12),

ß̃i = (ß̃1, ß̃2, ß̃3, ..., ß̃r), is used to curve fit the normalized

vector. Furthermore, we included a weighted factor λß to

increase the impact of the distribution, where λß ≥ 1 is set

by default. The maximum time a node acts as a betweenness

will have a higher priority of a charging sensor node.

ßi =
∑

Sns 6=Sni 6=Snb

σSnsSnb
(Sni)

σSnsSnb

(10)

ß̄i =
ßi −min(ßi)

max(ßi)−min(ßi)
(11)

ß̃i =















α+ e

(

−e(−β∗((ß̄i)λß−γ))
)

α = 1.343494; β = 2.88956;

γ = 0.57881; λß = 1;

∀Sni ∈ N (12)

The purpose of charging queue metric is to use the above

four distributions to efficiently prioritize the charging queue of

each MCV. As discussed in Section III-A, the initial position of

each MCV is divided into k regions using Eq. (1). Therefore,

charging sensor nodes will be prioritized differently for each

MCV queue due to the distance distribution Eq. (6) from

each MCV to the sensor node. In this work, the sink node

is in charge of prioritizing each MCV queue based on the

charging queue metric determined in Eq. (13). The charging

queue metric obtained the highest priority value based on the

average term of four probability distributions.

C̃qm = (Φ̃↓
i + ζ̃vj ,i + η̃i + ß̃i)/4 ∀Sni ∈ N (13)

C. Charging Factor Strategy

This section focuses on the efficient probabilistic partial

charging model by developing a charging factor strategy for all

charging nodes prioritized in each MCV queue. For instance,

we express a queue of an MCV with charging sensor nodes

as QCvj = {Sn1, Sn2, Sn3, ..., Snr}. Here, we consider the

residual energy of a charging node distribution Eq. (3) in the

queue, where the higher probability of a node is considered

to be more critical than the rest of the nodes.

Therefore, to efficiently evaluate the charging factor strategy

and optimize the partial charging in the queue, we first

determine the minimum criticality Cmin and the maximum

criticality Cmax of the charging sensor nodes using residual en-

ergy priority values, and then obtain the probabilistic weighted

factor Pwf in Eq. (14).

Pwf =
Cmax(Φ̃

↓
i )− Cmin(Φ̃

↓
i )

Cmax(Φ̃
↓
i )

(14)

The charging factor strategy based on Eq. (14) is obtained

in Eq. (15) to determine the charging factor for each sensor

node in the charging queue QCvj .

Cfs =

⌈(

√

(Φ̃↓
i )

2 ∗ Pwf − ∂Φ̃↓

i

)

∗ 100

⌉

(15)

Here, ∂Φ̃↓

i
is the charging control factor, which is set to 10%

of the residual energy priority Eq. (3) of each queue node. The

reason is that the distance between the MCV and each node, as

well as the charging time required for each node, must keep in

mind to give the MCV a fair chance to successfully partially

charge each node in the queue. This helps to improve charging

efficiency, coverage, and the network lifetime by preventing

nodes from dying during MCV service time. The probabilistic

weighted factor, however, is equal to residual energy priority

when an MCV only has one sensor node in its request queue.

D. ISAC-based MCV detection

In this section, we employ the integrated sensing and com-

munication (ISAC) approach, in which the prioritized charging

sensor node sends the ISAC signal to the first arriving MCV in

its sensing range based on its sensing capability and received

echo to analyze which is affected by noise and interference

and obtain the distance, and then directly communicate with

the sink to prevent other MCVs from visiting the same nodes

to overcharge. Due to this, it reduces the travel time and the

charging delays. The sink then updates the charging queue

priority of the other MCVs. The received echo signal x(t)
affected by noise and interference is given in Eq. (16).

x(t) = s(t− τ) + n(t) (16)

where s(t− τ) is the combination of the original transmitted

signal, delayed by the travel time τ of the echo. n(t) is the

additive noise.

