
1

An Optimization Framework For Anomaly
Detection Scores Refinement With Side

Information
Ali Maatouk∗, Fadhel Ayed∗, Wenjie Li∗, Yu Wang§, Hong Zhu§, Jiantao Ye†
∗Paris Research Center, Huawei Technologies, Boulogne-Billancourt, France
§China United Network Communications Group Co., Ltd, Nanjing, China
†Songshan Lake Research Center, Huawei Technologies, Dongguan, China

Abstract—This paper considers an anomaly detection prob-
lem in which a detection algorithm assigns anomaly scores to
multi-dimensional data points, such as cellular networks’ Key
Performance Indicators (KPIs). We propose an optimization
framework to refine these anomaly scores by leveraging
side information in the form of a causality graph between
the various features of the data points. The refinement
block builds on causality theory and a proposed notion of
confidence scores. After motivating our framework, smooth-
ness properties are proved for the ensuing mathematical
expressions. Next, equipped with these results, a gradient
descent algorithm is proposed, and a proof of its convergence
to a stationary point is provided. Our results hold (i) for
any causal anomaly detection algorithm and (ii) for any
side information in the form of a directed acyclic graph.
Numerical results are provided to illustrate the advantage
of our proposed framework in dealing with False Positives
(FPs) and False Negatives (FNs). Additionally, the effect of
the graph’s structure on the expected performance advantage
and the various trade-offs that take place are analyzed.

I. INTRODUCTION

Anomaly detection refers to the problem of finding
patterns in data that do not conform to a notion of normal
behavior. These detected patterns are typically referred to
as anomalies, outliers, or contaminants depending on the
application at hand. The importance of such frameworks
is that anomalies in data translate to critical information
about the status of the system at hand in a wide variety of
application domains. For example, in a cellular network,
anomalies in the Key Performance Indicators (KPIs) such
as Downlik/Uplink (DL/UL) throughput can be a sign
of a hardware/software malfunction or malicious activity
[1]. Traditionally, the identification of such anomalies was
carried on by network engineers. However, such a process
is both costly and time-consuming for network opera-
tors. Additionally, 5G networks are expected to provide
99.999%, or “five nines,” of data availability annually [2],
set to improve to a seven-nines standard in 6G [3]. To have
a grasp on how stringent this requirement is, 5G networks
are expected to have just six minutes of unscheduled
downtime per year.

With these strict requirements and anticipated complex-
ity in managing 5G and beyond networks, a shift towards
closed-loop automation of network and service manage-
ment operations is underway. The Zero-touch network

and Service Management (ZSM) framework is envisioned
as the next-generation management system that aims to
automate all operational processes and tasks [4]. The
automatic detection of anomalies is a major component
of the ZSM, which can be achieved using a flurry of
unsupervised anomaly detection algorithms based on state-
of-the-art advances in AI [5]–[8]. For example, [5] pro-
posed a spectral residual method based on Fast Fourier
Transform, which achieved state-of-the-art performance on
Microsoft production data. Additionally, studies such as
[6]–[8] have proposed using convolutional and recurrent
neural networks to continuously monitor time-series data
and alert for potential anomalies. In addition to the methods
mentioned above, there are other basic anomaly detectors
in the literature that relies on statistical measures to identify
anomalies in the data and are relatively simple to imple-
ment [9].

Regardless of the anomaly detection method used, there
are common challenges in accurately detecting anomalies
in cellular networks. The first challenge is defining the nor-
mal behavior of the KPIs and identifying any observations
that deviate from this behavior as anomalous. Moreover,
the boundary between normal and anomalous behavior is
often not well-defined, making it challenging to identify
and classify anomalies accurately. Another significant chal-
lenge is the availability of labeled data for validating the
anomaly detection models. In many cases, labeled data is
scarce, making it difficult to build accurate models that can
identify even rare and subtle anomalies [9]. Irrespective
of the selected anomaly detector, these challenges often
lead to False Positives (FPs) and False Negatives (FNs),
which can significantly impact the performance of the
anomaly detection framework. Therefore, improving the
False Positive Rate (FPR) and False Negative Rate (FNR)
is a necessary step to ensure the efficient operation of the
anomaly detection block. To this end, a crucial question
arises: Given a chosen anomaly detector, can we leverage
experts’ knowledge about the relationship between the
various KPIs to enhance the FPR and FNR in the context of
cellular networks? This is the problem that we tackle in our
paper. Specifically, our contributions can be summarized
below:

• We introduce a mathematical framework for refin-
ing the anomaly score at the output of any generic

ar
X

iv
:2

30
4.

11
03

9v
2

 [
cs

.I
T

]
 3

0
A

ug
 2

02
3

2

Fig. 1: Illustration of the proposed framework.

causal anomaly detector by leveraging available side
information. Particularly, we consider that the side
information consists of a directed acyclic graph that
represents the various causality relationships between
the KPIs. Additionally, we introduce the notion of KPI
confidence score and provide the motivation behind
each component of our framework.

• Next, we analyze the properties of the ensuing
mathematical expressions. Particularly, we show that
smoothness bounds are verified and, hence, we pro-
pose a gradient descent algorithm to solve our non-
convex optimization problem. Afterward, we theoret-
ically prove the convergence of our algorithm to a
stationary point.

• Lastly, we implement our proposed optimization
framework when the directed acyclic graph belongs
to the family of polytrees. Particularly, we demon-
strate that adding our refinement block significantly
enhances the performance of the anomaly detection
framework in this case. The degree of improvement
is shown to be dependent on the structure of the
graph, and we present simulations that illustrate the
tradeoffs at play. To emphasize the practical benefits
of our approach, we implement our framework us-
ing a directed acyclic graph developed by our team
that captures all the intrinsic causality relationships
between a cellular network’ KPIs. We show that this
practical implementation yields similar performance
advantages.

The rest of the paper is organized as follows: Section II is
dedicated to the system model. The proposed optimization
framework is presented in Section III. Section IV provides
a description of our proposed solution to the optimization
problem. Numerical results that corroborate our theoretical
findings are laid out in Section V, while the paper is
concluded in Section VI.

II. SYSTEM MODEL

A time series (or data series in general) is an ordered
set T = {T 1,T 2, . . . ,TM} of M real-valued, potentially
multi-dimensional data points Tm ∈ RN . In the cellular
networks’ framework, these time series can represent the
various KPIs monitored at a small time granularity by
the cellular sites. These KPIs may include, for example,
the UL/DL throughput, the call drop rate, the handover
success rate, etc. Such KPIs provide key information about
the status of the network and are considered fundamental
indicators of any anomalous behavior taking place, thus
allowing the network operator to initiate troubleshooting ef-
forts when necessary. To detect these anomalous behaviors

automatically, a time series anomaly detection framework
that marks anomalies in T is required. With this in mind,
let us define the score set S = {s1, s2, . . . , sM} with
sm ∈ [0, 1]N being the result of a time series anomalies
detection algorithm that assigns for each data point Tmi for
i = 1, . . . , N , an anomaly score smi ∈ [0, 1]. The score can
be interpreted as the probability of an anomalous behavior
occurring in the corresponding time series value. Note that
for any two scores smi and smj , it must be true that if
smi > smj , then Tmi is more anomalous than Tmj in
their respective contexts. Now, generally, the dimension of
the time series N is large and the behavior of the KPIs
can be quite heterogeneous. Additionally, missing values
can occur during data acquisition for a subset of the time
series T . With this in mind, and given the typical scarcity
of labeled data in anomaly detection frameworks, multi-
dimensional time series anomaly detection algorithms can
perform poorly [10]. Therefore, we consider in the follow-
ing that the score smi is calculated as follows

smi = fi(T1i, . . . , Tmi), for i = 1, . . . , N, (1)

where fi represents the set of rules and procedures of
the anomaly detector i. Note that given the time-causality
principle, the score smi can only depend on the current
value Tmi and its history.

