
A Multi-Head Ensemble Multi-Task Learning
Approach for Dynamical Computation Offloading

Ruihuai Liang∗, Bo Yang∗, Zhiwen Yu∗, Xuelin Cao†, Derrick Wing Kwan Ng‡, and Chau Yuen§
∗School of Computer Science, Northwestern Polytechnical University, Xi’an, Shaanxi, 710129, China

†School of Cyber Engineering, Xidian University, Xi’an, Shaanxi, 710071, China
‡School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, Australia

§School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore

Abstract—Computation offloading has become a popular solu-
tion to support computationally intensive and latency-sensitive
applications by transferring computing tasks to mobile edge
servers (MESs) for execution, which is known as mobile/multi-
access edge computing (MEC). To improve the MEC perfor-
mance, it is required to design an optimal offloading strategy
that includes offloading decision (i.e., whether offloading or not)
and computational resource allocation of MEC. The design can be
formulated as a mixed-integer nonlinear programming (MINLP)
problem, which is generally NP-hard and its effective solution
can be obtained by performing online inference through a well-
trained deep neural network (DNN) model. However, when the
system environments change dynamically, the DNN model may
lose efficacy due to the drift of input parameters, thereby decreas-
ing the generalization ability of the DNN model. To address this
unique challenge, in this paper, we propose a multi-head ensemble
multi-task learning (MEMTL) approach with a shared backbone
and multiple prediction heads (PHs). Specifically, the shared
backbone will be invariant during the PHs training and the
inferred results will be ensembled, thereby significantly reducing
the required training overhead and improving the inference
performance. As a result, the joint optimization problem for
offloading decision and resource allocation can be efficiently
solved even in a time-varying wireless environment. Experimental
results show that the proposed MEMTL outperforms benchmark
methods in both the inference accuracy and mean square error
without requiring additional training data1.

Index Terms—Multi-access edge computing, computation of-
floading, multi-head neural network, ensemble learning, multi-
task learning

I. INTRODUCTION

As a new computing paradigm, mobile/multi-access edge
computing (MEC) provides cloud computing services at the
edge of the network close to mobile terminals (MTs), avoiding
the drawbacks such as the long propagation latency introduced
by conventional mobile cloud computing [1]–[3]. Indeed, the
popularity of MEC has promoted the rapid growth of mobile
applications, in which computation offloading plays a critical
role. To achieve an optimal balance between execution time
and resource consumption, and to improve the experience of
MTs, computation offloading shifts computationally intensive
or latency-sensitive tasks to a MEC server (MES) or cloud
server [4]. Considering optimal designs such as binary of-
floading decision, resource allocation, mobility management,

1This paper will be presented at the IEEE Globecom conference 2023.

content caching, security and privacy, computation offloading
optimization can be formulated as a mixed-integer nonlin-
ear programming (MINLP) problem, which is generally NP-
hard [5] and thus difficult to solve efficiently.

Existing computation offloading approaches can be roughly
divided into two categories [6]. The first category is the con-
ventional numerical optimization [7] approaches that obtain
solutions through repeated iterations. These methods usually
require preset parameters and introduce excessive compu-
tational complexity, even though they may usually obtain
only sub-optimal solutions. Furthermore, once the network
environment alters, the same iterative procedure needs to be
carried out again to update the solution. The second category is
the artificial intelligence (AI)-based approaches [8], [9]. This
kind of approaches can learn the potential knowledge of the
task and can directly infer the optimal solutions in a near real-
time manner but with low complexity. However, it is worth
noting that there still exists some potential challenges. For
instance, the AI model training process often requires a large
amount of labeled training data for offline learning and the
online inference performance is often susceptible.

Specifically, a multi-task learning feedforward neural net-
work (MTFNN) was proposed in [8] to jointly optimize the
offloading decision and computational resource allocation,
which has offered remarkable results. However, the MTFNN
model was offline trained under the training dataset collected
in a specific network condition, thereby suffering from the
issue of insufficient generalization. It is widely known that
with more training dataset available, better inference perfor-
mance can be usually achieved. Due to the relatively high
computational complexity of exhaustive searching method that
has been exploited for training dataset generation, the size of
training dataset is difficult to expand effectively and efficiently.
Furthermore, even if a large amount of training dataset can be
generated, static model structure still has poor scalability in
dealing with dynamical network environments.

