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Abstract—We consider a full-duplex wireless Distributed Com-
puting (DC) system under the MapReduce framework. New
upper and lower bounds on the optimal tradeoff between
Normalized Delivery Time (NDT) and computation load are
presented. The upper bound strictly improves over the previous
reported upper bounds and is based on a novel interference
alignment (IA) scheme tailored to the interference cancellation
capabilities of MapReduce nodes. The lower bound is proved
through information-theoretic converse arguments.

Index Terms—Wireless distributed computing, MapReduce,
coded computing, interference alignment.

I. INTRODUCTION

Distributed Computing (DC) systems are computer networks

that through task-parallelization reduce execution times of

complex computing tasks such as data mining or computer

vision. MapReduce is a popular such framework and runs in

three phases [1], [2]. In the first map phase, nodes calculate

intermediate values (IVA) from their associated input files. In

the following shuffle phase, nodes exchange these IVAs in a

way that each node obtains all IVAs required to compute its

assigned output function in the final reduce phase. MapReduce

is primarily applied to wired systems where it has been noticed

that a significant part of the MapReduce execution time stems

from the IVA delivery time during the shuffle phase [2], [3],

and can be reduced through smart coding [3]–[8].

MapReduce systems are becoming important building

blocks also in wireless scenarios, such as vehicular networks

[9] or distributed e-health applications [10], thus creating a

need for good wireless MapReduce coding schemes. Similarly

to the wired case [4]–[6], delivery time in wireless MapRe-

duce systems can be decreased by sending appropriate linear

combinations of the IVAs, from which the receiving nodes

can extract their desired IVAs by bootstrapping the IVAs that

they can compute from their locally stored input files. Further

improvements can however be achieved by exploiting specific

wireless communication techniques.

The focus of this paper is on the high Signal-to-Noise Ratio

(SNR) regime, and on the following two key metrics:

• Computation load r: This describes the average number

of nodes to which each file is assigned. In other words,

it is the ratio of the total number of assigned input files

(including replications) normalized by the total number

of files.

• Normalized Delivery Time (NDT) ∆: This is the wireless

shuffle duration normalized by the number of reduce

functions and input files and by the transmission time

of a single IVA over a point-to-point channel.

We are interested in the minimal NDT for given computation

load r, which we call the NDT-computation tradeoff.

The NDT of full-duplex interference networks was consid-

ered in [11], [12], see [13] for the half-duplex network. In

[11], the authors proposed to divide the nodes into groups and

let each group store a subset of the files and apply one-shot

beamforming and zero-forcing during the shuffle communica-

tion. As shown in [11], their scheme is optimal among this

class of communication strategies. In our previous work [12],

we reduced this NDT by introducing the IA technique to the

shuffle communication in [11].

In this paper, we obtain yet a further NDT reduction by

considering the map procedure in [4], where each set of r

nodes stores a subset of the files, and by proposing a novel

IA scheme that is tailored to this file assignment and the

interference cancellation capabilities of MapReduce nodes so

as to obtain an improved performance compared to standard

IA schemes. Our scheme is related to the IA scheme in [14],

which considers a similar file assignment, and to our previous

work [12], with which it coincides when each node can only

store a single file.

The upper bound on the NDT implied by our new IA-

scheme improves over the previously proposed bounds in [11],

[12] whenever the computation load r satisfies 1 < r <
⌈
K−1
2

⌉
.

Our results thus show that in this regime, beamforming and

zero-forcing cannot achieve minimum NDT. On the contrary,

through an information-theoretic lower bound on the minimum

NDT, in this manuscript we show that for r ≥ K

2 the zero-

forcing and interference cancellation scheme in [11] is optimal

also without any restriction on the utilized coding scheme.

Notations: We use standard notation, and also define [n] ,
{1, 2, . . . , n} and [A]n as the collection of all the subsets of

A with cardinality n.

II. WIRELESS MAPREDUCE FRAMEWORK

Consider a distributed computing (DC) system with a fixed

number of K nodes labelled 1, . . . ,K; a large number N of

input files W1, . . . ,WN; and K output functions φ1, . . . , φK

mapping the input files to the desired computations.

A MapReduce System decomposes the output functions as:

φq(W1, . . . ,WN) = vq(aq,1, . . . , aq,N), q ∈ [K], (1)
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where vq is called reduce function and aq,p theintermediate

value (IVA) calculated from file Wp through a map function

aq,p = uq,p(Wp), p ∈ [N]. (2)

IVAs are independent with A i.i.d. bits.

The MapReduce framework has 3 phases:

Map phase: A subset of all input files Mk ⊆ [N] is

assigned to each node k ∈ [K]. Node k computes all IVAs

{aq,p : p ∈ Mk, q ∈ [K]} associated with these input files.

Notice that the set {Mk}k∈[K] is a design factor.

Shuffle phase: Computation of the k-th output function is

assigned to the k-th node.

The K nodes in the system communicate over T uses of

a wireless network in a full-duplex mode to exchange the .

missing IVAs for the computations of their assigned output

functions. So, node k ∈ [K] produces complex channel inputs

of the form

Xk , (Xk(1), . . . , Xk(T))
T = f

(T)
k ({a1,p, . . . , aK,p}p∈Mk

) ,
(3)

by means of an encoding function f
(T)
k on appropriate domains

and so that the inputs satisfy the block-power constraint

1

T

T∑

t=1

E
[
|Xk(t)|

2
]
≤ P, k ∈ [K]. (4)

Given the full-duplex nature of the network, Node k also

observes the complex channel outputs

Yk(t) =
∑

k′∈[K]\{k}

Hk,k′ (t)Xk′(t) + Zk(t), t ∈ [T], (5)

where the sequences of complex-valued channel coefficients

{Hk,k′(t)} and standard circularly symmetric Gaussian noises

{Zk(t)} are both i.i.d. and independent of each other and of

all other channel coefficients and noises.

Based on its outputs Yk , (Yk(1), . . . , Yk(T))
T and the

IVAs {aq,p : p ∈ Mk, q ∈ [K]} it computed during the Map

phase, Node k decodes the missing IVAs {ak,p : p /∈ Mk}
required to compute its assigned output functions φk as:

âk,p = g
(T)
k,p ({a1,i, . . . , aK,i}i∈Mk

,Yk) , p /∈ Mk. (6)

Reduce phase: Each node k ∈ [K] applies reduce functions

φk(·) to the appropriate IVAs calculated during the Map phase

or decoded in the Shuffle phase.

