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Abstract—Multi-Agent Reinforcement Learning (MARL) has
become a classic paradigm to solve diverse, intelligent control
tasks like autonomous driving in Internet of Vehicles (IoV).
However, the widely assumed existence of a central node to
implement centralized federated learning-assisted MARL might
be impractical in highly dynamic scenarios, and the excessive
communication overheads possibly overwhelm the IoV system.
Therefore, in this paper, we design a communication efficient
cooperative MARL algorithm, named RSM-MAPPO, to reduce
the communication overheads in a fully distributed architecture.
In particular, RSM-MAPPO enhances the multi-agent Proximal
Policy Optimization (PPO) by incorporating the idea of segment
mixture and augmenting multiple model replicas from received
neighboring policy segments. Afterwards, RSM-MAPPO adopts
a theory-guided metric to regulate the selection of contributive
replicas to guarantee the policy improvement. Finally, extensive
simulations in a mixed-autonomy traffic control scenario verify
the effectiveness of the RSM-MAPPO algorithm.

Index Terms—Communication-efficient, Multi-agent reinforce-
ment learning, Regulated segment mixture, Internet of vehicles.

I. INTRODUCTION

Internet of Vehicles (IoV) emerges as an effective means
to ubiquitously connect vehicles and enhance their self-
driving capability (e.g., fleet management and accident avoid-
ance). Typically, in IoV, a Connected Automated Vehicle
(CAV) is contingent on Deep Reinforcement Learning (DRL)
to solve diverse control tasks [1]–[3], on top of a for-
mulated Markov Decision Process (MDP). Correspondingly,
these CAVs constitute a Multi-Agent Reinforcement Learning
(MARL)-empowered system. Nevertheless, the direct adoption
of Independent Reinforcement Learning (IRL) [4] at the CAV,
with each one accessible and responsive to a limited partial
observation of the global environment, will make MARL
suffer from the non-stationarity of the learning environment.
Therefore, communications are generally taken into account as
an indispensable ingredient in MARL [5]–[8]. For example,
Ref. [5] combines Federate Learning (FL) with IRL, by
regarding the aggregation of gradients as the communication,
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so as to improve the involved homogeneous agents’ capability
and learning efficiency. Meanwhile, individual observations
[6] or intended actions [7], [8] can also be exchanged on
the basis of proper encoding. Moreover, Ref. [9] proposes
a stigmergy-based trustable policy collaboration scheme by
directly mixing the policy parameters. But the common as-
sumption of an existing central node in these works [5]–
[9] might be impractical and underlies potential threat to
the stability and timeliness of learning performance in highly
dynamic scenarios like IoV. Besides, the frequent information
exchange in these works inevitably generates excessive and
even exponential communication overheads along with the
number of agents, thus possibly overwhelming the IoV system.
In a nutshell, it becomes imperative to design a communication
efficient MARL algorithm.

In that regard, there has emerged intense research inter-
est, particularly within the scope of Decentralized Federated
Learning (DFL) and supervised learning. Ref. [10] puts for-
ward a randomized selection scheme for forwarding subsets
of local model parameters to their one-hop neighbors. Ref.
[11] introduces a segmented gossip approach by synchro-
nizing model segments only, thus significantly splitting the
expenditure of communications. However, communication ef-
ficient system, which typically adopts a larger communication
internal, faces more diverse local model updates, and may
get an even worse aggregation model after simple parameter
averaging [12]. Notably, this could be more exacerbated for an
on-line IRL framework, since IRL agents need to interact with
the environment more frequently than those for supervised
learning and the processing of gradually arrived data could
amplify the learning discrepancy among multiple agents. In
other words, not all communicated packets will be contributive
in MARL and directly adopting the over-simplistic mixture
approach as in DFL works [10], [11] is far from efficiency. In-
stead, MARL awaits for a revolutionized mixture method and
corresponding metric to regulate the aggregation of exchanged
model updates, so as to ensure robust policy improvement.