Motivated by drawbacks of MTFNN, we present a multi-
head ensemble multi-task learning (MEMTL) approach for
the joint optimization of offloading decision and resource
allocation in a dynamical network environments. By establish-
ing multiple prediction heads (PHs) with a shared backbone
network, MEMTL not only outperforms the baseline in terms

ar
X

iv
:2

30
9.

00
90

7v
1

 [
ee

ss
.S

P]
 2

 S
ep

 2
02

3

of accuracy and mean square error (MSE), but also has bet-
ter scalability to cope with dynamic computation offloading.
Moreover, the proposed MEMTL does not require additional
training data, while only having a negligible increase in model
storage space and inference time.

II. SYSTEM MODEL

A. Overview

Considering a multi-user single-server MEC system
that consists of one MES and N MTs, i.e., N =
{MT1,MT2, ...,MTN}. Each MT is wirelessly connected
with the MES and different offloading connections could
introduce various amount of transmission overheads due to
the diversity of the transmission power and the distances, as
illustrated in Fig. 1. Provided that the orthogonal multiple
access [10] is employed as the multiple access scheme for
the wireless connections, so the whole wireless bandwidth
is divided into N equal sub-bands, each of which serves
transmission without interferences. Specifically, we define the
upload transmission rate and the download transmission rate
of the connection between the MES and MTn as un and dn,
respectively. In the considered MEC scenario, the optimal of-
floading strategy includes the offloading decision (i.e., whether
to offload or process locally) and the computational resource
allocation of the MES.

Fig. 1. An example of a multi-user single-server MEC system with one MES
and three MTs.

Specifically, regarding the offloading method, we focus on
the binary offloading strategy [1], which indicates that the job
is either processed locally or totally offloaded to the MES for
further processing. We assume that all MTs make offloading
decisions at each discrete time simultaneously and each MT
considers only one job to be offloaded at a time, which is
indivisible. The two options for offloading are formulated as
follows:

Dn =

{
1 if MTn offloads,
0 otherwise.

∀n ∈ [1, N]. (1)

To characterize the offloading strategy of each MT, we
define an N -dimensional offloading decision vector, i.e.,

D = {D1, ..., Dn, ..., DN}, ∀n ∈ N . (2)

In addition, we define another N -dimensional vector to
indicate the computational resource allocation of the MES,

R = {R1, ..., Rn, ..., RN}, ∀n ∈ N . (3)

where Rn ∈ [0, 1] denotes the proportion of computational
resource allocated by the MES to MTn, such that

∑N
n=1Rn ≤

1 holds.

B. Problem Formulation

The objective of computation offloading is to minimize the
overall cost that includes the execution latency and energy
consumption. Provided that cn(cn ≥ 0) (clock cycle) denotes
the required computational resource and rlocaln (clock cycle)
refers to the available computational resource of MTn, the
cost of local execution of MTn is calculated as

Cn
local = (1− α)κ

(
rlocaln

)2
cn + α

cn
rlocaln

, ∀n ∈ N , (4)

where Cn
local denotes the overall cost of locally processing on

MTn, κ denotes the energy efficiency parameter that mainly
depends on the hardware chip architecture [11], and α ∈ [0, 1]
determines the emphasis on computational delay and power
consumption. For example, the delay cost is more important
when α is close to 1 and the power cost is more important
when α is close to 0.

Assume that pn denotes the size of data that requires for
uploading, qn indicates the size of the results that are returned
after processing, so the cost of offloading is

Cn
offload =(1− α)

(
Pn
u pn
un

+
Pn
e cn

roffloadn

+
Pn
d qn
dn

)
+ α

(
pn
un

+
cn

roffloadn

+
qn
dn

)
, ∀n ∈ N ,

(5)

where Pn
u , Pn

e , Pn
d represent the power consumption of job

uploading, execution and downloading, respectively, roffloadn

(clock cycle) denotes the computational resource allocated
from MES to MTn.