The performance of the distributed computing system is

measured in terms of its computation load

r ,
∑

k∈[K]

|Mk|

N
, (7)

and the normalized delivery time (NDT)

∆ , lim
P→∞

lim
A→∞

T

A · K · N
· logP. (8)

We focus on the fundamental NDT-computation tradeoff

∆∗(r), which is defined as the infimum over all values of ∆
satisfying (8) for some choice of file assignments {Mk} and

sequence (in T) of encoding and decoding functions {f
(T)
k }

and {g
(T)
k,p} in (3) and (6), all depending on A so that the

probability of IVA decoding error

Pr

[
⋃

k∈[K]

⋃

p/∈Mk

âk,p 6= ak,p

]

→ 0 as A → ∞. (9)

A. Sufficiency of Symmetric File Assignments

Our model exhibits a perfect symmetry between the various

nodes in the network because the channels from any Tx-

node to any Rx-node are independent and have identical

statistics. The optimal NDT-computation tradeoff can therefore

be achieved by a symmetric file assignment where any subset

of nodes T ⊆ [K] of size i is assigned the same number of files

to be stored at all nodes in T . In fact, any non-symmetric file

assignment can be symmetrized without decreasing the NDT-

computation tradeoff. It suffices to time-share K! instances of

the original scheme for a IVA size that is also multiplied

by K!, where in each instance the K nodes are relabeled

according to a different permutation. The resulting scheme

has a symmetric file assignment and achieves the same NDT-

computation tradeoff as the original scheme because both T

and A are multiplied by K! while the other parameters remain

unchanged and because the new scheme still satisfies (9).

B. Relation to the Sum-DoF with r-fold Cooperation

A well-studied property of wireless networks is the Sum

Degrees of Freedom (sum-DoF), which characterizes the max-

imum throughput of a network. In this work we are specif-

ically interested in the sum-DoF that one can achieve over

the wireless network described by (5), when the inputs are

subject to the average power constraints (4) and any set of

r nodes T ∈ [K]r has a message M j
T that it wishes to

convey to Node j, for any j ∈ [K]\T . Each message M j
T

is uniformly distributed over a set [2nR
j

T ] and a rate-tuple

(Rj
T : T ∈ [K]r, j ∈ [K]\T ) is called achievable if there exists

a sequence of encoding and decoding functions such that the

probabilities of error tend to 0 in the asymptotic regime of

infinite blocklengths. The sum-DoF is then defined as

Sum-DoF(r) , sup lim
P→∞

∑

T ∈[K]r, j∈[K]\T Rj
T (P)

1
2 logP

, (10)

where the supremum is over sequences {(Rj
T (P) : T ∈

[K]r, j ∈ [K]\T )}P>0 so that for each P > 0 each tuple

(Rj
T (P) : T ∈ [K]r, j ∈ [K]\T ) is achievable under power P.

Lemma 1. For any r ∈ [K]:

∆(r) ≥
(

1−
r

K

) 1

Sum-DoF(r)
. (11)

Proof: See Appendix A, but the idea is well known and

also used in [11] and [12].

III. NEW IA SCHEME

In view of Lemma 1, in this section we present a scheme

achieving a high Sum-DoF(r) over the wireless network. We

start with an example.
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A. Example 2: K = 4, r = 2

Consider r = 2 and K = 4 nodes. In this case our

scheme transmits 18 different messages depicted in (12). Here,

Message M j
k,T is a message that is known by the set of nodes

T and intended to Node j /∈ T . (Since we consider r-fold

cooperation, we have |T | = 2.)

Message M j
k,T is only transmitted by a single Node k ∈ T .

The remaining nodes in T \{k} only exploit their knowledge

of M j
k,T to cancel the transmission from their receive signal.

Notice that for certain sets T and receive nodes j /∈ T our

scheme sends two messages to the same node j: M j
k1,T

and

M j
k2,T

for k1 6= k2. (In (12) the two messages M2
1,{1,4} and

M2
4,{1,4} for example have this form.) These messages M j

k1,T

and M j
k2,T

actually represent two independent submessages

of Message M j
T as we defined it in Section II-B. For the sets

T and Nodes j /∈ T for which there exists only a single

Message M j
k,T , this message is really the message M j

T as we

defined it in Section II-B. Since our interest is on the Sum-

DoF, distinction between submessages and messages is not

relevant.

In our scheme, to Node 1 we send messages

M1
2,{2,3}, M1

3,{2,3}, M1
2,{2,4}, M1

3,{3,4}; (12a)

to Node 2 we send messages

M2
1,{1,3}, M2

3,{1,3}, M2
1,{1,4}, M2

4,{1,4}

M2
3,{3,4} M2

4,{3,4}; (12b)

to Node 3 we send messages

M3
1,{1,2}, M3

2,{1,2}, M3
1,{1,4}, M3

4,{1,4},

M3
2,{2,4}, M3

4,{2,4}; (12c)

and to Node 4 we send messages

M4
1,{1,2}, M4

2,{1,2}, M4
1,{1,3}, M4

3,{1,3},

M4
2,{2,3}, M4

3,{2,3}. (12d)

Node K = 4 does not send any message to the first Node 1.

(This omission allows to reuse some of the precoding matrices

and achieve an improved Sum-DoF.) We encode each message

M j
k,T into a Gaussian codeword b

j
k,T and use IA with three

precoding matrices U{2,3},U{2,4}, and U{3,4}. Matrix U{2,3}

is used to send codewords

b
2
1,{1,3}, b

3
1,{1,2}, b

2
4,{3,4}, b

3
4,{2,4}, (13)

b
1
2,{2,3}, b

1
3,{2,3}, b

2
3,{1,3}, b

3
2,{1,2}, (14)

matrix U{2,4} for codewords

b
2
1,{1,4}, b

4
1,{1,2}, b

2
3,{3,4}, b

4
3,{2,3}, (15)

b
1
2,{2,4}, b

4
2,{1,2}, b

2
4,{1,4}, (16)

and matrix U{3,4} for codewords

b
3
1,{1,4}, b

4
1,{1,3}, b

3
2,{2,4}, b

4
2,{2,3}, (17)

b
1
3,{3,4}, b

3
4,{1,4}, b

4
3,{1,3}. (18)

TABLE I
MESSAGES M

j

k,T PRECODED BY THE THREE PRECODING MATRICES

U{2,3} , U{2,4} , AND U{3,4} .

