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Abstract—Integrated sensing and communication (ISAC) is
expected to be offered as a fundamental service in the upcoming
sixth-generation (6G) communications standard. However, due to
the exposure of information-bearing signals to the sensing targets,
ISAC poses unique security challenges. In recent years, intelligent
reflecting surfaces (IRSs) have emerged as a novel hardware
technology capable of enhancing the physical layer security of
wireless communication systems. Therefore, in this paper, we
consider the problem of transmit and reflective beamforming
design in a secure IRS-enabled ISAC system to maximize the
beampattern gain at the target. The formulated non-convex
optimization problem is challenging to solve due to the intricate
coupling between the design variables. Moreover, alternating
optimization (AO) based methods are inefficient in finding a
solution in such scenarios, and convergence to a stationary
point is not theoretically guaranteed. Therefore, we propose
a novel successive convex approximation (SCA)-based second-
order cone programming (SOCP) scheme in which all of the
design variables are updated simultaneously in each iteration.
The proposed SCA-based method significantly outperforms a
penalty-based benchmark scheme previously proposed in this
context. Moreover, we also present a detailed complexity analysis
of the proposed scheme, and show that despite having slightly
higher per-iteration complexity than the benchmark approach the
average problem-solving time of the proposed method is notably
lower than that of the benchmark scheme.

Index Terms—Intelligent reflecting surface (IRS), integrated
sensing and communication (ISAC), physical layer security,
successive convex approximation (SCA), second-order cone pro-
gramming (SOCP).

I. INTRODUCTION

The sixth-generation (6G) wireless standard is being de-

veloped not only to improve the quality of user experience

compared to that offered by the fifth-generation networks,

but also to support a range of new wireless communication

services, such as autonomous vehicles, drone monitoring, hu-

man activity recognition, environmental monitoring, enhanced

localization and tracking, and many more. Supporting such

new services will require the integration of communication,

sensing and localization capabilities as fundamental services

in a single network architecture rather than as auxiliary func-

tionalities [1]. Integrated sensing and communication (ISAC)
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has recently emerged as a potential enabler in this direction,

combining the communication and sensing capabilities in a

single hardware platform using a common waveform [2], [3].

Preliminary results have confirmed that ISAC can improve

the spectral efficiency of a network by virtue of exploiting

a common hardware, signal processing and spectral frame-

work, thereby offering a low-cost solution to the spectrum

scarcity problem. Furthermore, by exploiting the possibility of

communication-centric and sensing-centric designs, it can also

enjoy significant coordination gains compared to conventional

networks. However, due to the broadcast nature of wireless

channels and the inclusion of information-bearing signaling in

the sensing waveform, susceptibility to eavesdropping targets

poses unique security challenges in ISAC.

Intelligent reflecting surfaces (IRSs) have recently emerged

as a groundbreaking hardware technology to robustify wire-

less communication systems against eavesdroppers via pas-

sive beamforming [4]. The benefits of IRS in a secure

communication-only multiple-input multiple-output (MIMO)

system have been well established in the literature [5], [6].

Hence, it is worth exploring the advantages of IRSs in an ISAC

system in terms of physical layer security [7]. However, it is

interesting to note that in contrast to the somewhat rich litera-

ture on IRS-aided ISAC systems [8]–[12], there is a dearth of

literature on secure IRS-aided ISAC system design [13], [14].

As one of the few examples, the authors in [13] considered

an active IRS-aided multiuser multiple-input single-output

(MU-MISO) ISAC system, where the aim was to obtain an

optimal beamforming design that maximizes the achievable

secrecy rate of the communication users while guaranteeing a

minimum radar signal-to-interference-plus-noise ratio (SINR).

In [14], the authors considered the problem of beampattern

optimization for an eavesdropping target in an IRS-enabled

MU-MISO secure ISAC system, subject to SINR constraints at

the communication users and information leakage constraints

at the target. Two different scenarios were considered in [14];

in the first scenario, full channel state information (CSI) and

the target location were assumed to be known at the base

station (BS), while imperfect CSI and uncertain target location

were assumed in the second scenario. In this paper, we will

focus on the first scenario only, where the CSI and target
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Fig. 1. System model for IRS-enabled secure ISAC system.

location are known at the BS. The more practical setting

in which these quantities are imprecisely known will be

considered in future work. To optimize the transmit and IRS

beamforming in the first scenario, the authors in [14] proposed

a penalty-based alternating optimization (AO) algorithm to

obtain a semi-closed-form solution using Lagrange duality and

a majorization-minimization (MM) algorithm.