In this paper, on the basis of Proximal Policy Optimiza-
tion (PPO) [13], one classical policy iteration reinforcement
learning algorithm, we tailor a distributed communication-
efficient cooperative scheme for IRL-controlled CAVs in
IoV, and propose a Regulated Segment Mixture-based Multi-
Agent PPO (RSM-MAPPO) algorithm. Compared with exist-
ing communication-based MARL works, the key contributions
of RSM-MAPPO can be summarized as follows.
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Fig. 1. Illustration of MARL in autonomous driving.

• RSM-MAPPO implements a communication-efficient
MAPPO by incorporating the idea of segment mixture
in DFL and augmenting multiple model replicas from
received neighboring policy segments.

• In order to guarantee the policy improvement during the
mixture, a theory-guided metric is developed to regulate
the selection of contributive replicas only.

• Through extensive simulations in the traffic control sce-
nario, RSM-MAPPO, which operates in a fully dis-
tributed manner, could approach the converged perfor-
mance of centralized FL and IRL [5], while is signifi-
cantly superior than direct application of parameters aver-
age as in DFL [10], [11], thus verifying its effectiveness.

The remainder of this paper is organized as follows. We
introduce the system model and formulate the problem in Sec-
tion II. Afterwards, we elaborate on the details of the proposed
RSM-MAPPO algorithm in Section III. In Section IV, we
present the simulation settings and discuss the experimental
results. Finally, Section V concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Beforehand, we summarize the main notations in Table I.
A. System Model

As illustrated in Fig. 1, we primarily consider an IoV
scenario consisting of N CAVs (i.e., PPO-empowered agents)1

alongside some human-driving vehicles. Specifically, at each
time-step t, agent i senses partial status s(i)t (e.g., the speed
and positions of neighboring vehicles) of the IoV environment,
and then selects an action a(i)t ∈A according to its local policy
π(i) parameterized by θ(i). Afterwards, an individual reward
r
(i)
t ∈ R will be obtained, with the state transferring into
s
(i)
t+1. Correspondingly, a sequential Markov state transition
ϕ
(i)
t = ⟨s(i)t , a

(i)
t , r

(i)
t , s

(i)
t+1⟩ can be stored. In this paper, the

MAPPO learning encompasses an independent local learning
phase and a communication-assisted mixing phase. Generally,
in the first phase, after running a policy for T time-steps (far
less than the length of an epoch, which equals multiple T ), we
can obtain a mini-batch Φ of collected samples for iterations
of local model updates. Subsequently, in the second phase,
each agent i interacts with its one-hop neighbors Ωi within

1In this paper, we assume the terminologies “CAV” and “agent” are inter-
changeable.

TABLE I
MAJOR NOTATIONS USED IN THE PAPER.

Notation Definition
s
(i)
t , a

(i)
t , r

(i)
t Local state, individual action and reward of agent i at time step t

π, θ Current target policy and its parameters
π̃, θ̃ The referential target policy and it parameters
Ωi Set of one-hop neighbors within the communication range of agent i
α Mixture metric of current parameters and referential parameters
θmix Mixed policy parameters
p, P Index of segments, p = 1, 2, · · · , P
κ Number of model replicas
τU Communication interval given U local iterations
υ Size of the policy parameters
ψ Communication consumption until convergence of the IRL model

its communications range directly (e.g., via Device-to-Device
(D2D) channels), so as to reduce the behavioral localities of
IRL and improve their cooperation efficiency.

Algorithmically, we adopt a sample-efficient standard PPO
setting in the local learning phase, which leverages two
different policies (i.e., behavior policy πθold

2 for sample
collection and target policy πθ for online optimization) instead
of the same policy in classical REINFORCE. Every U local
iterations, the parameters of the target policy will be copied
to those of the behavior policy. In addition, PPO implements
importance sampling-based optimization using all past experi-
ences via an adjustable ratio λt =

πθ(at|st)
πθold (at|st) without leading

to destructively large policy updates. Thus, the actor network’s
loss function is expressed as

