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Abstract—In this work, we study the problem of semantic
communication and inference, in which a student agent (i.e.
mobile device) queries a teacher agent (i.e. cloud sever) to
generate higher-order data semantics living in a simplicial
complex. Specifically, the teacher first maps its data into a k-
order simplicial complex and learns its high-order correlations.
For effective communication and inference, the teacher seeks
minimally sufficient and invariant semantic structures prior to
conveying information. These minimal simplicial structures are
found via judiciously removing simplices selected by the Hodge
Laplacians without compromising the inference query accuracy.
Subsequently, the student locally runs its own set of queries
based on a masked simplicial convolutional autoencoder (SCAE)
leveraging both local and remote teacher’s knowledge. Numerical
results corroborate the effectiveness of the proposed approach in
terms of improving inference query accuracy under different
channel conditions and simplicial structures. Experiments on a
coauthorship dataset show that removing simplices by ranking
the Laplacian values yields a 85% reduction in payload size
without sacrificing accuracy. Joint semantic communication and
inference by masked SCAE improves query accuracy by 25%
compared to local student based query and 15% compared
to remote teacher based query. Finally, incorporating channel
semantics is shown to effectively improve inference accuracy,
notably at low signal-to-noise ratio (SNR) values.

Index Terms—Semantic Communication, Semantic Inference,
Simplicial Complex, Semantic Query

I. INTRODUCTION

Communication systems in the 6G era will ubiquitously
connect intelligent agents, where the network natively supports
communications between a plethora of Artificial Intelligence
(AI) agents and models. Current State-of-the-Art (SOTA) com-
munication systems are based on Shannon’s level A, which
aims to accurately transfer and reconstruct information bits
from a transmitter to receiver [1]. Under this paradigm, the
network is oblivious to the information content being delivered
and its effectiveness in solving tasks. Communicating large
models or data as raw bits brings significant challenges to
networks with limited capacity, energy, latency, etc. In contrast
to this, transmitting semantic information enables higher com-
munication efficiency without degrading system performance.
Semantic information represents the underlying latent structure
of information that is invariant to changes across data domains,
distributions and context. Such structures should be minimal
(in terms of size), yet efficient in performing targeted tasks.

With the success of machine learning (ML), significant
research works on semantic communications have emerged
performing on extracting latent features from a given input,
and communicating them to a receiver [2]. For instance, the
transformer architecture has shown big success in extracting
semantic information from text messages, borrowing the bilin-
gual evaluation understudy (BLEU) score as a semantic metric,
compared to conventional source (Huffman) channel (Turbo)
coding [3]. In the domain of image transmission, convolutional
neural network (CNN) has been applied incorporating channel
noise into an autoencoder [4]. Similarly, video transmission
has been studied with contextual joint source and channel
coding (JSCC) to optimize transmission rates [5]. Accord-
ingly, these works demonstrate an improved peak signal-to-
noise ratio (PSNR) or structural similarity index (SSIM) of
reconstructed images or videos at lower SNR or bandwidth. In
the context of semantic channel coding, an adaptive universal
transformer was proposed in [6], by using channel state
information (CSI) to adjust attention weights. While inter-
esting, these works focus on learning latent representations
directly from raw data, to compress data at the transmitter and
reconstruct it at the receiver, without harnessing the structure
of information.

A different line of work casts the problem of semantic
communication as a belief transport problem among teacher
and student agents that reason over one another, sending only
the minimum amount of semantic information [7]. In [8], the
authors model a knowledge graph of semantic symbols using
attention based learning, to recover the transmitted text based
on semantic similarity. Implicit semantics from graph repre-
sentations have been studied in [9], using generative imitation
based reasoning to interpret implicit relations between entities
(symbols), offering reduced symbol error rates. A curriculum
learning framework was developed in [10], where a transmitter
and receiver gradually identify the structure of the belief set as
a description of observed events and take environment actions.
Additionally, a neuro-symbolic AI framework was studied in
[11], endowing nodes with reasoning-like capabilities.