T \ j 1 2 3 4

{1, 2} x x U{2,3} U{2,4}

{1, 3} x U{2,3} x U{3,4}

{1, 4} x U{2,4} U{3,4} x

{2, 3} U{2,3} x x U{2,4} ,

U{3,4}

{2, 4} U{2,4} x U{2,3} , x

U{3,4}

{3, 4} U{3,4} U{2,3} , U{2,4} x x

Remark 1. The choice of precoding matrices is inspired by

[14] where Message M j
k,T is precoded by the matrix UR for

R = T \{j} ∪ {k}. The idea behind the choice of precoding

matrices in [14] is that any node in R is either interested

in learning Message M j
k,T or it can compute it itself and

remove the interference from its receive signal. A given node

j thus only experiences interference from precoding matrices

UR for which j /∈ R. In our IA scheme, we omit precoding

matrices UR′ for sets R′ containing index 1, and instead use

the precoding matrix UR also to send

b
1
k,R, b

j
k,R∪{1}\{j}, ∀j, k ∈ R, j 6= k, (19)

see the codewords indicated in (14), (16), (18).

We illustrate our assignment of the precoding matrices

also in Table I. The entries in column 1 or in rows

{1, 2}, {1, 3}, {1, 4} correspond to two submessages M j
k1,T

and M j
k2,T

, where k1 and k2 denote the two entries in T . For

all other entries in Table I not equal to “x”, we have only one

message per precoding matrix, see (13), (15), and (17).

During the shuffling phase, Nodes 1–4 send the following

signals. Node 1 sends:

X1 = U{2,3}

(

b
2
1,{1,3} + b

3
1,{1,2}

)

+U{2,4}

(

b
2
1,{1,4} + b

4
1,{1,2}

)

+U{3,4}

(

b
3
1,{1,4} + b

4
1,{1,3}

)

. (20)

Node 2 sends:

X2 = U{2,3}

(

b
1
2,{2,3} + b

3
2,{1,2}

)

+U{2,4}

(

b
1
2,{2,4} + b

4
2,{1,2}

)

+U{3,4}

(

b
3
2,{2,4} + b

4
2,{2,3}

)

. (21)

Node 3 sends:

X3 = U{2,3}

(

b
1
3,{2,3} + b

2
3,{1,3}

)

+U{2,4}

(

b
2
3,{3,4} + b

4
3,{2,3}

)

+U{3,4}

(

b
1
3,{3,4} + b

4
3,{1,3}

)

. (22)
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Node 4 sends:

X4 = U{2,3}

(

b
2
4,{3,4} + b

3
4,{2,4}

)

+U{2,4}b
2
4,{1,4} +U{3,4}b

3
4,{1,4}. (23)

Eeach node subtracts all the interference of the signals that

it can compute itself. For example, Node 2 thus constructs:

Y
′
2 = H2,1U{2,3}b

2
1,{1,3} +H2,1U{2,4}b

2
1,{1,4}

︸ ︷︷ ︸

desired signal

+H2,3U{2,3}b
2
3,{1,3} +H2,3U{2,4}b

2
3,{3,4}

︸ ︷︷ ︸

desired signal

+H2,4U{2,3}b
2
4,{3,4} +H2,4U{2,4}b

2
4,{1,4}

︸ ︷︷ ︸

desired signal

+H2,1U{3,4}

(

b
3
1,{1,4} + b

4
1,{1,3}

)

+H2,3U{3,4}

(

b
1
3,{3,4} + b

4
3,{1,3}

)

+H2,4U{3,4}b
3
4,{2,4} + Z2. (24)

Node 2’s desired signals are all precoded by precoding

matrices U{2,3} and U{2,4}, while all interference signals

are precoded by matrix U{3,4}. Similar observations hold for

Nodes 3 and 4. Desired and interference signals at Node 1

instead are precoded by all three precoding matrices.

The IA matrices U{2,3}, U{2,4}, and U{3,4} are constructed

based on the IA idea in [15] taking into account the channel

matrices that premultiply the IA matrices in the interference

signals of Y′
1,Y

′
2,Y

′
3,Y

′
4. Specifically:

UR ,

[
∏

H∈HR

H
αR,H ·ΞR : ∀αR ∈ [η]4

]

, (25)

where each column of the matrix is constructed using a

different exponent-vector αR = (αR,H : H ∈ HR) ∈ [η]4; η
is a large number depending on the blocklength T that tends

to ∞ with T; ΞR are i.i.d. random vectors drawn according

to a continuous distribution, and

H{2,3} ,
{
H1,4, H4,1, H4,2, H4,3

}
, (26)

H{2,4} ,
{
H1,3, H3,1, H3,2, H3,4

}
, (27)

H{3,4} ,
{
H1,2, H2,1, H2,3, H2,4

}
. (28)

By this choice of the precoding matrices, all interference

signals at a Node 2 will lie in the columnspace of the matrix

W{3,4} ,




∏

H∈H{3,4}

H
αR,H ·Ξ{3,4} : ∀αR ∈ [η + 1]4



 ,

while the desired signals will be separable from each other

and from this interference space.

Since Y
′
2 has 6 signal spaces for the 6 desired signals and

only a single interference space, our scheme achieves DoF

6/7 to Node 2. Similar considerations hold for Nodes 3 and

4. Node 1 has 3 interference spaces (one for each IA precoding

matrix) and only 4 signal spaces, and we thus achieve DoF

4/7 to Node 1. The SumDoF achieved by the scheme is thus:

Sum-DoF = 22/7.

For comparison, notice that the IA scheme in [14] uses

the additional precoding matrices U{1,2}, U{1,3}, and U{1,4}.