L(θ)=−Et

[
min[λtA

πθold
t ,clip(λt,1− ϵ,1 + ϵ)A

πθold
t ]+βH[πθ(st)]

]
where the operator Et(·) indicates a T -length empirical av-
erage over a batch of samples with t ∈ [0, T − 1], and the
entropy function H(·) ensures sufficient exploration, while
β is a hyperparameter to reflect the relative importance of
entropy. Besides, the function clip(·, 1 − ϵ, 1 + ϵ) aims to
penalize over-large policy changes and clips the ratio into
[1−ϵ, 1+ϵ], where ϵ is a hyperparameter. Furthermore, A

πθold
t =

δt+γδt+1+· · ·+γT−t−1δT−1 is an estimator of the advantage
function at timestep t, where δt = rt + γVω(st+1) − Vω(st),
and γ denotes a discount factor. Along with the update of
policy πθ, Vω(st) parameterized by ω is estimated by another
critic network in terms of Mean Squared Error (MSE) loss

L(ω) = Et

[
(Vω(st)− V targ

t )2
]

where V targ
t is the target value equals

∑T−t−1
i=0 γirt+i +

γT−tVω(sT ). At local iteration k, the parameter update follows
a standard Stochastic Gradient Descent (SGD) as

θ
(i)
k+1 = θ

(i)
k − ηa∇L(θ

(i)
k ) (1)

ω
(i)
k+1 = ω

(i)
k − ηc∇L(ω

(i)
k ) (2)

where ηa and ηc are the learning rate of the actor network and
the critic network respectively.

Upon every τU local iterations (i.e., τ times of copying
parameters from πθold to πθ), the communications among
neighboring agents starts. Considering the possible communi-
cation bandwidth or delay restriction between agents in real-
world facilities, we assume messages transmitted by agents

2Hereafter, for simplicity of representation, we omit the superscript (i)
under cases where the mentioned procedure applies for any agent.
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Fig. 2. The illustration of RSM-MAPPO implementation.

are limited to policy parameters θ, and agents could develop
different means to derive a referential policy parameterized
by θ̃ = f(θ(1), · · · , θ(j), · · · ) by exploiting the parameters
from neighboring agents ∀j ∈ Ωi. For example, agent i could
compute a referential policy π̃(i) parameterized by θ̃(i) based
on received parameters θ(j) from j ∈ Ωi, and directly mix
neural network parameters distributedly as

θ
(i)
mix = θ(i) + α(θ̃(i) − θ(i)) (3)

where α ∈ [0, 1] is a mixture metric. Taking general parameter
average mixture method in DRL-Ave [9] as an example, θ̃(i)

is computed as θ̃(i)=
∑

j∈Ωi
θ(j) and α=1−1/|Ωi|, which is

influenced by the number of neighbors involved. Subsequently,
for each agent i, θ(i) and θ(i)old get aligned with θ(i)mix.

B. Problem Formulation

This paper primarily targets the communication assisted
mixing phase. Intuitively, an effective mixture means could
better leverage the exchanged parameters to yield a superior
target policy and thus benefit the learning in terms of the
rewards along with the learning trajectory. In other words, the
reward could be a function of the mixed policy parameters
Θ = {θ(1)mix, · · · , θ

(N)
mix } and α. However, it remains little

investigated on the feasible means to mix the exchanged
parameters (or their partial segments), though it vitally affects
both the communication overheads and learning performance.
Therefore, by optimizing both f and α, we mainly focus on
reducing the communication expenditure while maintain an
acceptable cumulative rewards, that is,

min
f,α

c(υ, f)

s.t.
∑

t
rt(Θ, α) ≥ rthre

Θ← {θ(1)mix,k, · · · , θ
(N)
mix,k} (4)