The goal of our work is to refine the score set S by
outputting a set of final scores Y = {y1,y2, . . . ,yM}, with
ym ∈ [0, 1]N as shown in Fig. 1. To do such a refinement,
we leverage available experts’ side knowledge consisting
of causality relationships between the various KPIs. With
this in mind, the challenge consists of establishing a
mathematical framework for such refinement and elabo-
rating the necessary optimization techniques. Note that our
score refinement framework is general as it imposes no
restrictions on the anomalies detection algorithm, hence
making it applicable to various types of anomaly detectors.

III. OPTIMIZATION FRAMEWORK

To begin our analysis, we represent the expert knowledge
regarding the network KPIs’ behavior as a directed acyclic
graph, denoted by G = (V,E). Here, the set V consists of
the network’s key KPIs, where |V | = N . The set of edges,
E, indicates the causal relationships between the various
KPIs. In particular, a directed edge between two nodes i1
and i2 means that an anomalous behavior in KPI i1 is typ-
ically caused by an anomaly in KPI i2. For instance, if the
KPI representing Channel Quality Indicator (CQI) drops
dramatically, it can lead to anomalous behavior in the KPI
representing throughput performance. Therefore, a directed
edge originating from the node representing throughput to
the one representing CQI should exist in G. Our team has
developed an expert graph with over 50 nodes and 100+
relationships between the different cellular network KPIs,
which we will leverage in our implementations in Section
V-C. Next, to pursue our analysis, we define the set of
neighbors of each node i ∈ V as

Ni = {j : (i, j) ∈ E}. (2)

3

We also introduce a confidence score αm ∈ [0, 1]N for
m = 1, . . . ,M that represents our degree of confidence in
the score set S. The grounds for this confidence score are
threefold:

• A set of KPIs Λ ⊂ V are typically considered “Key”
KPIs in the sense that their scores are robust. For such
KPIs, two elements are true: robustness in measure-
ments, and simplicity of the anomaly detection rules.
Accordingly, the anomaly scores at the output of their
respective detectors can be fully trusted (i.e., αmi = 1
for i ∈ Λ and m = 1, . . . ,M).

• If the time series data are missing for a particular set
of KPIs ∆m at a time slot m, then we set αmi to
0 for i ∈ ∆m. By doing so, the anomaly scores of
these detectors are not trusted. Correspondingly, the
emphasis is put on the experts’ graph to rectify the
scores smi for i ∈ ∆m if needed.

• Between the above two extremes, the confidence score
is a variable that needs to be optimized. Particularly,
it allows us to put more emphasis on the experts’
knowledge rather than the score set S and vice-versa
as necessary.

Lastly, before formulating our optimization framework,
we provide several key requirements that the refinement
block reported in Fig. 1 should obey at each time epoch
m:

• The output ym should be close to sm. Given that the
goal is to refine the score vector sm, the optimization
framework should not completely disregard sm but
rather keep ym close to it.

• The confidence score at each time epoch m should not
be too small (i.e., αmi ≥ α for i ∈ V \ ∆m, where
α > 0). This constraint also prevents the optimization
algorithm from fully disregarding the score vector sm.

• For each node i ∈ V : Ni ̸= ∅, the output vector ym

should verify the following constraint

ymi ≤ max
j∈Ni

ymj . (3)

The above constraint means that if anomalous be-
havior is detected in KPI i, then at least one of its
neighbors should be found as anomalous.