The interference space at Node 2 then consists of W{3,4} and

additionally of the similar matrices W{1,2} and W{1,4}. Thus,

only DoF 6/(6 + 3) = 2/3 is achievable to Node 2, as well

as to all other nodes, leading to the reduced Sum-DoF 12/3.

B. The General Scheme

Fix η ∈ Z+ (which we shall let tend to ∞) and let

Γ , K · (K − r − 1) (29)

T , (K− 2) ·

(
K− 2

r − 1

)

· ηΓ +

(
K− 1

r

)

· (η + 1)Γ. (30)

We send the following messages to any Node j ∈ [K]\{1}:
{

M j
k,T : T ∈ [[K]\{j}]r, k ∈ T

}

(31)

and to Node 1 we send messages
{
M1

k,T : T ∈ [[K]\{1}]r, k ∈ T \{K}
}
. (32)

Thus, as in the examples of the previous section, the last node

K does not send any message to the Node 1.

For each message, construct a Gaussian codebook of power

P/
(
K−1
r

)
and length ηΓ to encode each Message M j

k,T into

a codeword b
j
k,T . As in the previous sections, we shall use a

linear precoding scheme, and thus Node i ∈ [K] can mitigate

the interference caused by the codewords
{
b
j
k,T

}

∀T : i∈T
. (33)

Thus, for each set R ∈ [[K]]r, without causing non-desired

interference to nodes in R, we can use the same precoding

matrix UR for all the codewords:
{
b
j
k,R∪{k}\{j}

}

k∈[K]\R
j∈R

. (34)

This idea was already used in the related works [13], [14]. In

contrast to these previous works, here we do not introduce the

precoding matrices UR for sets R containing 1 and instead

we use matrix UR, for 1 /∈ R, also to precode the codewords
{

b
j
k,R∪{1}\{j}

}

j,k∈R,j 6=k
∪

{

b
j
1,R∪{1}\{j}

}

j∈R
, (35)

and

{b1
k,R}k∈R\{K}. (36)

All non-intended nodes in R can subtract these interferences

from their receive signals because they know the codewords.

This trick allows us to reduce the dimension of the interference

space and thus improve performance.

Table II illustrates which codesymbols b
j
k,T are premul-

tiplied by the precoding matrix U{2,3,4}, when r = 3 and

K ≥ 5. The entries in rows T containing index 1 correspond to

r = 3 different codewords b
j
k,T , one for each k ∈ T , see (35).

Similarly, the entry in column-1 and row {2, 3, 4} corresponds

to the r codewords b1
k,{2,3,4}, for each k ∈ {2, 3, 4}. Any other

4



TABLE II
THE CODEWORDS b

j

k,T PREMULTIPLIED BY U{2,3,4} .

T \ j 1 2 3 4

{1, 2, 3} x x x U{2,3,4}

{1, 2, 4} x x U{2,3,4} x

{1, 3, 4} x U{2,3,4} x x

{2, 3, 4} U{2,3,4} x x x

{2, 3, 5} o x x U{2,3,4}

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
{2, 3,K} o x x U{2,3,4}

{2, 3, 5} o x U{2,3,4} x

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
{2, 3,K} o x U{2,3,4} x

{3, 4, 5} o U{2,3,4} x x

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
{3, 4,K} o U{2,3,4} x x

entry of the table showing U{2,3,4} corresponds to a single

codeword b
j
k,T , where k is the single element in T \{2, 3, 4}.

Similar tables can be drawn for all pairs (k1, k2) ∈ [K], where

recall that node K does not send any information to Node 1.

Encoding: Define the T-length vector of channel inputs

Xk , (Xk(1), . . . , Xk(T))
T for each Node k and set:

X1 =
∑

R∈[[K]\{1}]r

∑

j∈R

URb
j
1,R∪{1}\{j}, (37)

Xk =
∑

R∈[[K]\{1,k}]r

∑

j∈R

URb
j
k,R∪{k}\{j}

+
∑

R∈[[K]\{k}]r :
1∈R

∑

j∈R

UR∪{k}\{1}b
j
k,R∪{k}\{j},

k ∈ [K− 1]\{1}, (38)

XK =
∑

R∈[[K−1]\{1}]r

∑

j∈R

URb
j
K,R∪{K}\{j}

+
∑

R∈[[K−1]]r :
1∈R

∑

j∈R\{1}

UR∪{K}\{1}b
j
K,R∪{K}\{j}, (39)

where we shortly describe matrices {UR}R∈[[K]\{1}]r .

Decoding: After receiving the respective sequence of T

channel outputs Yj , (Yj,1, . . . , Yj,T), for j ∈ [K], each

node removes the influence of the codewords corresponding to

the messages that it can compute itself. The nodes’ “cleaned”

signals can then be written as:

Y
′
1 =

∑

R∈[[K]]r :
1∈R

∑

k∈[K−1]\R

H1,kUR∪{k}\{1}b
1
k,R∪{k}\{1}

︸ ︷︷ ︸

desired signal

+
∑

R∈[[K]\{1}]r

∑

k∈[K]\R

H1,kURvR,k + Z1, (40a)

Y
′
j =

∑

R∈[[K]\{1}]r :
j∈R

∑

k∈[K]\R

Hj,kURb
j
k,R∪{k}\{j}

︸ ︷︷ ︸

desired signal

+
∑

R∈[[K]]r :
1,j∈R

∑

k∈[K]\R

Hj,kUR∪{k}\{1}b
j
k,R

︸ ︷︷ ︸

desired signal

+
∑

R∈[[K]\{1}]r :
j /∈R

∑

k∈[K]\R :
k 6=j

Hj,kURvR,k

+
∑

R∈[[K]]r :
1∈R,j /∈R

∑

k∈[K]\R

Hj,kUR∪{k}\{1}vR,k + Zj ,

j ∈ [K]\{1}, (40b)

where for ease of notation we defined for Nodes k ∈ [K− 1]:

vR,k ,
∑

j∈R

b
j
k,R∪{k}\{j}, ∀R ∈ [[K]\{k}]r, (41)

and for the last Node K, since its signal to Node 1 is absent:

vR,K ,
∑

j∈R\{1}

b
j
k,R∪{k}\{j}, ∀R ∈ [[K− 1]]r. (42)

Each Node j zero-forces the non-desired interference terms

of its “cleaned” signal and decodes its intended messages.