θ
(i)
mix,k = θ

(i)
k + α(θ̃

(i)
k − θ

(i)
k ), ∀i ∈ {1, · · · , N}

θ̃
(i)
k = f(θ

(1)
k , · · · , θ(j)k , · · · ), ∀k mod τU = 0, j ∈ Ωi

where rthre denotes the required minimum cumulative rewards,
and v indicates the size of policy parameters. Furthermore,

c(v, f) denotes the communication expenditure, which is gov-
erned by the mixture function f . For example, for the whole
policy parameters transmission among all agents [9], the total
communication cost per round is c(υ, f) =N×(N − 1)×υ.
Apparently, the communication cost c(υ, f) can be signifi-
cantly reduced, if f could rely on fewer agents with reduced
communication frequency. However, such a naive design pos-
sibly mitigates the positive effect of collaboration as well.
Therefore, it is worthwhile to resort to a more comprehensive
design of f and α to calibrate the communicating agents and
content as well as regulate the mixture means, so as to provide
a guarantee of performance improvement.

III. MAPPO WITH REGULATED SEGMENT MIXTURE

In this section, as shown in Fig. 2, we present the design of
RSM-MAPPO, which reduces the communication overheads
on the basis of not much learning performance sacrifice.

A. Algorithm Design

Consistent with the standard PPO as in Section II, agents
in RSM-MAPPO undergo the same local iteration process.
Meanwhile, for the communication-assisted mixing phase,
RSM-MAPPO typically entails segment request & response,
model replica building, and parameter mixture with theory-
established performance improvement.

1) Segment Request & Response: Inspired by segmented
pulling synchronization in DFL [14], we develop and perform
a segment request & response procedure, which allows the
agent to request different parts of its policy parameters from
different neighbors and rebuild a mixed referential policy
for aggregation. Specifically, for every communication round,
each agent i breaks its policy parameters θ(i) into P (P ≤
|Ωi|) non-overlapping segments θ̂(i)1 , θ̂

(i)
2 , · · · , θ̂(i)P as

θ(i) = (θ̂
(i)
1 , θ̂

(i)
2 , · · · , θ̂(i)P ) (5)

Notably, available segmentation strategies include, but not lim-
ited to, dividing the policy parameters according to the neural
network layers, the amount of samples each agent collected,
the size of total parameters, etc. Here, we consider the most
intuitive parameters uniform partition to clarify this process.
And for each segment p = 1, · · · , P , agent i randomly selects



Algorithm 1 Communication-assisted mixing phase of RSM-
MAPPO Alogrithm
Input: the target policy’s parameters θ(i) for i = 1, 2, · · · , N ;

number of samples to estimate policy advantage M ; number of
samples to evaluate FIM K; number of replica κ; number of
segment P .

Output: θmix
(i) for i = 1, 2, · · · , N ;

1: Each agent i executes:
2: for each replica u = 1, 2, · · · , κ do
3: Send P pulling request (i, P, jp, p) to nearby collaborators in

Ωi, and receive θ̂
(jp)
p to reconstruct θ̃ as (6).

4: Randomly select M samples from the replay buffer of agent i
under the behavior policy πθold to estimate Aπθ (π̃) according
to (7);

5: if Aπθ (π̃) > 0 then
6: Randomly select K samples from the replay buffer of agent

i to evaluate G(θ(i)) according to (8).
7: Get the upper bound of α according to Theorem 1.
8: Make the mixture metric α less than the calculated upper

bound, and update θ(i) by (3).
9: end if

10: end for
11: return the referential policy’s parameters θmix

(i) for i =
1, 2, · · · , N .

a target agent (without replacement) from its neighbors (i.e.,
jp ∈ Ωi) to send segment request (i, P, jp, p), which indicates
the agent i who initiates the request and its total segment
number P , the target agent jp that will receive the request and
break its own policy parameters θ(jp) into also P segments,
return the corresponding requested segment θ̂(jp)p in response
according to the identifier p. It should be stressed that in order
to reduce the complexity and facilitate the implementation, we
only discuss the case as in Fig. 2 that P is the same constant
for all agents and is not greater than maxi |Ωi|,∀i. Then, agent
i could reconstruct a referential policy based on all of the
fetched segments, that is,

θ̃(i) = (θ̂
(j1)
1 , θ̂

(j2)
2 , · · · , θ̂(jP )

P ) (6)

This step, which can be conveniently performed in parallel
to make full use of the bandwidth, contributes to avoiding the
model staleness, since one reconstructed model consists of dif-
ferent agents’ latest update policy segments, thus propagating
more agents’ local updates through the whole system.