Even though the use of AO in [14] makes the optimization

problem much easier to solve, it may not produce a high-

quality solution because of the complicated interdependence

between the design variables [15]. Moreover, as we will show

in Section IV, the use of a penalty-based method requires

a large number of iterations to achieve convergence and

therefore has a very high problem-solving time. Note also that

a feasible solution is not guaranteed if the algorithm terminates

prematurely. To tackle these issues, in this paper we propose

a successive convex approximation (SCA) based beampattern

optimization scheme which results in a high-performance

solution and also requires a much shorter convergence time.

The main contributions of the paper are listed as follows:

• We propose a provably convergent SCA-based algorithm

to maximize the beampattern gain at the eavesdropping

target in the secure ISAC system, subject to the SINR

requirements at the communication users and information

leakage constraints at the target. In contrast to the AO-

based scheme of [14] where all design variables are

updated in an alternating fashion, we derive a second-

order cone program (SOCP) where all of the optimization

variables are updated simultaneously in each iteration.

• We present a complexity analysis of the proposed scheme

which demonstrates that the per-iteration complexity

grows as O
(

N3.5
)

, while that of the benchmark solution

is given by O
(

N3
)

[14, Sec. III-C], where N is the

number of reflecting elements in the IRS. Although

the per-iteration complexity of the proposed approach

is slightly higher than that of the benchmark scheme,

we show that it requires significantly fewer iterations to

converge, resulting in a much shorter problem-solving

time.

• We present extensive numerical results to confirm that the

proposed SCA-based SOCP approach results in a high-

performance solution, and significantly outperforms the

penalty-based AO algorithm in [14].

Notation: Bold uppercase and lowercase letters are used

to denote matrices and vectors, respectively. By CM×N , we

denote the vector space of all M×N complex-valued matrices.

By XT, XH, ‖X‖, ℜ{X} and ℑ{X}, we respectively denote

the transpose, conjugate transpose, Frobenius norm, real and

imaginary components of a matrix X. |x| denotes the absolute

value of a complex number x, and diag(x) denotes the

diagonal matrix whose main diagonal comprises the elements

of x. O(·) denotes the Bachmann–Landau notation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the ISAC system shown in Fig. 1 consisting of

a multi-antenna dual-function base station (BS), one IRS,

K single-antenna communication users (denoted by Uk, k ∈
K , {1, 2, . . . ,K}), and one single-antenna eavesdropping

target.1 Let L and N denote the number of antennas at the

BS and the number of elements in the IRS, respectively. We

assume that the BS transmits a linear superposition of radar

and information signals for the purpose of joint sensing and

communication. The signal vector transmitted from the BS is

given by

s =
∑

k∈K
xkwk +

∑

l∈L
x̂lŵl, (1)

where wk is the communication signal intended for Uk and

ŵl is the lth radar signal with l ∈ L , {1, 2, . . . , L}.
Moreover, xk ∈ CL×1 and x̂l ∈ CL×1 are the beamforming

vectors corresponding to wk and ŵl, respectively. It is assumed

that E
{

wk

}

= 0, E
{

|wk|2
}

= 1 ∀k ∈ K, E
{

ŵl

}

= 0,

E
{

|ŵl|2
}

= 1 l ∈ L, and E
{

wkŵ
H

l

}

= 0 ∀k ∈ K, l ∈ L, i.e.,

the communication and radar signals are mutually independent

and uncorrelated. Denoting the BS-IRS, BS-Uk and IRS-Uk

links by G ∈ CN×L, hDk ∈ C1×L, and hRk ∈ C1×N ,

respectively, the signal received at Uk is given by

yk = hks+ zk, (2)

where hk , hDk + hRkΘG, Θ , diag(θ), θ =
[θ1, θ2, . . . , θN ]T, θn , exp(j2πφn) with φn ∈ [0, 2π)
denoting the phase shift induced by the nth IRS element, and

zk denotes the zero-mean complex additive white Gaussian

noise (AWGN) at Uk with variance σ2
k .