Combining (4) and (5), the weighted sum cost can be
calculated as

Ctotal =
∑
n∈N

(1−Dn) Cn
local +DnCn

offload, (6)

where Cn
local denotes the total cost of MTn processing the

job locally and Cn
offload indicates the total cost of offloading.

Consequently, the optimization problem is formulated as

P : min
{D,R}

Ctotal

s.t. C1 : Dn ∈ {0, 1}, ∀n ∈ N , (7a)

C2 : (1−Dn)
cn
rn

+Dn

(
pn
un

+
cn

roffloadn

+
qn
dn

)
≤ θn,

(7b)
C3 : Rn ∈ [0, 1], (7c)

C4 :

N∑
i=1

Ri ≤ 1. (7d)

The constraint C1 denotes that the offloading decision only
has two options, i.e., Dn=0 or Dn=1. C2 indicates that the
maximum tolerable delay of the job of MTn is θn, which
should be satisfied. C3 means that the resource allocation

…
Input

Backbone

Regression
Result 1

Prediction Head 2

Output
Layer

Hidden
Layer

Optimal
Strategy

Hidden
Layers

Input
Layer

Classification
Result 1

Result 1

Results
Combination

Regression
Result 2

Classification
Result 2

Result 2

Output
Layer

Hidden
Layer

Prediction Head 1

Fig. 2. The structure of the proposed MEMTL model with 2 PHs.

proportion should be in the range of 0 and 1, and C4 indicates
the sum of allocation proportions should not be larger than 1.

We can observe that the formulated multi-dimensional
multi-objective problem is actually a mixed-integer nonlinear
programming (MINLP) problem, which is generally NP-hard
and can be compartmentalized through the Tammer [12] de-
composition method. Specifically, the optimal solution of the
joint optimization problem can be obtained as S∗={D∗,R∗},
where D∗ indicates the optimal offloading decision vector and
R∗ indicates the optimal computational resource allocation
ratio vector. Considering that D is a binary vector and R has
decimal features in [0, 1], we can design multi-task learning
that consists of a classification task and a regression task.

After formulating the original problem as an hierarchical
optimization problem of minimizing the objective function,
we can find that it can be further simplified as a problem to
minimize a function f(x, y) with a given x and an output
y, where x refers to the features of all MT jobs and network
environment parameters, while y refers to the optimal solution.
Although performing offline training based on a large amount
of samples via a single neural network model can achieve
good accuracy on the test set, this approach suffers from a
severe performance degradation in dynamical network envi-
ronments. In contrast, by training multiple component models
independently and combining them for inference, ensemble
methods reach better performance than the single network
counterpart [14], [15]. In next section, we provide the detailed
design of the proposed model.

III. MULTI-HEAD ENSEMBLE MULTI-TASK LEARNING

In this section, we firstly present the proposed multi-head
ensemble multi-task learning (MEMTL) approach in detail,
followed by some analytical results for quantifying the poten-
tial performance gain.

A. Model Design

The structure of the proposed MEMTL model is shown in
Fig. 2, where two PHs are considered as an example. Specifi-
cally, the input to the model includes the vector of the jobs and
environment parameters, the body structure of the MEMTL
comprises multiple dense hidden layers, and the output layer
consists of two tasks: classification task and regression task,
which aims at inferring D∗ and R∗, respectively. Ensemble

improves model scalability, but excessive computation com-
plexity will be introduced by building a group of complete
models. This hinders its practical implementation in dynamical
offloading environment with limited computational and storage
resources.

Instead of training multiple MTFNN models under different
cases, we find that there exist common features that can be
extracted from the knowledge learned by each MTFNN model
and these common features can be considered as a common
invariant part (i.e., the backbone in Fig. 2) such that only
small-scale expansion on ensemble components needs to be
undertaken. Inspired by [13], [14], we employ the multi-head
neural network structure which has multiple PHs with a small
number of tunable parameters and a shared backbone with
“frozen” parameters, as illustrated in Fig. 2. Specifically, the
backbone is a continuous series of multiple layers starting from
the input layer. During the components training process, the
constructed backbone’s parameters are invariant and thus do
not participate in the gradient descent of PHs, which reduces
both the computational and time consumption. In particular,
each PH is composed of a few network layers and the output
layer, which lay after the backbone. For ease of understanding,
each combination of a PH and the backbone can be regarded
as an independent MTFNN. The backbone is exploited to
extract common latent features from the input, which will be
considered as the input to the PHs. Also, the outputs from
the PHs are final inferring results based on the information
extracted by the backbone. It is worthy noting that only PHs
participate in the gradient descent process of components
training, which can help to significantly reduce the training
cost that facilitates the implementation of online training.