2) Model Replica Building: As it is difficult to bound the
staleness of model updates, we adopt the concept of model
replica into RSM-MAPPO, so as to further accelerate the
propagation and ensure the model quality. Specifically, each
agent i repeats the process of segment request and response
for κ times, thus reconstructing κ distinctive model replicas.

3) Parameter Mixture with Theory-Established Perfor-
mance Improvement: As the policy performance may vary
significantly due to the differences in training samples of
multiple agents, there might emerge some reconstructed model
replicas degrading the learning performance, and a direct
application of averaging mixture method in Section II possibly
makes the aforementioned procedures in vain. Instead, based
on our previous works [9], we derive the following mixture

metric to justify the effectiveness of a model replica and only
select the contributive ones. Beforehand, we give the following
useful theorem [9].

Theorem 1: For a PPO agent with a current target policy
πθ and a referential policy π̃ parameterized by θ and θ̃
respectively, if

1) Aπθ
(π̃) > 0

2) 0 < α <

[
2
(

Aπθ
(π̃)

C

) 1
2

/
[
(θ̃ − θ)TG(θ)(θ̃ − θ)

]] 1
2

the cumulative rewards are guaranteed to be improved through
updating θ to θ̃ according to (3). Notably, C = 2εγ

(1−γ)2 , ε =

maxst maxat |δt|. Aπθ
(π̃) is defined as the expectation of the

advantage function along the π̃-yielded learning trajectory, and
can be approximated as the expectation of the multiplication
of policy gain π̃ − πθ and 1-step advantage function δt along
with the πθold -yielded learning trajectory. Meanwhile, G(θ) is
the Fisher Information Matrix (FIM) of policy parameters θ.

Based on Theorem 1, we can verify the contribution of
a model replica by computing Aπθ

(π̃), and get the upper
bound of α by further computing G(θ) from Monte-Carlo
simulations, that is,

Aπθ
(π̃) ≈ Et

[
π̃(at|st)−πθ(at|st)

πθold(at|st)

]
δt (7)

G(θ) ≈ Et

[(
∂ log πθ(at|st)

∂θ

)(
∂ log πθ(at|st)

∂θ

)⊤
]

(8)

Afterwards, we can select and mix those model replicas
with positive Aπθ

(π̃), which means the agent can benefit
from mixing its policy parameters πθ with the reconstructed
referential policy π̃. More aggressively, it is also feasible to
merge the model replica with the largest Aπθ

(π̃) only. Besides,
since G(θ) is a positive definite matrix, the mixture metric
α will enlarge with the increase of Aπθ

(π̃). Thus, a better
referential policy contributes to faster learning as well.

Finally, we summarize the details of RSM-MAPPO in
Algorithm 1.

B. Discussions of Communication overheads

In regards to the communication overheads per segment
request, RSM-MAPPO costs υ/P amount of data transmission
via D2D communications. Therefore, the total amount of
communications overheads per round equals N × υ, which is
N−1 times less than that in [9]. Meanwhile, by simultaneously
requesting P agents, it benefits the sufficient use of the
bandwidth and enhances the capability to overcome possible
channel degradation. On the other hand, for cases with κ
model replicas, the communication overheads per round turns
to N × κ × υ, which is N−1

κ times less than that in [9], but
improves the learning performance.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experimental Settings

In this part, we consider the simulation scenario “Figure
Eight”, a widely-used mixed-autonomy traffic control scenario,
to testify the performance (i.e., maximizing the cumulative



TABLE II
SYSTEM PARAMETERS.