Defining X , [x1,x2, . . . ,xK , x̂1, x̂2, . . . x̂L] ∈
CL×(K+L), and x̃m as the mth column of X, the signal-

to-interference-plus-noise ratio (SINR) at Uk to decode the

intended message is given by

γk =
|hkxk|2

σ2
k +

∑

ℓ∈M\{k} |hkx̃ℓ|2
, (3)

where M , {1, 2, . . . ,K,K + 1, . . . ,K + L}. Similarly, by

denoting the IRS-target channel by gR ∈ C1×N and assuming

that the BS-target (direct) link is blocked due to obstacles, the

signal received at the target is given by

yT = gs+ zT, (4)

1Although we consider a single eavesdropping target in this paper, it is
straightforward to use the proposed algorithm for a system with multiple
eavesdropping targets.



where g , gRΘG ∈ C1×L, gR is the steering vector from

the IRS in the direction of the target, and zT is the zero-mean

complex AWGN at the target with variance σ2
T. Therefore, the

SINR at the target to wiretap the signal intended for Uk is

given by

γ̂k =
|gxk|2

σ2
T +

∑

ℓ∈M\{k} |gx̃ℓ|2
. (5)

We assume that all of the channels and the target location are

perfectly known to the BS. The beampattern gain toward the

target is then given by (c.f. [14])

G (X, θ) = E{|gs|2} =
∑

m∈M

|gx̃m|2. (6)

Therefore, the problem of maximizing the beampattern gain

toward the target is given by

maximize
X,θ

G (X, θ), (7a)

subject to γk ≥ Γk ∀k ∈ K, (7b)

γ̂k ≤ Γ̂k ∀k ∈ K, (7c)

‖X‖ ≤
√
P (7d)

|θn|2 = 1 ∀n ∈ N , {1, 2, . . . , N}, (7e)

where (7b) ensures that the SINR at Uk is greater than or equal

to the predefined threshold Γk, (7c) enforces the constraint

that the maximum leakage of the information intended for Uk

at the eavesdropping target is below the tolerance level Γ̂k

and P is the transmit power budget at the BS. Note that in a

system with heterogeneous secrecy requirements, considering

information leakage constraints results in a more flexible

resource allocation compared to that offered via imposing

constraints on the achievable secrecy rate [16]. It is easy to

note that due to coupling between the design variables X

and θ in (7a)–(7c) and the non-convex constraints in (7e),

the problem in (7) is non-convex and challenging to solve.

Hua et al. [14] proposed a penalty-based dual-loop AO

algorithm to obtain a solution to (7). More specifically, in

the inner loop, auxiliary variables were updated by solv-

ing a quadratically-constrained quadratic program (QCQP),

the beamformers (i.e., X) were updated using a bisection

search, and the IRS reflection coefficients (θ) were updated

via MM; the outer loop was used to update the penalty

parameter only. Although the use of auxiliary variables and the

penalty method in [14] resulted in a reformulated optimization

problem where the design variables were decoupled in the

constraints, obtaining a high quality solution is not guaranteed

via AO. Additionally, although the per-iteration complexity of

the penalty-based solution in [14] was O
(

N3
)

, because of

the use of bisection search and the dual-loop structure, the

number of iterations required for convergence is large. This

in turn results in a high problem-solving time because if the

iterations are terminated prematurely (i.e., before the penalty

terms becomes nearly zero), the obtained solution may not be

feasible.

III. PROPOSED SOLUTION

In this section, we apply a series of convex approxima-

tions to tackle the non-convexity of (7) and to obtain a

high-performance solution. In this regard, for two arbitrary

complex-valued vectors u and v, we recall the following

(in)equalities (c.f. [17, eqn. (6)])

‖u‖2 ≥ 2ℜ{vHu} − ‖v‖2, (8a)

ℜ{uHv} =
1

4

(

‖u+ v‖2 − ‖u− v‖2
)

, (8b)

ℑ{uHv} =
1

4

(

‖u− jv‖2 − ‖u+ jv‖2
)

. (8c)

Next, we note that the term in (7a) is neither convex nor

concave. Since we want to maximize the function in (7a), we

obtain a corresponding concave lower bound as follows:

G (X, θ) =
∑

m∈M

|gx̃m|2

(a)

≥
∑

m∈M

[

2ℜ{a(i)m
Hgx̃m} − |a(i)m |2

]

(b)
=

∑

m∈M

[1

2

{

‖a(i)m gH + x̃m‖2−‖a(i)m gH− x̃m‖2
}

−|a(i)m |2
]