Choice of IA Matrices {UR}: Inspired by the IA scheme

in [15], we choose each T× ηΓ precoding matrix UR so that

its column-span includes all power products (powers 1 to η)

of the channel matrices Hj,k that premultiply UR in (40) in

the non-desired interference terms. Thus, R ∈ [[K]\{1}]r:

UR ,

[
∏

H∈HR

H
αR,H ·ΞR : ∀αR ∈ [η]Γ

]

, (43)

where {ΞR}R∈[[K]\{1}]r are i.i.d. random vectors independent

of all channel matrices, noises, and messages,

HR ,
{
Hj,k : j ∈ [K]\R, k ∈ [K]\{j}

}
\
{
H1,k : k ∈ R

}
,

and αR , (αR,H : H ∈ HR). Notice that |HR| = Γ for any

R ∈ [[K]\{1}]r.
Performance Analysis: See Appendix B.

IV. NEW BOUNDS ON THE NDT

Define for any integer value r ∈ [K]:

∆Ub(r) ,

{ (
1− r

K

)
· r(K−1)+K−r−1
r(K−1)2+r(K−2) if r < K/2

1
K

(
1− r

K

)
if r ≥ K/2

. (44)

Also, let

∆Lb(r) ,







1

K

(

2−
3

K

)

if r = 1,

1

K

(

1−
r

K
+ max

t∈[⌊K/2⌋]
lowc (Ct(r))

)

if r ∈ (1, 2),

1

K

(

1−
r

K
+ lowc

(
C⌊K/2⌋(r)

))

if r ∈ [2,K],

(45)

where for any t ∈ [⌊K/2⌋]:

Ct(i) =







(K−i

t−i)
(Kt)·t

· (K− t− i), if i ∈ [t],

0, if i ∈ [K]\[t]
(46)
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and for any function f , lowc (f(ℓ)) denotes the lower convex

enveloppe of {(ℓ, f(ℓ))}.

Theorem 1. The NDT-computation tradeoff ∆∗(r) is upper-

and lower-bounded as:

∆Lb(r) ≤ ∆∗(r) ≤ lowc (∆Ub(r)) . (47)

Proof: For integers r ≥ K/2 achievability of ∆Ub(r) is

proved in [11]. For integers r < K/2 achievability of ∆Ub(r)
holds by Lemma 1 and the scheme in Section III. Achievability

of the lower convex enveloppe follows by simple time- and

memory-sharing strategies. The lower bound can be proved

using MAC-type arguments, see Appendix C.

Remark 2. The upper bound is convex and piece-wise con-

stant. The lower bound is piecewise constant with segments

spanning the intervals [i, i + 1], for i = 2, . . . ,K − 1. On

the interval [1, 2), the lower bound is constant over smaller

sub-intervals only but not over the entire segment.

Corollary 1. For all r ≥ ⌈K/2⌉, the linear interference

cancelation scheme in [11] achieves the NDT, which equals

∆∗(r) =
(

1−
r

K

)

·
1

K
. (48)

Proof: For r ≥ ⌈K/2⌉ the upper bound lowc (∆Ub(r)) is

equal to the lower bound ∆Lb(r) because C⌊K/2⌋(i) = 0 for

all i ≥ ⌈K/2⌉.

Remark 3. By [11], ∆∗(r) in (48) is achieved with beam-

forming, zero-forcing, and side-information cancellation. By

Corollaries 1 and 2, these simple strategies are sufficient to

achieve ∆∗(r) when r ≥ ⌈K/2⌉ but not when r <
⌈
K−1
2

⌉
.

We compare the upper bound in Theorem 1 to the bounds

in [11] and [12]. The upper bound in [11] is given as follows:

∆∗(r) ≤ ∆UB-BF(r) , lowc

{(

r,
1− r/K

min(K, 2r)

)

: r ∈ [K]

}

. (49)

The upper bound in [12] has the form:

∆∗(r) ≤ ∆Ub-Groups(r) ,

lowc

(

(K, 0) ∪

{(

r,
1− r/K

Sum-DoFLb(r)

)

: 1 ≤ r < K, r|K

})

,

(50)

where

Sum-DoFLb(r) ,

{

2r if K/r ∈ {2, 3},
K(K−r)−r

2

2K−3r if K/r ≥ 4.
(51)

Notice that ∆Ub(1) = ∆Ub-Groups(1).

Corollary 2. For all 1 < r <
⌈
K

2

⌉
:

∆∗(r) ≤ lowc (∆Ub(r)) < ∆Ub-Groups(r), (52)

and for all 1 ≤ r <
⌈
K−1
2

⌉
:

∆∗(r) ≤ lowc (∆Ub(r)) < ∆Ub-ZF(r). (53)

Fig. 1 and 2 compare the bounds in Theorem 1 to the

previous upper bounds ∆Ub-Groups(r) and ∆UB-BF(r).
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0.15

0.2
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N
D

T
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∗
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One-shot scheme of [11]

Grouped IA scheme of [12]

Novel IA scheme

Converse

Fig. 1. Bounds on ∆∗(r) for K = 11.
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N
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T
∆

∗
(r
)

One-shot scheme of [11]

Grouped IA scheme of [12]

Novel IA scheme

Converse

Fig. 2. Bounds on ∆∗(r) for K = 20.

V. CONCLUSION

This paper presents an improved upper bound and the first

information-theoretic lower bound on the NDT tradeoff of

full-duplex wireless MapReduce systems. The upper bound

is obtained by zero-forcing and a novel IA scheme that is

tailored to the information cancellation capabilities of the

nodes in a MapReduce system. As a conclusion of this

work, we observe that linear beamforming, zero-forcing, and

interference cancelation are optimal when each node can store

at least half of the file, but they are suboptimal for smaller

computation loads.
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APPENDIX A

PROOF OF LEMMA 1

We show how to construct a distributed computing scheme

achieving the NDT upper bound in (11). We shall assume a

sequence (in P > 0) of rates (Rj
T : T ∈ [K]r, j ∈ [K]\T )

that achieves the sum-DoF Sum-DoF(r) and is completely

symmetric with respect to indices j and sets T . By the

same time-sharing and relabeling arguments as described in

Subsection II such a sequence must exist.