Parameters Symbol Value

Total time-steps of an epoch E 1500
Number of timesteps for a mini-batch T 250
Number of PPO iterations in a mini-batch U 3
Number of samples to evaluate FIM K 50
Number of samples to estimate Aπθ (π̃) M 200
Learning rate of actor network ηa 2.5 · 10−5

Learning rate of critic network ηc 5 · 10−5

Discount factor γ 0.9
Entropy coefficient β 0.01
Coefficient of communication internals τ 1
Number of segments P 4
Number of model replicas κ 2

rewards) of DRL [15]. There are totally 14 vehicles running
circularly along a one-way lane that resembles the shape of
figure “8”. These include 5 emulated human-driving vehicles,
controlled by Simulation of Urban MObility (SUMO) with
a microscopic car-following model named Intelligent Driver
Model (IDM) [16], and 9 IRL-controlled CAVs, which simul-
taneously maintain dedicated links to update their parameters
through the D2D channel. Besides, the scenario is modified to
assign the limited partial-observation of global environment
as the state of each vehicle, including the position and speed
of its own, the vehicle ahead and behind. Meanwhile, each
CAV’s action is a continuous variable representing the speed
acceleration or deceleration normalized between [−1, 1]. In
order to reduce the occurrence of collisions and promote
the traffic flow to the maximum desired speed, the reward
function isR = max{∥vde∥−∥vac−vde∥,0}

∥vde∥
3, where vde ∈ R14 and

vac ∈ R14 represent the desired velocity and actual velocity of
all vehicles in the system respectively. In addition, the current
epoch will be terminated once a collision occurs. We perform
tests every 10 epochs and take the average of accumulated
rewards in a testing epoch as average reward. Besides, all
results are produced using the average of 5 repetitions. The
main parameters used in simulations are listed in Table II.

B. Evaluation Metrics

Besides average reward, we also adopt other metrics to ex-
tensively evaluate communication efficiency of RSM-MAPPO.

• We use ρtotal to represent the total number of recon-
structed referential policy π̃ (i.e., all model replicas) until
convergence, that is, the inflexion point of average reward
curve. Moreover, we use ρef to indicate the number of
effectively reconstructed referential policy (i.e., contribu-
tive model replicas selected to mix). Correspondingly,
we further define the ratio ρr = ρef/ρtotal to reflect the
utilization rate of reconstructed policies.

• We use ψ to indicate the communication overheads (in
terms of υ) until convergence. Mathematically, as the
number of communication rounds until convergence can

3Notably, we assume complete knowledge of individual vehicle speeds at
each vehicle here. Beyond the scope of this paper, some value-decomposition
method like [17] can be further leveraged to derive a decomposed reward, so
as to loosen such a strict requirement.
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be computed as C0 = ρtotal/(N ×κ), the communication
overheads equal ψ = C0 × (N × κ× υ) = ρtotal × υ.

Intuitively, the average reward and communication efficiency
will be determined by the function design of f , as well as the
number of model segments and the model replica (i.e., P and
κ). Besides, the communication overheads are also affected by
the coefficient of communication intervals τ .

C. Simulation Results

Fig. 3 first examines the average reward with RSM-MAPPO
κ = 2. It can be observed from Fig. 3, the curve of IRL without
communications implies that simply extending IRL to multi-
agent scenarios without any cooperation cannot solve complex
tasks. As a comparison, other methods adding communications
among agents can clearly boost the learning performance in
terms of training efficiency and stability. Besides, we use
the well trained model under combination of centralized FL
and IRL [5] as the optimal baseline. It can be seen that
our RSM-MAPPO which is performed in a fully distributed
training process, approaches the converged performance of the
centralized method. Meanwhile, compared with simply aver-
age mixture, which directly takes the average of all replicas,
RSM-MAPPO also yields superior converged average reward,
which can also be further validated in Fig. 4. On the other
hand, Fig. 3 shows that partitioning the model into different
segments (i.e., different P ) leads to similar convergence trend.
However, the converged average reward is relevant to the exact
value of P , as demonstrated in Fig. 4, which investigates
this influence. Specifically, the final converged average reward
becomes higher at first with the increase of P from 2 to 5,
but then decreases when P = 6 and P = 7. The performance
degradation in the latter cases is because that the aggregation



TABLE III
AVERAGE REWARD & COMMUNICATION EFFICIENCY OF RSM-MAPPO WITH RESPECT TO THE METRICS IN SECTION IV-B.