(c)

≥
∑

m∈M

[

ℜ
{

b(i)
m

H
[

a(i)m gH + x̃m

]}

− 1

2
‖b(i)

m ‖2

− 1

2
‖a(i)m gH − x̃m‖2 − |a(i)m |2

]

,
∑

m∈M

fm(x̃m, θ; x̃(i)
m , θ(i)), (9)

where x̃
(i)
m and θ(i) denote the value of x̃m and θ in the ith

iteration of the SCA process, respectively. Moreover, (a) and

(c) follow from (8a), and (b) follows from (8b). Additionally

in (9), a
(i)
m , g(i)x̃

(i)
m , b

(i)
m , a

(i)
m g(i) H + x̃

(i)
m , and g(i) ,

gRΘ
(i)G. Note that fm(x̃m, θ; x̃

(i)
m , θ(i)) is jointly concave

with respect to (w.r.t.) x̃m and θ.

Next, we turn our attention to the non-convex constraints

in (7b). Using (3), for any k ∈ K, we can equivalently

represent (7b) as follows:

1

Γk

∣

∣hkxk

∣

∣

2 ≥ σ2
k +

∑

ℓ∈M\{k}

(

℘2
kℓ + ℘̄2

kℓ

)

, (10a)

℘kℓ ≥
∣

∣ℜ
{

hkx̃ℓ

}∣

∣ ∀ℓ ∈ M \ {k}, (10b)

℘̄kℓ ≥
∣

∣ℑ
{

hkx̃ℓ

}∣

∣ ∀ℓ ∈ M \ {k}. (10c)

It is easy to see that if (7b) is feasible, then so is (10) and

vice versa. Note that the right-hand side (RHS) of (10a) is

convex, and we only need to obtain a concave lower bound

on the left-hand side (LHS) of (10a). Following a similar line

of argument to (9), this can be done as follows:

1

Γk

∣

∣hkxk

∣

∣

2 ≥ 1

Γk

ℜ
{(

d
(i)
k

H
)[

c
(i)
k hH

k + xk

]}

− 1

2
‖d(i)

k ‖2

− 1

2
‖c(i)k hH

k − xk‖2 −
∣

∣c
(i)
k

∣

∣

2
,

1

Γk

f̄k
(

xk, θ;x
(i)
k , θ(i)

)

, (11)

where c
(i)
k , h

(i)
k x

(i)
k and d

(i)
k , c

(i)
k h

(i)
k

H + x
(i)
k .



Using the fact that u ≥ |v| iff u ≥ v or u ≥ | − v|, and

following (8b), ℘kℓ in (10b) can be equivalently written as

℘kℓ ≥ ℜ
{

hkx̃ℓ

}

=
1

4

(

‖hH

k + x̃ℓ‖2 − ‖hH

k − x̃ℓ‖2
)

, (12a)

℘kℓ ≥ −ℜ
{

hkx̃ℓ

}

=
1

4

(

‖hH

k − x̃ℓ‖2 − ‖hH

k + x̃ℓ‖2
)

. (12b)

Since the negative quadratic term in the RHS of (12a) results

in its non-convexity, we use the inequality in (8a) to convex-

ify (12a) as follows:

℘kℓ ≥
1

4

[

‖hH

k + x̃ℓ‖2 − 2ℜ
{(

h
(i)
k − x̃

(i)
ℓ

H
)(

hH

k − x̃ℓ

)}

+ ‖h(i)
k

H − x̃
(i)
ℓ ‖2

]

, µkℓ

(

x̃ℓ, θ; x̃
(i)
ℓ , θ(i)

)

. (13)

Following a similar argument, (12b) yields

℘kℓ ≥
1

4

[

‖hH

k − x̃ℓ‖2 − 2ℜ
{(

h
(i)
k + x̃

(i)
ℓ

H
)(

hH

k + x̃ℓ

)}

+ ‖h(i)
k

H + x̃
(i)
ℓ ‖2

]

, µ̄kℓ

(

x̃ℓ, θ; x̃
(i)
ℓ , θ(n)

)

. (14)

Analogously, (10c) yields the following inequalities:

℘̄kℓ ≥
1

4

[

‖hH

k − jx̃ℓ‖2 − 2ℜ
{(

h
(i)
k − jx̃

(i)
ℓ

H
)(

hH

k + jx̃ℓ

)}

+ ‖h(i)
k

H + jx̃
(i)
ℓ ‖2

]