Our goal is to detect the presence of the signal s(t) in the

noisy received signal x(t). Hence, the sensor node will apply

matched filtering to the received signal. The matched filter h(t)
is designed to maximize the correlation between the received

signal x(t) and the signal s(t) transmitted by the MCV. The

output of the matched filter y(t) is given by Eq. (17).

y(t) =

∫

x(τ)h(t − τ)dτ (17)

where h(t) is the impulse response of the matched filter.



To obtain the time delay τ that maximizes the cross-

correlation function Eq. (17), we first rewrite the cross-

correlation function as a function of the time delay τ in

Eq. (18) and then take the derivative of the cross-correlation

function with respect to τ .

y(t) =

∫

x(τ)h(t − τ)dτ =

∫

x(t− τ)h(τ)dτ (18)

According to the concept of waveform matched filter in

[17], the time delay that maximizes the cross-correlation

function is given in Eq. (19)

τ = argmax

∫

x(t)s∗(t)dτ = argmax[x(t) ∗ s∗(t)] (19)

where ∗ denotes convolution. In other words, the time delay

that maximizes the cross-correlation function is the one that

maximizes the convolution of x(t) and s∗(t).
To detect the MCV by the charging sensor node Sni, we

estimate the distance between them using a time delay τ that

maximizes the cross-correlation function Eq. (19) and speed of

light c = d
τ . Hence, the two-way signal distance from charging

sensor node to MCV is 2dSni,Cvj . Consequently, it determines

the distance in Eq. (20).

dSni,Cvj =
c ∗ τ

2
(20)

Based on the probabilistic sensing model [3], if the distance

between a sensor node and the MCV dSni,Cvj , is within the

sensing region Rs, the sensor node can detect the MCV and

communicate with the sink. Subsequently, the sink updates the

priority queues of other MCVs by removing that node.

IV. PERFORMANCE EVALUATION AND DISCUSSION

The proposed scheduling protocol, Poised, is implemented

and evaluated through simulations. Initially, the simulator was

developed to assess data routing schemes with both static

[1] and mobile [4] sinks using NS3 models. Later on, it

was modified to evaluate WRSN techniques [5]. The WRSN

network is constructed on a square-shaped monitoring area.

The sensor nodes are distributed at random, with the sink

node in the center of the area. The sink serves as a depot for

MCVs to recharge their batteries. The sink is also in charge of

scheduling charging requests for each MCV as well as network

management. To ensure the accuracy of the results, we took

into account the average of 20 random simulations. Table II

contains a summary of the key simulation parameters.

TABLE II: Simulation Parameters

Parameter Value

Number of nodes Varies from 100 to 500
Communication range 50m
Sensing range 25m
Sensor battery capacity 0.5J
Threshold for charging requests 30% residual energy
MCV battery capacity 10kJ
The charging rate 0.05J/s
MCV travel speed 5m/s
MCV travel cost 5J/m
MCV mobility model Random waypoint

Poised is evaluated using a number of parameters that

includes: i) Energy Usage Efficiency (%): It is expressed

as the ratio of total energy transferred to sensor nodes to total

energy transmitted from sink to MCVs. ii) Charging Delay

(s): It is expressed as the time it takes the MCVs to complete

the energy requirements of the sensor nodes. iii) Survival Rate

(%): It is expressed as the ratio of number of alive sensor

nodes to the total number of sensor nodes in the network.

iv) Travel Distance (m): It is expressed as the total distance

covered by MCV during a single charging tour.

A. Simulation Results

The proposed protocol Poised compares the outcomes with

two state-of-the-art protocols: FLCSD [6] and DMCP [7].

Fig. 1a depicts the results of energy usage efficiency,

demonstrating how the result gradually increases with the

number of nodes for all protocols. The proposed protocol

Poised outperforms cutting-edge protocols for the following

reasons. First, it employs a well-balanced charging load strat-

egy for each MCV based on the probability distribution of

each attribute to fairly prioritize charging nodes in each MCV

queue. Second, it provides an effective charging factor strategy

in each MCV queue to partially charge all the nodes in

the network based on the residual energy of charging node

distribution. Finally, it employs the ISAC concept to reduce the

travel cost of each MCV in the network. For these reasons, it

maximizes the amount of energy transferred to each requested

node in the network. FLCSD and DMCP both fell short to

consider the efficient charging load for each MCV in the

network and to prioritizes the charging queue to partially

charge them in order to maximize energy usage efficiency.