B. Training and Prediction

After introducing the model structure, in this subsection we
present the offline training and online prediction procedures.

In Algorithm 1, we illustrate the offline training process
of the MEMTL model with M PHs that share a backbone
(denoted as B), where the loss function consists of MSE for
the regression task and cross entropy loss for the classification
task. To ensure the ability to extract the common features prop-
erly and accurately, the backbone is trained based on the whole
dataset. For the training of PHs, we employ the bootstrap
sampling which performs repeated replacement sampling on

the original dataset, and generate sub-datasets with the same
size. By creating multiple datasets through bootstrap sampling,
each PH is trained based on a slightly different subset of the
original dataset, thereby helping to mitigate overfitting and
improve generalization performance.

Algorithm 1 MEMTL Offline Training
Input: Training dataset D that contains T labelled data samples, the

number of the PHs M ;
Output: Trained MEMTL model with a common backbone B and

M PHs H = {h1, ..., hM};
1: Perform sampling from D by bootstrapping and generate M

equal-sized datasets {D1, ..., DM}, where Dm, ∀m ∈ [1,M],
has T samples;

2: Set the backbone B and the PH h1 to trainable = True, train
the B and h1 on the source dataset D;

3: Store the trained backbone B and reinitialize h1, and set B to
trainable = False;

4: for m = 1 to M do
5: Set hm to trainable = True and other PHs to trainable =

False;
6: Train hm on the dataset Dm;
7: end for
8: Return the trained MEMTL model with backbone B and PHs H.

Algorithm 2 MEMTL Online Prediction
Input: Input parameter vector x, the trained MEMTL model H;
Output: The inferred optimal offloading strategy S∗;

1: Input x to H, obtain the output of each PH, i.e., {S1, ..., SM} ;
2: Select the optimal offloading strategy S∗ that reaches the mini-

mum overall cost, i.e., S∗ = argmin
Si,i∈[1,M]

Ctotal.

In Algorithm 2, we present the online prediction method
to infer the optimal offloading strategy. Specifically, multiple
component PHs conduct online inference based on the input
and generate their respective output strategies, respectively.
Then, we choose the optimal offloading strategy from the
multiple PHs that minimizes the overall cost.

C. Theoretical Analysis

To demonstrate the performance enhanced by ensemble
learning, we present the theoretical analysis on the average
generalization error of the proposed MEMTL method by
employing the error-ambiguity decomposition method [16].

Suppose that a MEMTL model H with M PHs {h1, ..., hM}
learns the target function f : Rd → Rg , where d is the input
dimension and g is the output dimension. During the inference,
for the sample x with the feature distribution p(x), each PH
returns its inferring result hi(x). Specifically, the prediction
result given by H is denoted as H(x), we define the MSE
on the single sample x of H and hi as ξ(H|x) and ξ(hi|x),
respectively, then we can obtain

ξ(H|x) def
=
1

g
(f(x)−H(x))2, (8a)

ξ(hi|x)
def
=
1

g
(f(x)− hi(x))

2, i ∈ [1,M], (8b)

where the error refers to the discrepancy between the inference
output and the ground truth.

The ambiguity is defined as the variation of the outputs of
ensemble members over the unlabelled data, i.e., it quantifies
the disagreement among the components. We define the am-
biguity between hi and ho as χ(hi)

χ(hi)
def
= ξ(hi|x)− ξ(ho|x), ∀i, o ∈ [1,M] (9)

where ho denotes the optimal PH with the smallest MSE such
that ξ(hi|x) ≥ ξ(ho|x) always holds and the χ(hi) is non-
negative.