, υkℓ
(

x̃ℓ, θ; x̃
(i)
ℓ , θ(i)

)

, (15)

℘̄kℓ ≥
1

4

[

‖hH

k + jx̃ℓ‖2 − 2ℜ
{(

h
(i)
k + jx̃

(i)
ℓ

H
)(

hH

k − jx̃ℓ

)}

+ ‖h(i)
k

H − jx̃
(i)
ℓ ‖2

]

, ῡkℓ
(

x̃ℓ, θ; x̃
(i)
ℓ , θ(i)

)

. (16)

We now focus on the non-convex constraint in (7c), which

for any k ∈ K, can be written as

γ̂k ≤ Γ̂k ⇒ σ2
T +

∑

ℓ∈M\{k}

|gx̃ℓ|2 ≥
1

Γ̂
|gxk|2. (17)

Note that we need a concave lower bound on the LHS of (17),

and a convex upper bound on the RHS. Similar to (9), the

former can be obtained by linearizing the quadratic term in

the LHS as follows:

σ2
T +

∑

ℓ∈M\{k}

|gx̃ℓ|2 ≥ σ2
T +

∑

ℓ∈M\{k}

fℓ(x̃ℓ, θ; x̃
(i)
ℓ , θ(i)).

(18)

On the other hand, a convex upper bound on |gxk|2/Γ̂ is given

by (τ2k + τ̄2k )/Γ̂, where τk ≥ |ℜ{gxk}| and τ̄k ≥ |ℑ{gxk}|.
Therefore, using (17), (18) and the preceding arguments, for a

given k ∈ K, the constraint in (7c) can be equivalently written

as

σ2
T +

∑

ℓ∈M\{k}

fℓ
(

x̃ℓ, θ; x̃
(i)
ℓ , θ(i)

)

≥ 1

Γ̂k

(

τ2k + τ̄2k
)

, (19a)

τk ≥
∣

∣ℜ
{

gxk

}∣

∣, (19b)

τ̄k ≥
∣

∣ℑ
{

gxk

}
∣

∣. (19c)

Again, it can be noted that if (7c) is feasible, then so is (19)

and vice versa. Moreover, following a similar set of arguments

to those in (12)–(16), lower bounds on τk and τ̄k in (19b)

and (19c), respectively, are given by

τk ≥
1

4

[

‖gH + xk‖2 − 2ℜ
{(

g(i) − x
(i)
k

H
)(

gH − xk

)}

Algorithm 1: Proposed SCA-based Method to

Solve (21).

Input: X(0), θ(0)
, ξ > 0

1 i← 0;

2 repeat

3 Solve (21) and denote the solution as X⋆, θ⋆;

4 Update: X(i+1) ← X⋆, θ(i+1) ← θ⋆;

5 i← i+ 1;

6 until convergence;

Output: X⋆, θ⋆

+ ‖g(i)H − x
(i)
k ‖2

]

, ηk
(

xk, θ;x
(i)
k , θ(i)

)

, (20a)

τk ≥
1

4

[

‖gH − xk‖2 − 2ℜ
{(

g(i) + x
(i)
k

H
)(

gH + xk

)}

+ ‖g(i)H + x
(i)
k ‖2

]

, η̄k
(

xk, θ;x
(i)
k , θ(i)

)

, (20b)

τ̄k ≥
1

4

[

‖gH − jxk‖2 − 2ℜ
{(

g(i) − jx
(i)
k

H
)(

gH + jxk

)}

+ ‖g(i)H + jx
(i)
k ‖2

]

, χk

(

xk, θ;x
(i)
k , θ(i)

)

, (20c)

τ̄k ≥
1

4

[

‖gH + jxk‖2 − 2ℜ
{(

g(i) + jx
(i)
k

H
)(

gH − jxk

)}

+ ‖g(i)H − jx
(i)
k ‖2

]

, χ̄k

(

xk, θ;x
(i)
k , θ(i)

)

. (20d)

Next, since the constraint in (7d) is already convex, we are

left only with the non-convexity of (7e). To tackle this, we first

relax the equality constraint in (7e) by a (convex) inequality

constraint. In order to ensure that the inequality constraint

is satisfied with equality (i.e., the constraint is binding at

convergence), we add a regularization term in the objective

and handle the resulting non-convex objective by the first-

order approximation of the regularization term around θ(i).