Method τ P κ Average Reward ρtotal ψ ρef ρr

Average mixture

1

3 2 0.1987 2.4948 · 104 2.4948 · 104 × υ 2.4948 · 104 100%
4 0.1934 2.7108 · 104 2.7108 · 104 × υ 2.7108 · 104 100%

RSM-MAPPO

4

1 0.2121 1.3010 · 104 1.3010 · 104 × υ 1.3010 · 103 40.402%
2 0.2116 2.2788 · 104 2.2788 · 104 × υ 9.110 · 103 39.977%
4 0.2137 5.4216 · 104 5.4216 · 104 × υ 2.0127 · 104 37.124%
8 0.2128 8.2512 · 104 8.2512 · 104 × υ 3.0798 · 104 37.325%

5
3 2

0.2110 6.498 · 103 1.300 · 104 × υ 2.711 · 104 41.721%
10 0.2080 3.240 · 103 6.480 · 103 × υ 1.333 · 103 41.141%
15 0.2100 2.376 · 103 4.752 · 103 × υ 1.016 · 103 42.761%
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Fig. 5. Average reward of RSM-MAPPO with different κ.

target of reconstructed policy parameters for an over-large P
is mottled and loses integrality.

In addition, Fig. 5 studies the impact of the number of model
replicas κ on average reward. As shown in Fig. 5, an increase
of κ could accelerate the convergence of training process,
without apparent influences on the converged average reward.
On the other hand, the improvement in the convergence rate
comes at the cost of increased communication overheads
ψ, which is listed in Table III. With the increase of κ,
both ψ and ρef increase, but the ratio ρr does not increase
scalely. Therefore, the trade-off between convergence rate
improvement and communication overheads need to be further
considered. Furthermore, we testify the performance under
different values of communication interval τ . Due to the space
limitation, the results along with the detailed comparison of
the communication efficiency is summarized in Table III. The
communication overheads ψ are reduced by τ times compared
with ρtotal × υ, resulting into higher ρr for a larger τ .

V. CONCLUSIONS

In this paper, we have proposed a communication-efficient
algorithm RSM-MAPPO to deal with the excessive com-
munication overheads among distributed MARL. By delving
into the policy parameter mixture function, RSM-MAPPO has
provided a novel means to leverage and boost the effectiveness
of distributed multi-agent collaboration. In particular, RSM-
MAPPO has successfully transformed the classical means of
complete parameter exchange into segment-based request and
response, which significantly facilitates the construction of
multiple model replicas and simultaneously captures enhanced
learning diversity. Moreover, in order to avoid performance-
harmful parameter mixture, RSM-MAPPO has leveraged a

theory-established regulated mixture metric to select the con-
tributive replicas with positive relative policy advantage only.
Finally, extensive simulations have demonstrated the effective-
ness of this design. In the future, we will extend this regulated
segment mixture paradigm to more RL algorithms to verify its
generalization.
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[16] M. Treiber, et al., “Congested traffic states in empirical observations
and microscopic simulations,” Physical review E, vol. 62, no. 2, p. 1805,
Aug. 2000.

[17] B. Xiao, et al., “Stochastic graph neural network-based value decompo-
sition for multi-agent reinforcement learning in urban traffic control,” in
Proc. IEEE VTC 2023-Spring, Florence, Italy, Jun. 2023.


	Introduction
	System Model and Problem Formulation
	System Model
	Problem Formulation

	MAPPO with Regulated Segment Mixture
	Algorithm Design
	Segment Request & Response
	Model Replica Building
	Parameter Mixture with Theory-Established Performance Improvement

	Discussions of Communication overheads

	Experimental Results and Discussions
	Experimental Settings
	Evaluation Metrics
	Simulation Results

	Conclusions
	References