In the Map Phase we choose a regular file assignment. Par-

tition the input files {W1, . . . ,WN} into
(
K

r

)
disjoint bundles

and assign each bundle to a size-r subset T ∈ [[K]]r. The bun-

dle associated to subset T is denoted WT ⊆ {W1, . . . ,WN}.

Notice that the proposed assignment satisfies the constraint

on the computation load, because the number of files stored

at Node k is: (
K− 1

r − 1

)
N
(
K

r

) =
r

K
N. (54)

Each node computes all IVAs associated to its stored files.

During the Wireless Shuffle Phase, each transmit set T
communicates to any receive node j /∈ T all IVAs that can

be calculated from bundle WT . To this end, all nodes use the

encoding and decoding functions achieving Sum-DoF(r).
Each transmit group T has to send N

(Kr)
IVAs to each Node

j /∈ T and in total there are
(
K

r

)
(K− r) rates in the symmetric

rate vector (Rj
T : T ∈ [K]r, j ∈ [K]\T ). By definition, the

probability of error in reconstructing all missing IVAs tends

to 0 as T → ∞ if

lim
P→∞

lim
A→∞

A · N

T ·
(
K

r

)
· logP

<
Sum-DoF(r)
(
K

r

)
(K − r)

. (55)

We thus conclude that

∆⋆(r) ≤ lim
P→∞

lim
A→∞

T

A · K · N
· logP =

K− r

K

1

Sum-DoF(r)
,

(56)

which proves the desired achievability result.

APPENDIX B

ANALYSIS OF IA SCHEME

By the choice of T in (30), the signal and interference space

at Rx 1 is represented by the T× T-matrix:

Λ1 =
[

D1
︸︷︷︸

signal space

, [WR]R∈[[K]\{1}]r

︸ ︷︷ ︸

interference space

]

, (57)

where the signal subspace is given by a collection of T ×(

(K− 2) ·
(
K−2
r−1

)
· ηΓ

)

-matrices

D1 ,

[

H1,kUR

]

k∈[K−1]\{1},
R∈[[K]\{1}]r :

k∈R

. (58)

The signal space at Rx j ∈ [K]\{1} is represented by the

T× T̃ matrix:

Λj ,

[

Dj
︸︷︷︸

signal space

, [WR]R∈[[K]\{1}]r : j /∈R
︸ ︷︷ ︸

interference space

]

. (59)

where the signal subspace Dj is given by the collection of

T×
(

r ·
(
K−1
r

)
· ηΓ

)

-matrices

Dj , [Hj,kUR]R∈[[K]\{1}]r :
j∈R,

k∈[K]\{j}

(60)

and

T̃ , r ·

(
K− 1

r

)

· ηΓ +

(
K− 2

r

)

· (η + 1)Γ. (61)

According to Lemmas 2 and 3 below, {Λj} is full column-

rank if each column has different exponent vector α, which

follows by the way we constructed the matrices UR and WR.

Indeed:

• For each R ∈ [[K]\{1}]r, matrices UR and WR are

constructed using a dedicated i.i.d. vector ΞR that is

independent of all other random variables in the system

and thus the vectors ΞR can play the roles of the vectors

Ξi in Lemma 3.

• For each term HUR in (58) and (60), we have H /∈ HR.

Thus H is not used in the construction of neither UR nor

WR and induces a unique exponent on the corresponding

columns in the signal space which is 0 in all columns of

the interference space WR.

This proves that based on the “cleaned” signal (40), each

receiving node j can separate the various desired signals from

each other as well as from the non-desired interfering signals.

Since each codeword b
j
k,T occupies ηΓ dimensions out of the

T dimensions, we obtain that whenever

|bj
k,T |

T
≤

ηΓ

T
logP+ o(logP), (62)

for an appropriate function o(logP) that grows slowlier than

logP, each codeword b
j
k,T can be decoded with arbitrary

small probability of error as η → ∞.

Since (K − 2) ·
(
K−2
r−1

)
codewords are sent to Node 1, and

r
(
K−1
r

)
codewords to any other Node j = 2, . . . ,K, and since

lim
η→∞

ηΓ

T
=

1

(K − 2)
(
K−2
r−1

)
+
(
K−1
r

) , (63)

we conclude that a sum-DoF of

Sum-DoF =
(K − 2) ·

(
K−2
r−1

)
+ (K− 1)r

(
K−1
r

)

(K− 2)
(
K−2
r−1

)
+
(
K−1
r

)

=
r(K − 1)2 + r(K − 2)

r(K − 2) + K− 1
(64)

is achievable over the system. This establishes the desired

achievability result.

Lemma 2. Let s1, s2, ..., sm be independent random vectors

with i.i.d. entries drawn according to continuous distributions.

for any L ≤ m and L different exponent vectors

αj = (αj,1, . . . , αj,m) ∈ Z
m
+ , j ∈ [L],
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the m× L matrix M with row-i and column-j entry

Mi,j =

m∏

k=1

(si,)
αj,k , i ∈ [m], j ∈ [L], (65)

is full rank almost surely.

Lemma 3. Consider numbers {n1, n2, · · · , nK̃
} ∈ ZK̃

+ so that

their sum C ,
∑

K̃

i=1 ni ≤ T. Assume that for each i ∈ [K̃]
and k ∈ [ni], Bi,k ∈ CT×T is a diagonal matrix so that all

square sub-matrices of the following matrices {Bi}i∈K̃
are

full rank:

Bi ,
[
Bi,1 · 1T,Bi,2 · 1T, · · · ,Bi,ni

· 1T

]
, i ∈ [K̃], (66)

where 1T denotes a T-dimensional all-one column vector.

Let further {Ξi}i∈K̃
be independent T-vectors with entries

drawn i.i.d. from continuous distributions and define the T×
ni-matrices

Ai , [Bi,1 ·Ξi,Bi,2 ·Ξi, · · · ,Bi,ni
·Ξi] , i ∈ [K̃]. (67)

Then, the T× C-matrix

Λ ,
[
A1,A2, · · · ,AK̃

]
(68)

has full column rank almost surely.

Proof: We assume that the matrix Λ is a square matrix

i.e. C = T. If T > C, we take a square submatrix of Λ and

perform the same proof steps on the submatrix.