Therefore, an equivalent reformulation of the problem in (7)

can be given by

maximize
X,θ,℘,℘̄,τ ,τ̄

∑

m∈M

fm
(

x̃m, θ; x̃(i)
m , θ(i)

)

+ ζ
[

2ℜ
{

θ(n) Hθ
}

− ‖θ(n)‖2
]

, (21a)

subject to
1

Γk

f̄k
(

xk, θ;x
(i)
k , θ(i)

)

≥ σ2
k +

∑

ℓ∈M\{k}

(

℘2
kℓ + ℘̄2

kℓ

)

∀k ∈ K, (21b)

(13)− (16) ∀k ∈ K, ∀ℓ ∈ M \ {k}, (21c)

(19a), (20) ∀k ∈ K,
(7d),

|θn| ≤ 1 ∀n ∈ N , (21d)

where ℘ , [℘11, ℘12, . . . , ℘KL]
T, ℘̄ , [℘̄11, ℘̄12, . . . ℘̄KL]

T,

τ , [τ1, τ2, . . . , τK ]T, τ̄ , [τ̄1, τ̄2, . . . , τ̄K ]T, and ζ > 0
is the regularization parameter. It is straightforward to show

that all of the constraints in (21) can be represented by

quadratic cones, and therefore (21) is an SOCP problem

which can be solved efficiently using off-the-shelf solvers,

e.g., MOSEK [18]. The proposed SCA-based SOCP method

is outlined in Algorithm 1.



Remark 1. One needs to find feasible starting points X(0)

and θ(0)
to run Algorithm 1, which is not straightforward.

Therefore, below we describe a practical way to obtain a set

of initial points. Consider the following optimization problem:

minimize
X,θ,δ,δ̄

∑

k∈K

(δk + δ̄k), (22a)

subject to δk +
1

Γk

f̄k
(

xk, θ;x
(i)
k , θ(i)

)

≥ σ2
k +

∑

ℓ∈M\{k}

(

℘2
kℓ + ℘̄2

kℓ

) ∀k ∈ K,
(22b)

δ̄k + σ2
T +

∑

ℓ∈M\{k}

fℓ
(

x̃ℓ, θ; x̃
(i)
ℓ , θ(i)

)

≥ 1

Γ̂k

(

τ2k + τ̄2k
)

∀k ∈ K, (22c)

(7d), (7e), (20), (21c),

δk ≥ 0, δ̄k ≥ 0 ∀k ∈ K. (22d)

Note that the problem in (22) is always feasible for sufficiently

large δ and δ̄. We solve the problem in (22) by following a

similar procedure to that of Algorithm 1, with random X and

θ as initial points. The minimization in 22 forces δk and δ̄k
to approach 0. At convergence, if δk = δ̄k = 0 ∀k ∈ K, the

problem in (21) is obviously feasible. Thus we can choose

the final values of X and θ in (22) as initial points for Algo-

rithm 1. However, if the objective
∑

k∈K(δk+ δ̄k) is not zero

at convergence, then we simply declare that the considered

problem is infeasible and will not run Algorithm 12

The convergence of the proposed SCA-based method in Al-

gorithm 1 can be readily proved following the set of argu-

ments in [17, Sec. III-A].

A. Complexity Analysis

It is straightforward to show that the total number of

(real-valued) optimization variables in (21) is 2
(

L2 + K2 +
2KL+N

)

+1, and the total number of (second-order) conic

constraints is 4K2+4KL+2K+N+2. Therefore, following

the arguments in [19, Sec. 6.6.2], the overall per-iteration

complexity of the proposed SOCP-based method is given by

O
[(

4K2 + 4KL+N
)0.5(

2K2 + 4KL+ 2L2 + 2N)
(

4K5 + 8K4L+ 4K3L2 + 48K3L+ 60K2L2 + 24KL3

+ 52KL2 + 4L4 +
(

2K2 + 4KL+ 2L2 + 2N
)2)]

. (23)

However, in a practical setup, the number of elements in the

IRS is expected to be much larger than the number of BS

antennas and the number of users, i.e., N ≫ max{L,K}.
Hence, the complexity of the proposed SCA-based method can

be well-approximated by O
(

N3.5
)