A relevant scenario for studying semantic communication
involves a student remotely learns a concept from a teacher
via interaction. In this paper, instead of operating directly on
raw data, we leverage semantic representations of data living
on high dimensional topological spaces and make actionable
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TABLE I: Notations

Notation Description
SK K-order simplicial complex
σk
i i-th k-order simplex, k ∈ {1, . . . ,K}

[Lk]i,j Hodge Laplacian at order k between simplices i, j
Ck Set of k-cochains of simplicial complex S, c ∈ Ck(S)
π Linear coboundary operator

[Bk]i,j Coboundaries at order k between simplices i, j
δ Nonlinear activation function with bias b
h Hidden features of simplex cochains
λk
i Eigenvalues of simplicial complex Laplacian matrix Lk

fe, fg Semantic encoder at transmitter and decoder at receiver
∗ Simplicial convolution

D(σ, µ) number of edges between simplices σ and µ
G(U, V,E) Bipartite graph G of independent sets U , V and set of edges E

H(σ), T (σ),G(σ) Known, received and generated set of simplices for query simplex σ

decisions. We focus on how to effectively learn simplicial
structures, with minimal semantic information communicated
from the teacher to the student, to achieve specific goals.

The main contribution of this paper are: 1) We model
semantic information on high-order simplicial complexes, and
minimize its structure using Hodge Laplacians across differ-
ent dimensions; 2) We propose a masked SCAE algorithm
at the student agent to locally predict query data from its
own semantic structure and the embedding received from
the teacher; 3) We develop a joint semantic communication
and inference scheme, leveraging both student and teacher
agents’ knowledge, to maximize communication efficiency and
inference accuracy; 4) We incorporate channel semantics by
training a SCAE to improve system reliability at different
channel conditions; and 5) We validate the proposed solutions
on a coauthorship dataset by querying citations, showing how
minimal semantic structures can be leveraged with improved
query accuracy, notably at low SNR levels.

The rest of the paper is organized as follows. Section II
introduces the system model of semantic communication on
simplicial complexes. Section III describes how to obtain
minimal semantic structures and generating query data from
both teacher and student’s knowledge. Section IV provides
numerical results of the proposed approaches on a coauthor-
ship dataset. Finally, the work is concluded with future work
discussed in section V.

II. SYSTEM MODEL AND SCENARIO

The semantic communication problem under consideration
is that of an interactive query in a teacher-student scenario,
where a student leverages higher-order topological structures
from its raw data and a few semantic data embedding from
the remote teacher, to provide answers to a much larger set of
queries. Specifically, the teacher uses a semantic encoder to ex-
tract minimal simplicial complexes. It describes the underlying
structure of raw data, which is encoded as semantic embedding
for transmission over a wireless channel. The student uses a
semantic generator to predict query data from its local and
remote teacher’s semantic data embedding.

Concretely, we consider a query task of the coauthorship
information [12]. The teacher learns semantic structures of
the dataset on k-order simplicial complexes. Given a finite set
of K vertices V = {v0, . . . , vK−1} , a k-simplex σk is a topo-
logical object with (k+1) vertices, containing (k+1) faces of

dimension (k− 1), denoted as {v0, ..., v̂i, ..., vk}. If a simplex
σk is a face of µk+1, then µk+1 is called a coface of σk. For a
non-oriented simplex {v0, . . . , vk}, a possible oriented one is
denoted as [v0, . . . , vK−1]. A simplicial complex SK is thus a
collection of simplices σk with a dimension k ∈ {1, . . . ,K},
that is closed under inclusion of all faces. Effectively, given
our dataset we map a paper with k authors into a (k − 1)-
simplex. With the paper’s features (i.e. citations) projected
on a simplicial complex, higher-order semantic information
of the corpus can be extracted. A simplicial complex SK can
be constructed from a bipartite graph G = (U, V,E), where
two disjoint and independent sets of vertices U and V are
connected through set of edges E. A k-simplex is any k + 1
vertices in V that has at least one common neighbour in U .
A simplex σk = {v0, . . . , vk} ⊆ V can be defined as:{