Define

F
(
Ξ1, . . . ,ΞK̃

)
, det(Λ) (69)

which is a polynomial of Ξ1,Ξ2, · · · ,ΞK̃
as the determinant

is a polynomial of the entries of Λ.

For the vectors

di = [ 0, · · · 0,
︸ ︷︷ ︸

(n1+···+ni−1) 0s

1, · · · 1,
︸ ︷︷ ︸

ni 1s

0, · · · 0
︸ ︷︷ ︸

(ni+1+···+n
K̃
) 0s

]T , i ∈ K̃, (70)

the polynomial evaluates to

F
(
d1, . . . ,dK̃

)
= det








B
′
1 0 · · · 0

0 B
′
2 · · · 0

...
...

. . .
...

0 0 · · · B
′
K̃








(71)

=

K̃∏

i=1

det(B′
i) 6= 0 (72)

where B
′
i is the ni×ni square sub-matrix of Bi consisting of

its rows (n1 + · · ·+ni−1 +1) to (n1 + · · ·+ni−1 + ni). The

inequality holds by our assumption that all square sub-matrices

of Bi are full rank.

We conclude that F is a non-zero polynomial and thus

F
(
Ξ1, . . . ,ΞK̃

)
equals 0 with probability 0 because the

entries of Ξ1,Ξ2, · · · ,ΞK̃
are drawn independently from

continuous distributions.

APPENDIX C

PROOF OF THE NDT LOWER BOUND IN THEOREM 1

Consider a fixed file assignment (map phase), and for any

positive power P a sequence (in T) of wireless distributed

computing systems satisfying (9) for the given file assignment.

(Since for finite N there are only a finite number of different

file assignments irrespective of P and T, we can fix the

assignment.) The following limiting behaviour must hold.

Lemma 4. Consider two disjoint sets T and R of same size

|T | = |R|, (73)

and define F , [K]\(R∪T ). Let M ⊆ [N] be the set of files

known only to nodes T but not to any other node and partition

the set of all IVAs A it into the following disjoint subsets:

Wr , {aj,m} j∈R
m∈[N]\Mj

, (74)

Wt , {aj,m} j∈(T ∪F)
m∈M\Mj

. (75)

For any sequence of distributed computing systems:

d , lim
P→∞

lim
T→∞

A

T logP
≤

|T |

|Wt|+ |Wr|
(76)

(Notice that Wr denotes the set of all IVAs intended to

nodes in R and Wt the set of IVAs deduced from files in M
and intended for nodes not in R.)

Proof. Denote by H the set of all channel coefficients to all

nodes in the system and define Wc , A\(Wr ∪ Wt. Since

channel coefficients and IVAs are independent, we have

H(Wt,Wr)

= H(Wt,Wr|Wc,H) (77)

= I(Wt,Wr;YR|Wc,H) +H(Wt,Wr|Wc,YR,H) (78)

= h(YR|Wc,H)− h(ZR)

+H(Wr|Wc,YR,H) +H(Wt|Wr,Wc,YR,H) (79)

≤ h(YR|Wc,H)− h(ZR)

+TǫT +H(Wt|Wr,Wc,YR,H), (80)

where we defined YA , [Yj ]j∈A for a set A ⊆ [K] and ǫT is

a vanishing sequence as T → ∞. Here the inequality holds by

Fano’s inequality, because Wr is decoded from YR and Wc,

and because we impose vanishing probability of error (9).

Again by Fano’s inequality and by (9), there exists a

vanishing sequence ǫ′
T

such that

H(Wt|Wr,Wc,YR,H)

≤ I(Wt;Y(F∪T )|Wr,Wc,YR,H) + Tǫ′T (81)

= h(Y(F∪T )|Wr,Wc,YR,H) (82)

−h(Y(F∪T )|Wr,Wt,Wc,YR,H) + Tǫ′T (83)

≤ h(Ȳ(F∪T )|ȲR,H)− h(Z(F∪T )) + Tǫ′
T
, (84)

where ȲA , [Ȳj ]j∈A and Ȳj denotes Node j’s “cleaned”

signal without the inputs that do not depend on files in M but

only on IVAs Wr ∪Wc:

Ȳj , Hj,T XT + Zj , j ∈ T ∪ F .

9



Here, HA,B denotes the channel matrix from set B to set A.

To bound the first term in (84), we introduce a random

variable E indicating whether the matrix HR,T is invertible

(E = 1) or not (E = 0). If this matrix is invertible and

E = 1, then the input vector XT can be computed from ȲR

up to noise terms. Based on this observation and defining the

residual noise terms

Z̄j , Zj −Hj,T H
−1
R,T ZR, if E = 1, (85)

we obtain:

h(Ȳ(F∪T )|ȲR,H)

≤ P(E = 1) · h
(
Z̄(F∪T )|ȲR,H, E = 1

)

+P(E = 0) · h
(
Ȳ(F∪T )|ȲR,H, E = 0

)
(86)

≤ h
(
Z̄(F∪T )

)
+ P(E = 0)h

(
Ȳ(F∪T )|ȲR,H, E = 0

)
. (87)

Since the channel coefficients follow continuous distribu-

tion, HR,T is invertible almost surely, implying P(E =
0) = 0. By the boundedness of the entropy term

h
(
Ȳ(F∪T )|ȲR,H, E = 0

)
(since power P and channel co-

efficients are bounded), this implies

h(Ȳ(F∪T )|ȲR,H) ≤ h(Z̄(F∪T )),

which combined with (80) and (84) yields:

H(Wt,Wr) ≤ h(YR|H)− h(ZR) + h(Z̄(F∪T ))

−h(Z(F∪T )) + T(ǫT + ǫ′T)

≤ T|R| log(P) + TCT,H, (88)

where CT,H is a function that is uniformly bounded over all

realizations of channel matrices and powers P. Noticing

H(Wt,Wr) = A(|Wt|+ |Wr|), (89)

dividing (88) by T log(P), and letting P → ∞, establishes the

lemma because |R| = |T | and TCT,H is bounded.

For each subset T ⊆ [K], let Bj
T denote the set of IVAs that

are computed exclusively at nodes in set T and intended for

reduce function j. Define bT = |Bj
T |, which does not depend

on the index of the reduce function j ∈ [K]\T .