. On the other hand, the per-

iteration computational complexity of [14, Algorithm 1] can

2We note that the considered problem may be feasible even though∑
k∈K

(δk + δ̄k) > 0. The reason is that the SCA-based method applied to
solve (22) can only guarantee a stationary solution. In general, checking (7) is
feasible or not is an NP hard problem since the feasible set is non-convex. For
practical purposes, if the SCA-based method cannot find a feasible solution,
we can simply say that the problem is infeasible and ignore this realization.

be approximated by O(N3) (see [14, Sec. III-C]). Although

the order of complexity of the proposed SCA-based method is

slightly higher than that of the penalty-based benchmark, we

will show in the simulation section that the proposed method

requires fewer iterations, resulting in a significantly reduced

problem-solving time.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we present a detailed performance compari-

son between the proposed SCA-based method and the penalty-

based benchmark approach of [14, Algorithm 1]. The location

of the nodes and the channel model assumed here are the

same as those in [14]. The simulations are performed on a

high-performance computing cluster with a Intel Xeon Gold

6152 processor, using Python v3.9.7 and MOSEK Fusion API

for Python Rel.-10.0.40 [18]. In Figs. 3 and 4, the results

are obtained by averaging over 100 independent channel

realizations.

In Fig. 2, we show the convergence behavior of both the

proposed and penalty-based benchmark methods. For the given

set of channels, the proposed SCA-based method converges

in less than 30 iterations, whereas the penalty-based bench-

mark requires around 270 iterations. Nevertheless, even with

significantly fewer iterations, the proposed method results in

nearly a 30% higher beampattern gain as compared to that

offered by the penalty-based benchmark. More interestingly,

each iteration of the proposed SCA-based method returns a set

of feasible points and therefore the iterations of the proposed

method can be terminated even before convergence has been

attained, if this is required. On the other hand, the penalty-

based benchmark returns a feasible solution only in the final

outer-loop iteration, and therefore the algorithm cannot be

stopped earlier to achieve a feasible solution. Therefore, the

benchmark is not suitable in rapidly changing environments

with very small coherence times where at least a suboptimal

solution is required within a certain fraction of the channel’s

coherence time.

The impact of the number of IRS elements on the average

beampattern gain for the two algorithms- is shown in Fig. 3.

An increase in the number of IRS elements increases the

degrees-of-freedom at the IRS, allowing the IRS to perform

highly focused beamforming. This in turn results in increasing

beampattern gain with increasing N . On the other hand, since

a fixed amount of transmit power is required to achieve the

SINR constraints at the communication users, a higher transmit

power budget results in a higher surplus power at the BS,

which is then used to attain a larger beampattern gain toward

the target. Therefore, increasing the value of P increases

the average beampattern gain, which is also clearly evident

from the figure. The performance gap between the SCA-based

and penalty-based methods increases with an increase in the

number of IRS elements. As the value of N increases, the

impact of coupling between X and θ becomes more intricate.

Therefore, the solution obtained via the AO-based approach

of [14] returns a highly suboptimal beampattern gain. On the

other hand, as clearly observed in the figure, the simultaneous
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update of all variables in the proposed algorithm outperforms

the penalty-based benchmark.

In Fig. 4, we plot the average problem-solving time versus

the number of IRS elements for different numbers of commu-

nication users K . As the value of N and/or K increases, the

size of the optimization problem to be solved also increases

for both methods. This in turn increases the average problem

solving time for both approaches. Although the per-iteration

complexity of the proposed SCA-based method is slightly

higher than that of the penalty-based benchmark, the proposed

approach requires a much smaller time to find the solution due

to its convergence in fewer iterations.

V. CONCLUSION

In this paper, we have considered the problem of optimal

transmit and reflective beamforming design in a secure IRS-

enabled ISAC system. More specifically, we aim to maximize

the beampattern gain toward the eavesdropping target subject

to the SINR constraints at the communication users and

information leakage constraints at the target. In contrast to

the conventional AO-based approach, we proposed a novel

SCA-based optimization in which all variables are updated

simultaneously. The superiority of the proposed method was

clearly established with the help of numerical experiments

in terms of both achieving a high-performance solution and

low problem-solving time compared to that of the penalty-

based benchmark. Moreover, the performance gap between the

proposed SCA-based approach and penalty-based benchmark

was shown to be increasing with the number of IRS elements

or the transmit power budget.
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