With the above requirements in mind, we can formulate
our optimization problem at each time epoch m as follows

minimize
ym,αm

f(ym,αm) =

∑N
i=1 αmi(smi − ymi)

2∑N
i=1 αmi

s.t. ymi ≤ max
j∈Ni

ymj , for i ∈ V : Ni ̸= ∅,

ymi ∈ [0, 1], for i ∈ V,

αmi ∈ [α, 1], for i ∈ V \∆m ∪ Λ,

αmi = 1, for i ∈ Λ,

αmi = 0, for i ∈ ∆m.

(4)

In essence, f(ym,αm) ensures that the output score ym

is not far from sm. Additionally, the normalization by∑N
i=1 αmi ensures that the optimization of f(ym,αm)

does not force αmi to be equal to α for i ∈ V \∆m∪Λ. On
the other hand, the constraints ensure that the requirements
that we have previously set are met. Note that, since the

values of αmi are fixed for i ∈ Λ ∪ ∆m, we remove
them from our optimization variables. Accordingly, in the
sequel, the optimization variable αm will only be defined
for i ∈ V \ ∆m ∪ Λ, while αm for i ∈ ∆m ∪ Λ will be
fixed.

Next, we aim to transform our constrained optimization
problem into an unconstrained one. To do so, we first
rewrite the variables ymi and αmi as follows

ymi = σ(zmi) =
1

1 + exp(−zmi)
, (5)

αmi = α+ (1− α)σ(εmi) =α+ (1− α)
1

1 + exp(−εmi)
,

(6)

where σ(·) denotes the sigmoid function and (zmi, εmi)
are the new optimization variables. By doing so, we ensure
that the constraints on the space of ym and αm are met.
It is worth noting that this approach is a common practice
in machine learning applications, and is widely used in
various settings (e.g., logistic regression, output layer of a
neural network, etc. [11]). As a last step, we aim to provide
a smoothed version of the constraint reported in eq. (3). To
that end, we introduce the following approximation

max
j∈Ni

ymj ≈
∑

j∈Ni
ymj exp(cymj)∑

j∈Ni
exp(cymj)

. (7)

The accuracy of such approximation increases with c.
However, the smoothness property of the function goes
worse when increasing c, making the function harder to be
optimized. In the following, we will consider that c = 10,
which achieves an adequate trade off between smoothness
and accuracy. With this in mind, our final optimization
problem can be summarized below
minimize
zm,εm

f(zm, εm) =∑N
i=1 α+ (1− α)σ(εmi)(smi − σ(zmi))

2∑N
i=1 α+ (1− α)σ(εmi)

+ µ
∑

i:Ni ̸=∅

(
[σ(zmi)−

∑
j∈Ni

σ(zmj) exp(cσ(zmj))∑
j∈Ni

exp(cσ(zmj))
]+
)3
.

(8)
Note that the term [σ(zmi) −

∑
j∈Ni

σ(zmj) exp(cσ(zmj))∑
j∈Ni

exp(cσ(zmj))
]+

was raised to the cube to ensure the twice differentiability
of f and to enhance the smoothness properties of f , as will
be seen later in the proof of Lemma 1. On the other hand,
the multiplier µ is a fixed value that can be interpreted as
a cost for the violation of the corresponding constraints.
Particularly, we increase µ > 0 the more trustworthy the
experts’ graph is. In the sequel, we will assign a large fixed
value to µ, hence completely trusting our experts’ graph.
With the optimization problem being formulated, we can
now tackle it and provide a time-efficient solution to it.

IV. PROPOSED SOLUTION

In this section, we introduce our proposed solution to
the optimization problem reported in eq. (8). First, we
note that the optimization problem reported in eq. (8) is
non-convex. Additionally, we recall that the refinement

4

∂f

∂ymk
=

2αmk(ymk − smk)∑N
i=1 αmi

+ 3µ
∑

i:Ni ̸=∅
[ymi −

∑
j∈Ni

ymj exp(cymj)∑
j∈Ni

exp(cymj)
]2+

[
1{k = i} − 1{k ∈ Ni}×

exp(cymk)
(
1 + cymk − c

∑
j∈Ni

ymj exp(cymj)∑
j∈Ni

exp(cymj)