Fig. 1b depicts the results of charging delay, demonstrat-

ing how the results gradually increases with the number of

nodes in the network for all protocols. The proposed protocol

Poised outperforms cutting-edge protocols because it utilizes

probabilistic partial charging, which covers more nodes in each

MCV queue. The nodes in each MCV queue are assigned a

probabilistic charging factor based on their relative criticality.

The charging factor strategy incorporates the charging control

factor, assisting in maximizing the reachability of each sensor

node in the queue in order to efficiently partially charge

the nodes. It also employs the ISAC concept, which revokes

multiple MCVs to charge the same node multiple times in

a single request, reducing travel costs while increasing the

chance of charging the required waiting node in the queue

in an efficient manner. FLCSD lacked partial charging, while

DMCP included it but only focused on relative criticality,

neglecting a probabilistic charging factor strategy with a

charging control factor that can minimize charging delay.

Fig. 1c depicts the results of survival rate, demonstrating

how the results gradually decreases with the number of nodes

in the network for all protocols. The proposed protocol Poised

outperforms cutting-edge protocols with the same reasons

given in the charging delay result.

Fig. 1d depicts the results of travel distance, demonstrating

how the results gradually increases with the number of nodes
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Fig. 1: Performance over number of nodes

in the network for all protocols. The proposed protocol Poised

outperforms cutting-edge protocols by utilizing the distance

from MCV to charging node distribution in Eq. (6) which

gives priority to nodes in the queue that are closer to MCV.

Also, it employs the ISAC approach; for more information, see

charging delay result. FLCSD and DMCP made no attempt to

reduce MCV travel distance in the network.

V. CONCLUSION

This paper presented a probabilistic on-demand charging

scheduling for ISAC-assisted WRSNS with multiple mobile

charging vehicles. It focuses on the load balanced strategy

in charging scheduling for each MCV, the efficient charging

factor strategy to partially charge the nodes in the network,

and the integrated sensing and communication approach to

reduce the traveling cost of each MCV. Therefore, it first

considers the four attributes to balance the charging load,

along with their probability distributions, in order to prioritize

the relatively critical nodes for charging. The attributes are

the residual energy of charging node, distance from MCV

to charging node, degree of charging node, and charging

node betweenness centrality. Second, it focuses on an efficient

charging factor strategy to partially charge the nodes based on

the charging node residual energy distribution. It also includes

a charging control factor to reduce charging delay while

increasing charging coverage and survival rate. Finally, the

proposed protocol employs the ISAC concept to detect the first

arriving MCV within the sensing range of the charging sensor

node. This reduces the traveling distance of other MCVs and

avoids the conflict of charging the same the node with a single

request. According to the simulation results, the proposed

protocol Poised outperforms the cutting-edge protocols.

ACKNOWLEDGMENT

This work is supported in part by National Natural Science

Foundation of China under Grant 62101232, and in part by

the Guangdong Provincial Natural Science Foundation under

Grant 2022A1515011257.

REFERENCES

[1] M. U. F. Qaisar, X. Wang, A. Hawbani, L. Zhao, A. Y. Al-Dubai, and
O. Busaileh, “Sdorp: Sdn based opportunistic routing for asynchronous
wireless sensor networks,” IEEE Transactions on Mobile Computing,
2022.

[2] M. U. F. Qaisar, X. Wang, A. Hawbani, A. Khan, A. Ahmed, F. T. Wedaj,
and S. Ullah, “Toras: Trustworthy load-balanced opportunistic routing
for asynchronous duty-cycled wsns,” IEEE Systems Journal, 2022.

[3] Q. Zhang, C.-Y. Chang, Z. Dong, and D. S. Roy, “Tcsar: Target coverage
mechanism for sensors with adjustable sensing range in wrsns,” IEEE

Sensors Journal, vol. 22, no. 4, pp. 3756–3765, 2021.
[4] F. T. Wedaj, A. Hawbani, X. Wang, S. H. Alsamhi, L. Zhao, and M. U.