σk | ∃u ∈ U and ∃µ ⊇ σk s.t. (u, vi) ∈ E,∀vi ∈ µ
}

(1)

where the weights on U are assigned to the cochains of the
projected simplices. We define Ck(S) as the k-cochains of
the simplicial complex S (orders will be omitted if there is
no confusion in the rests of paper) in an R-vector space,
which encodes raw data into a simplicial complex. The linear
coboundary operator for a k-cochain f can be defined as:

πk : Ck(S)→ Ck+1(S)

πk(f)([v0, ..., vk+1]) =

k∑
i=0

(−1)if([v0, ..., v̂i, ..., vk+1])
(2)

In the coauthorship use case, we refer to U as papers and
V as authors. The citations of papers are associated with each
vertex u ∈ U . The cochain function c is the sum of citations of
all the vertices u (papers) that are connected to a set of vertices
σk (authors). The process of extracting the (k − 1)-complex
starts from the highest dimension by searching papers with k
authors, and applying the cochain function to the citations over
connected vertices u. The process continues until the lowest
dimension (classical graph).

Query requests are generated at the student agent, asking
about coauthor citations. The coauthorship database is stored
at the teacher, where the simplicial complexes are extracted.
A subset of the complex and cochain is sent to the student, to
generate the query answer. We aimed to minimize the semantic
structure at the student and semantic embedding at the teacher,
and to maximize the accuracy of predicted citations. The
system model is illustrated in Fig. 1. For general queries, a
language model can be used to extract the simplices from
queries, and produce answers of citations from cochains.

III. SEMANTIC COMMUNICATION AND INFERENCE ON
MINIMAL SIMPLICIAL COMPLEXES

A. Minimal Semantic Structures on the Simplicial Complex

The topological structure of a simplicial complex is de-
termined by its set of vertices of the simplices. Following
the bipartite graph relations, the cochains in a lower or-
der simplex (e.g., σ1 = {v1, v2}) can be represented by
higher order simplices with a superset of its vertices (e.g.,



Fig. 1: System Model of Semantic Communication and Inference

µ2 = {v1, v2, v3}). Moreover, two simplices with overlapping
vertices (e.g., {v1, v2, v3} and {v0, v2, v3}) have overlapping
cochains. More generally, consider each simplex of dimension
k in coauthorship complex as a cochain query, the cochain
function of the simplex σk can be decomposed following the
principle of inclusion-exclusion:

c(σk) = c0(σ
k) +

∑
k<ℓ≤K

(−1)ℓ−k+1
∑

σk⊂µℓ

c(µℓ), (3)

where c0(σk) is independent citation of σk, i.e., citation of the
paper authored uniquely by authors in σk. Given a moment
during the process of a sequence of queries, denote the set of
all simplices to which σk is subset with known cochains at
student as H

(
σk
)
, the iterative formulae to obtain the query

can be written as:

c(σk) =
∑

k<l≤K

(−1)s−k+1
∑

µl∈H(σk)

c(µl)

︸ ︷︷ ︸
known

+
∑

k<l≤K

(−1)s−k+1
∑

µl /∈H(σk)

c(µl) + c0(σ
k)

︸ ︷︷ ︸
unknown

(4)

In order to predict unknown information on simplices at
different orders, we leverage the Hodge Laplacians to represent
the simplicial complex structure. The k-th degree of the Hodge
Laplacian Lk contains two terms: a lower Laplacian Ldown

k and
a upper Laplacian Lup

k , which encodes the lower and upper
adjacency of k-order simplices, respectively. The higher order
combinatorial Laplacian matrices are composed from lower
and upper coboundary indices (denoting two simplices with
the same orientation as σk−1

i ∼ σk
j , and with inclusivity

property as σk−1
i ⊂ σk

j , and vice versa). The k-Laplacian
matrix can be obtained from incidence matrix B as follows:

Lk = BT
k Bk +Bk+1B

T
k+1, k = 0, ...,K − 1 (5)

[Bk]i,j =


0, if σk−1

i ̸⊂ σk
j

1, if σk−1
i ⊂ σk

j and σk−1
i ∼ σk

j

−1, if σk−1
i ⊂ σk

j and σk−1
i ≁ σk

j

(6)