)
∑

j∈Ni
exp(cymj)

]
. (9)

∂f

∂αmk
=

∑N
i=1 αmi

(
(smk − ymk)

2 − (smi − ymi)
2
)∑N

i=1 αmi

. (10)

∂ymk

∂zmk
=

exp(−zmk)(
1 + exp(−zmk)

)2 . (11)
∂αmk

∂εmk
= (1− α)

exp(−εmk)(
1 + exp(−εmk)

)2 . (12)

TABLE I: Details of the gradient of f(zm, εm).

algorithm needs to run at each time-epoch m. Given that
the time-granularity of the KPIs can be small, the low-
complexity of the refinement algorithm becomes a critical
requirement. With this in mind, we first proceed with
finding the gradient of the objective function f(zm, εm).
With the derivatives chain rule in mind, the gradient can
be concluded from the equations reported in Table I. Next,
we investigate the smoothness property of our function
f(zm, εm). Before doing so, we note that the case where
∆m = V (i.e., all scores are not trustworthy) is not of
interest. Accordingly, we focus below only on the case
where ∆m ̸= V .

Lemma 1. Let the smoothness factor β denote the maxi-
mum eigenvalue, in magnitude, of the Hessian matrix Hf

over R2N (domain of (zm, εm)). Given the structure of f
reported in eq. (8), and if ∆m ̸= V , then there exists a
constant L ∈ [0,∞] such that β ≤ L.

Proof: The proof can be found in Appendix A.
Given the above results, and the fact that f(·, ·) is twice

differentiable with continuous derivatives, we can conclude
from the descent lemma that, for a sufficiently small step
size γ ≤ 1

L , the gradient descent algorithm converges
to a stationary point with a convergence rate of O(1/t)
[12]. To that end, we present below our proposed iterative
optimization algorithm:

zmi,t+1 = zmi,t − γ
∂f

∂zmi,t
, (13)

εmi,t+1 = zmi,t − γ
∂f

∂εmi,t
, (14)

where zmi,0 and εmi,0 are initialized from a standard
Gaussian distribution N (0, 1). In the next section, we will
implement our algorithm and showcase the performance
advantage it provides in various settings.

V. NUMERICAL IMPLEMENTATIONS

A. Performance Comparison

In this section, we will focus on implementing numer-
ically our proposed refinement block and highlighting its
performance advantage. To that end, let us first delve into
the details of the considered experts’ graph G = (V,E).
Particularly, we will consider in this section that the graph
G belongs to the perfectly balanced polytrees family de-
fined below.

Definition 1 (Perfectly Balanced (r, h)-Polytree). A di-
rected acyclic graph G = (V,E) is said to be a perfectly

Fig. 2: Illustration of a perfectly balanced binary polytree.
balanced (r, h)-polytree if its underlying undirected graph
is a tree in which every internal node has exactly r child
nodes and all the leaf nodes are at the same height level
h.

Following the above definition, we can conclude that the
number of nodes N of an (r, h)-Polytree is

N =

h∑
k=0

rk =
1− rh+1

1− r
. (15)

In our numerical implementations, we will focus on
(r, h)-polytrees for which the edges are always directed
downwards in the tree. An illustration of such a perfectly
balanced (2, 2)-polytree is reported in Fig. 2. Next, we
describe the behavior of the anomalies scores set S. As-
suming that an anomaly detector has been selected for
identifying network anomalies, we consider that at each
time epoch m, a set of KPIs Rm ⊂ V exhibits anomalous
behavior. However, given the possible unreliability of the
detector in question, we suppose that there exists a non-
zero FPR and FNR. In particular, for each node i ∈ Rm,
there’s a probability FNR that the score smi will be equal
to 0 instead of 1. Additionally, for each node i ∈ V \Rm,
there’s a probability FPR that the score smi will be equal
to 1 instead of 0. It is worth noting that, in our numerical
implementation, the set Rm is sampled uniformly at each
time epoch m from all the possible paths of length h in
G and that the number of time epochs M is set to 5000.
To evaluate the performance advantage that our refinement
block brings to the anomaly detector, we compare the
performance of the overall anomaly detection framework in
both the presence and absence of our refinement block. As
a performance measure, we adopt the Area Under Curve
- Receiver Operating Characteristic (AUC-ROC) metric,
widely used in classification problems [13]. Particularly,
this performance measure illustrates the diagnostic ability
of a classifier system in separating anomalous KPIs behav-
ior from a normal one. The AUC ranges from 0 to 1, which