Over the entire feature distribution domain p(x), the gen-
eralization error of H and hi are defined as

ζ(H) =

∫
ξ(H|x)p(x)dx, (10a)

ζ(hi) =

∫
ξ(hi|x)p(x)dx, ∀i ∈ [1,M]. (10b)

The Algorithm 2 chooses the output with the minimum cost
as the final result, which is equivalent to choosing the output
with the smallest MSE. As the optimal PH with the smallest
MSE is ho, the ξ(H|x) can be re-expressed as

ξ(H|x) = ξ(ho|x) = ξ(hi|x)− [ξ(hi|x)− ξ(ho|x)],
∀i, o ∈ [1,M].

(11)

Substituting (11) into (10a), ζ(H) can be deduced as

ζ(H) =

∫
[ξ(hi|x)− (ξ(hi|x)− ξ(ho|x))]p(x)dx,

∀i, o ∈ [1,M].

(12)

Multiplying both sides of equation (12) by M at the
same time, and specializing the M i’s on the right into
i = {1, ...,M}, we obtain

M ∗ ζ(H) =

∫
[ξ(h1|x)− (ξ(h1|x)− ξ(ho|x))]p(x)dx+ ...

+

∫
[ξ(hM |x)− (ξ(hM |x)− ξ(ho|x))]p(x)dx

=

M∑
i=1

∫
ξ(hi|x)p(x)dx−

M∑
i=1

∫
(ξ(hi|x)− ξ(ho|x))p(x)dx.

(13)

Furthermore, by dividing both sides of equation by M (13),
it yields

ζ(H) =
1

M

M∑
i=1

∫
ξ(hi|x)p(x)dx

− 1

M

M∑
i=1

∫
(ξ(hi|x)− ξ(ho|x))p(x)dx.

(14)

Substituting (9) and (10b) into (14), we have

ζ(H) =
1

M

M∑
i=1

ζ(hi)−
1

M

M∑
i=1

χ(hi). (15)

For simplicity, we denote ξ(h) = 1
M

∑M
i=1 ζ(hi) and

χ(h) = 1
M

∑M
i=1 χ(hi) as the average generalization error and

the average ambiguity of all the M PHs over the corresponding
optimal PH, respectively.

Finally, substituting ξ(h) and χ(h) into (15), we decompose
the generalization error of H over the entire feature distribu-
tion domain as

ξ(H) = ξ(h)− χ(h), (16)

where χ(h) is non-negative such that the ensemble error will
not be higher than the average generalization error of all PHs.

Remark. The higher accuracy and ambiguity of component
models, the lower ensemble error can be obtained.

IV. NUMERICAL RESULTS AND DISCUSSIONS

For the labeled dataset generation, we perform exhaustive
search on randomly sampled input parameters and return
ground truth paired with the input. To demonstrate the perfor-
mance of the proposed MEMTL in dynamical environment,
the source dataset is divided into multiple disjoint subsets.
Specifically, we divide the dataset based on the mean of the
features square of each sample, such that the parameters of
each sample in a subset are significantly different from any
sample from other subsets. That is to say, each subset can be
regarded as a new environment compared with other subsets.
Without loss of generality, we create two subsets during the
experiments, one as training set and the other with less data
as testing set represents the new environment.

With the dataset prepared, we perform the experiments
repeatedly in terms of two dimensions of variables: the
number of MTs (denoted as N) and the number of PHs
(denoted as M). All the experiments are performed based
on the system of 11th Gen Intel(R) Core(TM) i5-11300H
@ 3.10GHz (×16) processor. In each repetition, the baseline
MTFNN and MEMTL are trained with the same training set
and are evaluated on the same testing set. The implementa-
tion code of our proposed MEMTL method is available at:
https://github.com/qiyu3816/MTFNN-CO.

We compare the performance between the MTFNN and the
proposed MEMTL with 3 PHs, as illustrated in Tabel I, where
we evaluate the MSE, accuracy, inference time (per sample)
and model size. We observe that in all cases with different
number of MTs, the MEMTL outperforms in terms of MSE
and accuracy on the total testing set. This demonstrates the no-
table performance of MEMTL in dynamical environment with
new input parameters. For the time and storage consumption
caused by PHs, adding a single PH increases inference time by
less than 0.02 ms and storage cost by about 10 KB which are
usually acceptable in a MES. However, both the MEMTL and
MTFNN inevitably suffer from performance degradation when
the number of MTs increases, which indicates the considered
task became more challenging.