Choose two disjoint subsets T and R of same size |T | =
|R|. By Lemma 4, and rewriting the sets Wt and Wr in the

lemma in terms of the sets {Bj
T }, we obtain:

|T |

d
≥

∑

T ⊆[K]

∑

j∈R\T

|Bj
T |+

∑

G⊆T

∑

j∈[K]\(R∪G)

|Bj
G | (90)

=
∑

T ⊆[K]

|R\T | · bT +
∑

G⊆T

(K − |R| − |G|) · bG . (91)

Summing up Equality (91) over all sets T and R of constant

size t ≤ K/2, we obtain:
(
K

t

)

·

(
K− t

t

)

·
t

d

≥
∑

T ∈[[K]]t

∑

R∈[[K]\T ]t

∑

T ⊆[K]

|R\T | · bT

+
∑

T ∈[[K]]t

∑

R∈[[K]\T ]t

∑

G⊆T

(K − t− |G|) · bG (92)

=
∑

T ⊆[K]

(
K

t

)

·

(
K− t

t

)

· (K − |T |)
t

K
bT

+
∑

G⊆[K] :
|G|≤t

(
K− |G|

t− |G|

)

·

(
K− t

t

)

· (K − t− |G|)bG (93)

=

(
K

t

)

·

(
K− t

t

)

· t

(

N−
rN

K

)

+
∑

G⊆[K] :
|G|≤t

(
K− |G|

t− |G|

)

·

(
K− t

t

)

· (K − t− |G|)bG , (94)

where we define
(
a
0

)
= 1 for any positive integer a. The first

equality holds because for a given set T , each element of

[K]\T is present in a fraction of t/K pairs of the admissible

sets (R, T ) and the last equality holds because

∑

T ⊆[K]

bT = N,
∑

T ⊆[K]

|T | · bT ≤ r · N. (95)

Dividing both sides of (94) by
(
K

t

)(
K−t
t

)
t, and defining bi ,∑

T ∈[[K]]i
bT , for any t ∈ [⌊K/2⌋] we obtain:

1

d
≥ N−

r · N

K
+ min

b1,...,bK∈Z
+ :

∑
K

i=1
bi=N

∑
K

i=1
ibi≤rN

t∑

i=1

Ct(i)bi, t ∈ [⌊K/2⌋], (96)

where Ct(i) is defined in (46).

For any t ∈ [⌊K/2⌋], the sequence of coefficients

Ct(1), Ct(2), . . . , Ct(t) is convex and non-increasing, see

Appendix D. Based on this convexity, it can be shown (see

Appendix E) that for any r < t + 1 there exists a solution to

the minimization problem in (96) putting only positive masses

on b∗⌊r⌋ and b∗⌈r⌉ in the unique way satisfying

b∗⌊r⌋ + b∗⌈r⌉ = N (97)

⌊r⌋b∗⌊r⌋ + ⌈r⌉b∗⌈r⌉ = rN. (98)

For r ≥ t+1 an optimal solution consists of setting b∗⌊r⌋ = N,

in which case the minimization in (96) evaluates to 0.

For r ≥ 2, the lower bound on the NDT in the theorem is

then obtained by plugging these optimum values into bound

(96) for the choice t = ⌊K/2⌋. For r = 1 we choose t = 1,

and for r ∈ (1, 2) we maximize over the value of t.

APPENDIX D

PROOF OF MONOTONICITY AND CONVEXITY OF VALUES

C
(t)
i

We shall prove monotonicity and convexity of the values

D
(t)
i ,

K!

t!
t · C

(t)
i (99)

=
(K− i)!

(t− i)!
(K− t− i), i ∈ [t]. (100)

10



Notice that

D
(t)
i−1 = D

(t)
i

K− i+ 1

t− i+ 1
·
K − t− i+ 1

K− t− i
(101)

D
(t)
i+1 = D

(t)
i

t− i

K− i
·
K − t− i− 1

K− t− i
, (102)

and the monotonicity

D
(t)
i−1 > D

(t)
i (103)

simply follows because K > t implies

K− i+ 1 > t− i+ 1 and K− t− i+ 1 > K− t− i.
(104)

To prove convexity, we shall prove that

D
(t)
i+1 +D

(t)
i−1 ≥ 2D

(t)
i , (105)

or equivalently

t− i

K− i
·
K− t− i− 1

K− t− i
+

K− i+ 1

t− i + 1
·
K− t− i+ 1

K− t− i
≥ 2.(106)

Multiplying both sides with the denominators, we see that this

condition is equivalent to

(t− i)(K − t− i− 1)(t− i+ 1)

+(K− i+ 1)(K− t− i+ 1)(K − i)

≥ 2(K− i)(t− i+ 1)(K− t− i). (107)

and after rearranging the terms:

(K − t)(K− i)(K − t− i) + (K− i)(K− i+ 1)

≥ (K− t)(t− i+ 1)(K − t− i) + (t− i)(t− i+ 1). (108)

This last inequality is easily verified by noting that K ≥ t+1.

APPENDIX E

PROOF OF STRUCTURE OF MINIMIZER

Start with any feasible vector b1, . . . , bK and consider two

indices i < j with non-zero masses, bi > 0 and bj > 0.

Updating this vector as

b′i = bi −∆, and b′i+1 = bi+1 +∆, (109)

b′j−1 = bj−1 +∆, and b′j = bj −∆, (110)

for any ∆ ∈ [0,min{bi, bj}], results again in a feasible

solution vector, which has smaller objective function due to

the convexity of the coefficients {C
(t)
i }.

Applying this argument iteratively, one can conclude that

there must exist an optimal solution vector where all entries

are zero except for two masses bk > 0 and bk+1 ≥ 0. Since
∑

K

i=1 ibi ≤ rN, the index k cannot exceed r. By the decreasing

monotonicity of the coefficients C
(t)
i , the optimal solution

must then be to choose b⌊r⌋ > 0 and b⌊r⌋+1 ≥ 0 and all

other masses equal to 0. Since there is a unique such choice

satisfying
∑

K

i=1 ibi ≤ rN and
∑

K

i=1 bi = N, this concludes

the proof.
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