5

(a) FNR=0%. (b) FNR=20%.

(c) FPR=0%. (d) FPR=20%.

Fig. 3: Performance for perfectly balanced binary polytree.

corresponds to a poor and excellent score respectively.
With this in mind, let us first consider that the experts’
graph is a (2, 6)-polytree, and let us fix α to 0.2. Next, we
investigate two distinct scenarios: 1) we fix the FNR and
vary the FPR, and 2) we fix the FPR and vary the FNR. In
both cases, we plot the AUC of both the original anomaly
score S and the refined counterpart Y . As seen in Fig.
3, our proposed refinement block consistently outperforms
the original score set S in terms of AUC, showcasing its
performance advantage in improving the KPIs anomaly
detection framework. It is worth noting that our proposed
algorithm execution time at each time epoch was 200 ms
for N = 127, showcasing its running-time efficiency.

B. Effect of r and h

In this section, the goal is to investigate the effect of the
experts’ graph G structure on the performance advantage
of our refinement block. To that end, we start our analysis
by studying the effect of the polytree parameter r on the
performance. Particularly, we fix the FPR and FNR to 10%
and we compare the AUC score of both the original and
refined anomaly scores in function of r. The results are
reported in Table II.

r h AUCOriginal AUCRefined

3 4 0.9 0.929
4 4 0.9 0.918
3 5 0.9 0.927
4 5 0.9 0.918

TABLE II: AUC comparison in function of r.

As can be seen, although our refined scores always outper-
form the original ones, the performance advantage slightly
decreases with the number of children of internal nodes r.
The reason behind this trend is that the portion of leaf
nodes in the overall graph G gets high as r increases.
Particularly, let us define the density of leaf nodes dleaf as
the ratio of the number of leaf nodes over the total number
of nodes. In an (r, h)-polytree, we have

dleaf =
|L|
N

=
rh(1− r)

1− rh+1
= (1− 1

r
)(
rh − 1

rh
). (16)

(a) FNR=20%. (b) FPR=20%.

Fig. 4: Performance for our developed experts’ graph.

From eq. (16), we can see that the density of leaf nodes
increases with r ≥ 1. However, the issue with leaf nodes
is that they are inherently sensitive to false positive data.
Specifically, a false positive at a leaf node cannot be
remedied by our block given that the constraints reported
in eq. (3) are restricted to the nodes i ∈ V : Ni ̸= ∅.
Accordingly, the refinement block is particularly sensitive
to such issues. Given that the leaf nodes’ density increases
with r, the part of these issues increases in the overall test.
Consequently, the overall AUC performance improvement
with respect to the original score decreases.

Next, we investigate the effect of the polytree height h
on the performance. Similarly, we fix the FPR and FNR to
10% and we compare in Table III the AUC score of both
the original and refined anomaly scores in function of h.

r h AUCOriginal AUCRefined

2 4 0.9 0.937
2 6 0.9 0.941
2 8 0.9 0.944

TABLE III: AUC comparison in function of h.