Farooq, “Tbdd: Territory-bound data delivery for large scale mobile sink
wireless sensor networks,” IEEE Internet of Things Journal, 2023.

[5] F. T. Wedaj, A. Hawbani, X. Wang, M. U. F. Qaisar, W. Othman, S. H.
Alsamhi, and L. Zhao, “Reco: On-demand recharging and data collection
for wireless rechargeable sensor networks,” IEEE Transactions on Green

Communications and Networking, 2023.
[6] A. Tomar, L. Muduli, and P. K. Jana, “A fuzzy logic-based on-demand

charging algorithm for wireless rechargeable sensor networks with
multiple chargers,” IEEE Transactions on Mobile Computing, vol. 20,
no. 9, pp. 2715–2727, 2020.

[7] A. Kaswan, P. K. Jana, M. Dash, A. Kumar, and B. P. Sinha, “Dmcp:
A distributed mobile charging protocol in wireless rechargeable sensor
networks,” ACM Transactions on Sensor Networks, vol. 19, no. 1, pp. 1–
29, 2022.

[8] Z. Lyu, Z. Wei, X. Wang, Y. Fan, C. Xia, and L. Shi, “A periodic
multinode charging and data collection scheme with optimal traveling
path in wrsns,” IEEE Systems Journal, vol. 14, no. 3, pp. 3518–3529,
2020.

[9] W. Yuan, Z. Wei, S. Li, J. Yuan, and D. W. K. Ng, “Integrated
sensing and communication-assisted orthogonal time frequency space
transmission for vehicular networks,” IEEE Journal of Selected Topics

in Signal Processing, vol. 15, no. 6, pp. 1515–1528, 2021.
[10] Q. Qi, X. Chen, A. Khalili, C. Zhong, Z. Zhang, and D. W. K. Ng,

“Integrating sensing, computing, and communication in 6g wireless
networks: Design and optimization,” IEEE Transactions on Communi-

cations, vol. 70, no. 9, pp. 6212–6227, 2022.
[11] T. Rault, “Avoiding radiation of on-demand multi-node energy charging

with multiple mobile chargers,” Computer Communications, vol. 134,
pp. 42–51, 2019.

[12] W. Xu, W. Liang, H. Kan, Y. Xu, and X. Zhang, “Minimizing the longest
charge delay of multiple mobile chargers for wireless rechargeable
sensor networks by charging multiple sensors simultaneously,” in 2019

IEEE 39th International Conference on Distributed Computing Systems

(ICDCS), pp. 881–890, IEEE, 2019.
[13] W. Xu, W. Liang, X. Jia, H. Kan, Y. Xu, and X. Zhang, “Minimizing the

maximum charging delay of multiple mobile chargers under the multi-
node energy charging scheme,” IEEE transactions on mobile computing,
vol. 20, no. 5, pp. 1846–1861, 2020.

[14] L. Mo, A. Kritikakou, and S. He, “Energy-aware multiple mobile
chargers coordination for wireless rechargeable sensor networks,” IEEE

internet of things journal, vol. 6, no. 5, pp. 8202–8214, 2019.
[15] G. Han, H. Guan, J. Wu, S. Chan, L. Shu, and W. Zhang, “An uneven

cluster-based mobile charging algorithm for wireless rechargeable sensor
networks,” IEEE Systems Journal, vol. 13, no. 4, pp. 3747–3758, 2018.

[16] Y. Zhu, K. Chi, P. Hu, K. Mao, and Q. Shao, “Velocity control of
multiple mobile chargers over moving trajectories in rf energy harvesting
wireless sensor networks,” IEEE Transactions on Vehicular Technology,
vol. 67, no. 11, pp. 11314–11318, 2018.

[17] M. A. Richards, Fundamentals of radar signal processing. McGraw-Hill
Education, 2014.


	Introduction
	Related Work
	The Proposed Protocol
	Network Model and Initialization
	Charging Queue Metric
	Residual Energy of Charging Node
	Distance from MCV to Charging Node
	Degree of Charging Node
	Charging Node Betweenness Centrality

	Charging Factor Strategy
	ISAC-based MCV detection

	Performance Evaluation and Discussion
	Simulation Results

	Conclusion
	References