Although the performance of the proposed MEMTL model
can be improved when the number of PHs increases, additional
inference time and computational consumption will still be

introduced. In order to investigate the appropriate number of
PHs, we define the efficiency function of MEMTL as

ψ =
∆mse + ∆accuracy

t
, (17)

where ψ(ms−1) denotes the improvement efficiency, t(ms)
denotes the inference time per sample. Compared to the
MTFNN, ∆mse and ∆accuracy indicates the performance
improvement of MEMTL in terms of MSE and accuracy,
respectively. For instance, in the case with 2 MTs, we can ob-
serve from Table I that ∆mse = 0.003, ∆accuracy = 0.015,
t = 0.063 ms.

In Table. II, we evaluate the efficiency ψ of MEMTL, where
M denotes the number of PHs and N indicates the number
of MTs. As the bold best efficiencies show, to achieve the
best efficiency, the number of PHs should be neither too
many nor too little and generally the optimal PHs number
in the table can be recommended. Additionally, as the number
of MTs increases, we can observe that the efficiency of the
MEMTL also increases. The reason behind this phenomenon
is that the task that the model needs to learn is simpler
when the number of MTs is smaller, so the MTFNN can
already reach high accuracy that is larger than 90%. Therefore,
the improvement provided by the MEMTL becomes limited.
In this case, MEMTL provides more performance gain over
MTFNN in more complex tasks.

0 5 10 15 20 25 30
training epoch

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

tra
in

in
g

lo
ss

MTFNN
PH

Fig. 3. Training loss evaluation between a single PH and a MTFNN from
scratch.

In Fig. 3, we compare the loss reduction processes in
training MTFNN from scratch and training only PH. By setting
the same learning rate as 0.001 and applying the same loss
function, both the MTFNN model and the PH are trained
for 30 epochs. We can observe that the loss of MEMTL
was reduced to 0.01 in only 5 epochs, while the loss of
MTFNN took at least 15 epochs, where the final losses are
practically equal. From the above results, the fast convergence
speed advantage of MEMTL online training PH is proved, and
such excellent training efficiency also improves the potential
to adapt to the dynamical network environment.

TABLE I
PERFORMANCE COMPARISON OF MEMTL AND MTFNN

Number of MTs MTFNN MEMTL
MSE Accuracy Inference time Model size MSE Accuracy Inference time Model size

N=2 0.025 93.5% 0.036 ms 33.7 KB 0.022 95.0% 0.063 ms 49.1 KB
N=3 0.046 84.8% 0.028 ms 35.1 KB 0.036 89.4% 0.073 ms 59.8 KB
N=4 0.057 77.8% 0.034 ms 37.6 KB 0.042 82.6% 0.059 ms 68.0 KB
N=5 0.065 70.7% 0.026 ms 38.1 KB 0.050 77.9% 0.047 ms 76.4 KB

TABLE II
EFFICIENCY FUNCTION RESULTS

N

ψ M
M = 2 M = 3 M = 4 M = 5 M = 6

N = 2 0.2255 0.3047 0.4367 0.3884 0.2631
N = 3 0.6518 0.7729 1.0722 1.1411 0.9573
N = 4 1.0074 1.0556 1.1584 1.1905 1.0314
N = 5 1.4915 1.8189 1.7160 1.5393 1.4549

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a multi-head ensemble multi-
task learning (MEMTL) approach for dynamical computation
offloading in MEC environment. We formulated the joint
optimization problem of offloading decision and computa-
tional resource allocation as a MINLP optimization problem,
and then combine multi-head neural network and ensemble
learning to design the MEMTL model and its training and
inference strategies. By training the MEMTL model offline
and performing an online inference test on input data which
is significantly different from the training data, the test re-
sults show that the proposed MEMTL model significantly
outperforms the baseline algorithm in terms of MSE and
accuracy. By designing ensemble model for low-cost training
and performing online inference, this not only offers inspira-
tion for the model adaptation in dynamical environments in
the fields such as communication and meteorology, but also
provides a possible direction for large-scale model training and
ensemble in distributed scenarios such as federated learning.
As for our potential future works, we aim at addressing the
problem of low efficiency of training data generation and the
degradation of model performance for complex tasks with
generative model and end-to-end trained models, respectively.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang and K. B. Letaief, “A Survey on
Mobile Edge Computing: The Communication Perspective,” IEEE Com-
mun. Surveys & Tutorials, vol. 19, no. 4, pp. 2322-2358, Fourthquarter
2017.