As can be observed, our refined scores always outperform
the original ones and the performance advantage slightly
increases with h. To understand this trend, we need to
consider the following trade-off. When h increases, for a
fixed number of FNs and FPs, there exists a higher chance
for our block to remedy these issues since the number
of True Positives (TPs) and True Negatives (TNs) also
increases. However, when h increases, the number of FPs
and FNs also increases, worsening the performance of our
refinement block. This trade-off plays a big role in deter-
mining the overall AUC performance of our refined scores
in function of h. However, as seen in our implementations,
the scale tips to the former, and the AUC performance
improves with h. Note that the issue with leaf nodes is
less prominent when h increases since the density dleaf is
upper bounded by (1 − 1

r) for high h. To conclude, the
above two results suggest that the structure of the experts’
graph G plays a vital role in determining the degree of
performance advantage the refinement block will bring.
Therefore, a natural future research direction of our work
is to theoretically derive performance guarantees of our
proposed refinement block for a family of experts’ graphs
such as polytrees and polyforests.

C. Practical Implementations

Thus far, we have evaluated our refinement block on
directed acyclic graphs G = (V,E) belonging to the

6

polytree family. However, in practice, the graph represent-
ing the causal relationships between the various network
KPIs may not belong to this family. To demonstrate the
practical benefits of our approach, our team has created
an expert graph that captures all network KPIs and their
causal relationships. The graph includes KPIs such as CQI,
Modulation and Coding Scheme (MCS), and DL/UL Block
Error Rate (BLER), among others. Due to the large size
of the set V and E, we omit the full details of the
graph. Nonetheless, we implement our refinement block
using the same settings described in Section V-A and
report our results in Fig 4. As the graph shows, our
refinement block consistently improves the performance of
the anomaly detection framework in terms of AUC-ROC,
further emphasizing its practical benefits.

VI. CONCLUSION

In this paper, we have introduced an optimization frame-
work for refining anomaly scores by leveraging side infor-
mation in the form of an experts’ graph representing the
different causality relationships between the data features.
We have provided a theoretical analysis of the smoothness
properties of the ensuing objective function, and have
proven the convergence of the proposed optimization algo-
rithm. We have also showcased the performance gain that
our proposed refinement block brings in terms of AUC-
ROC compared to the original anomaly scores. With this in
mind, our future research directions consist of theoretically
deriving performance guarantees for our algorithm for a
family of experts’ graphs (e.g., polytrees).

REFERENCES

[1] B. Li, S. Zhao, R. Zhang, Q. Shi, and K. Yang, “Anomaly detection
for cellular networks using big data analytics,” IET Communications,
vol. 13, no. 20, pp. 3351–3359, 2019.

[2] N. Jalodia, M. Taneja, A. Davy, and B. Dezfouli, “A residual
lstm based multi-label classification framework for proactive sla
management in a latency critical nfv application use-case,” in 2022
IEEE 19th Annual Consumer Communications and Networking
Conference (CCNC), 2022, pp. 782–789.

[3] W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road
towards 6g: A comprehensive survey,” IEEE Open Journal of the
Communications Society, vol. 2, pp. 334–366, 2021.

[4] C. Benzaid and T. Taleb, “Ai-driven zero touch network and service
management in 5g and beyond: Challenges and research directions,”
IEEE Network, vol. 34, no. 2, pp. 186–194, 2020.

[5] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang,
J. Tong, and Q. Zhang, “Time-series anomaly detection service at
microsoft,” in Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, 2019, pp. 3009–
3017.

[6] C. U. Carmona, F.-X. Aubet, V. Flunkert, and J. Gasthaus, “Neu-
ral contextual anomaly detection for time series,” arXiv preprint
arXiv:2107.07702, 2021.

[7] F. Ayed, L. Stella, T. Januschowski, and J. Gasthaus, “Anomaly
detection at scale: The case for deep distributional time series mod-
els,” in International Conference on Service-Oriented Computing.
Springer, 2020, pp. 97–109.

[8] J. Gao, X. Song, Q. Wen, P. Wang, L. Sun, and H. Xu, “Robust-
tad: Robust time series anomaly detection via decomposition and
convolutional neural networks,” arXiv preprint arXiv:2002.09545,
2020.

[9] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, jul 2009.

[10] S. Thudumu, P. Branch, J. Jin, and J. J. Singh, “A comprehensive
survey of anomaly detection techniques for high dimensional big
data,” Journal of Big Data, vol. 7, no. 1, p. 42, Jul 2020.

[11] S. Shalev-Shwartz and S. Ben-David, Understanding Machine
Learning: From Theory to Algorithms. Cambridge University Press,
2014.

[12] S. Arora, “Toward theoretical understanding of deep learning,”
October 2018.

[13] D. J. Hand and R. J. Till, “A simple generalisation of the area under
the roc curve for multiple class classification problems,” Machine
Learning, vol. 45, no. 2, pp. 171–186, Nov 2001.

[14] B. Gao and L. Pavel, “On the Properties of the Softmax Function
with Application in Game Theory and Reinforcement Learning,”
arXiv e-prints, p. arXiv:1704.00805, Apr. 2017.

APPENDIX A
PROOF OF LEMMA 1

To obtain our desired results, our goal is to show
the Lipschitz continuity of the gradient ∇f(zm, εm) for
(zm, εm) ∈ RN ×RN . To that end, we first recall several
properties of Lipschitz functions:

• The sum of Lipschitz functions is also Lipschitz.
• The product of two bounded Lipschitz functions is

also Lipschitz.
• The composition of Lipschitz functions is Lipschitz.

With the above properties in mind, we start by investigating
the function reported in eq. (9). Given that α > 0, it is
straightforward that the first term is Lipschitz continuous.
As for the second term, we first note that the smooth
max function introduced in eq. (7) is a bounded Lipschitz
continuous [14]. Accordingly, the second term is made
of a sum and product of Lipschitz continuous functions.
Therefore, it is Lipschitz continuous. It is worth mentioning
that introducing the cubic term in eq. (8) allowed for
the term [ymi −

∑
j∈Ni

ymj exp(cymj)∑
j∈Ni

exp(cymj)
]+ to remain in the

derivative as seen in eq. (9). This enabled the Lipschitz
continuity property to hold for this term, hence showcasing
its importance for preserving the smoothness of f(·, ·). As
for eq. (10), the Lipschitz continuity is also straightforward
given that α > 0. Next, for the remaining terms reported
in eq. (11) and eq. (12), we rewrite them as follows

∂ymk

∂zmk
=

exp(−zmk)(
1 + exp(−zmk)

)2 = σ(zmk)(1− σ(zmk)),

(17)
∂αmk

∂εmk
= (1− α)σ(εmk)(1− σ(εmk)). (18)

Given that σ(·) is a bounded Lipschitz function, we can
conclude that the same can be concluded about ∂ymk

∂zmk

and ∂αmk

∂εmk
. Lastly, we note that the functions reported in

eq. (9)-(12) are all bounded. Consequently, by noting the
derivatives chain rule, and the fact that the composition of
Lipschitz functions is also Lipchitz, we can conclude that,
overall, ∇f(zm, εm) is a Lipschitz function. Given this
property, we recall that from the mean value theorem, and
for (zm, εm) ∈ RN ×RN and (z′

m, ε′m) ∈ RN ×RN , we
have

||∇f(x)−∇f(y)|| ≤ β||x− y||, (19)

where x = [zm, εm], y = [z′
m, ε′m], and β denotes the

maximum eigenvalue, in magnitude, of the Hessian matrix
Hf over the domain RN × RN . Given that the gradient
∇f(·, ·) is Lipschitz, we can conclude that there exists a
constant L such that β ≤ L. This concludes our proof.

	Introduction
	System Model
	Optimization Framework
	Proposed Solution
	Numerical Implementations
	Performance Comparison
	Effect of r and h
	Practical Implementations

	Conclusion
	References
	Appendix A: Proof of Lemma 1