[2] K. Zhang, et al., “Energy-Efficient Offloading for Mobile Edge Com-
puting in 5G Heterogeneous Networks,” IEEE Access, vol. 4, pp. 5896-
5907, 2016.

[3] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan and X. Chen,
“Convergence of Edge Computing and Deep Learning: A Comprehen-
sive Survey,” IEEE Commun. Surveys & Tutorials, vol. 22, no. 2, pp.
869-904, Secondquarter 2020.

[4] A. Islam, A. Debnath, M. Ghose, and S. Chakraborty, ”A survey on
task offloading in multi-access edge computing,” Journal of Systems
Architecture, vol. 118, no. 102225, September 2021.

[5] N.V. Sahinidis, “Mixed-integer nonlinear programming 2018,” Optimiza-
tion and Engineering, vol. 20, pp. 301-306, 2019.

[6] H. Jin, M. A. Gregory and S. Li, ”A Review of Intelligent Computation
Offloading in Multiaccess Edge Computing,” IEEE Access, vol. 10, pp.
71481-71495, 2022.

[7] T. X. Tran and D. Pompili, “Joint Task Offloading and Resource
Allocation for Multi-Server Mobile-Edge Computing Networks,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 1, pp. 856-868, Jan.
2019.

[8] B. Yang, X. Cao, J. Bassey, X. Li and L. Qian, “Computation Offloading
in Multi-Access Edge Computing: A Multi-Task Learning Approach,”
IEEE Transactions on Mobile Computing, vol. 20, no. 9, pp. 2745-2762,
Sept. 2021.

[9] L. Huang, S. Bi and Y.-J. A. Zhang, “Deep Reinforcement Learning
for Online Computation Offloading in Wireless Powered Mobile-Edge
Computing Networks,” IEEE Transactions on Mobile Computing, vol.
19, no. 11, pp. 2581-2593, Nov. 2020.

[10] L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang, “Non-
orthogonal multiple access for 5G: solutions, challenges, opportunities,
and future research trends,” IEEE Communications Magazine, vol. 53,
no. 9, pp. 74-81, Sep. 2015.

[11] T. D. Burd and R. W. Brodersen, “Processor Design for Portable
Systems,” Journal of VLSI signal processing systems for signal, image
and video technology, vol. 13, no. 2-3, pp. 203-221, Aug. 1996.

[12] K. Tammer, “The Application of Parametric Optimization and Imbed-
ding to the Foundation and Realization of a Generalized Primal De-
composition Approach,” Mathematical research, vol. 35, pp. 376-386,
1987.

[13] A.R. Narayanan, A. Zela, T. Saikia, et al. “Multi-headed Neural Ensem-
ble Search,” ArXiv abs/2107.04369, 2021.

[14] S. Lee, S. Purushwalkam, M. Cogswell, D. Crandall, and D. Batra,
“Why m heads are better than one: Training a diverse ensemble of deep
networks.” ArXiv abs/1511.06314, 2015.

[15] M.A. Ganaie, M. Hu, A.K. Malik, M. Tanveer and P.N. Suganthan, “En-
semble deep learning: A review,” Engineering Applications of Artificial
Intelligence, vol. 115, no. 105151, 2022.

[16] K. Anders and V. Jesper, “Neural Network Ensembles, Cross Validation,
and Active Learning,” MIT Press, July 1994.

	Introduction
	System Model
	Overview
	Problem Formulation

	Multi-Head Ensemble Multi-Task Learning
	Model Design
	Training and Prediction
	Theoretical Analysis

	Numerical Results and Discussions
	Conclusion and Future Work
	References