The number of edges on the simplicial complex with non-
zero Laplacians Lk depends on the number of simplices pairs
having a neighbour simplex at the (k − 1) order, and not
belong to the same (k + 1) order simplex. In the bipar-
tite graph, this means two simplices (coauthorhsips) have

common vertices (authors), and not connecting to the same
neighbour vertex u (paper). This allows to predict or encode
a cochain by using information passed from the adjacent
ones, i.e., {[Lk]i,j ̸= 0 | σi ∩ σj ̸= ∅}. Simplicial convolution
introduces local interactions between simplices via message
passing. We invoke [12] and implement convolution filters
restricted to low-degree polynomials in the frequency domain.
We denote h as the hidden feature of a cochain c, W as
trainable weights, ψ as nonlinear activation function, and λki as
i-th eigenvalue of the Laplacian matrices Lk. The N th-degree
simplicial convolutional layer can be defined as:

ψ ◦

(
h ∗

N∑
k=0

Wi(λ
k
1 , λ

k
2 , ..., λ

k
|σk|)

)
(7)

The filter is restricted to simplices that are within N hops
apart at the k-order. The complexity of inference is O(|σk|),
which scales with the number of k-order simplices. The
complexity for training is fixed to O(1).

Specifically, for training the semantic encoder we apply a
simplicial convolution to embed adjacent cochains into the
semantic embedding, and in the semantic generator to predict
missing cochains from adjacent known ones. The simplicial
complex at higher order has a denser structure, because
simplices have more overlapping vertices. In this case, a higher
order Laplacian has larger impact on the simplical convolution,
and accuracy of prediction.

Our goal is to maximize the query accuracy under minimal
simplicial structure represented by the Laplacian matrix. In
a simplified single layer convolution, the problem can be
written as the minimizing the non-zero elements of each k-
order Laplacian via a binary matrix bk. We assume that the
weights W are trained under the full structure to approximate
the ground-truth cochains c (under minimum error ϵ), and the
structure minimization problem can be written as:

min
bk

|σk|∑
i=0

|σk|∑
j=0

[bk]i,j |[Lk]i,j |

s.t.

∥∥∥∥∥∥ψ ◦
|σk|∑

i=0

WibkL
i
kc

− c
∥∥∥∥∥∥ < ϵ

[bk]i,j ∈ {0, 1}, ∀i, j

(8)

where Li
k denotes the i-th power of Laplacian matrix Lk.

According to (7), an edge with higher Laplacian value [Lk]i,j
has a larger impact on the output of the simplicial convolution,
thus decreasing the prediction accuracy. Similarly, a simplex
σk
i with higher degree value [Lk]i,i is affected more by

message passing from others during convolution. We thus
propose to minimize the simplicial structure by reducing the
edges and simplices according to the Laplacian threshold l:

• Edge Minimization: edges connecting simplices from dif-
ferent dimensions are ranked by the normalized Laplacian
values Li,j , and lower ranked edges are removed:

{[bk]i,j ← 0|[Lk]i,j ≤ l, i ̸= j} (9)



• Simplex Minimization: simplices σk from dimension k are
ranked by their degree values Lσk

i ,σ
k
i

. The lower ranked
simplices and connected edges are removed.{

[bk]i,j , [bk]j,i ← 0|[Lk]σk
i ,σ

k
i
≤ l, j = 0 . . . |σk|

}
(10)

We will numerically evaluate the impact of different levels
of l on the structure’s size and prediction accuracy.

B. Masked Simplicial Convolutional Autoencoder

Simplicial convolution can be used to impute the missing
cochain data. The framework in [12] randomly masks the sim-
plices with mean value of the cochains in the same dimension,
and trains a convolutional model to minimize the L1-norm
over known cochains. In our earlier work [13], we applied
this method to recover distorted data. In this work, we aim
to further leverage the simplical complex structure to predict
and generate data. Masked language models were used in pre-
training BERT, by predicting the randomly masked tokens in
a sentence [14]. Meanwhile, masked image modeling is used
on CNN for BERT-sytle pre-training [15]. Both approaches
shows effective data abstraction and generation from context.
Inspired by these approaches, we develop a masked training
and recursive prediction method on the simplicial complexes.

The SCAE model contains a semantic encoder fe which
encodes cochains into a latent embedding z, and a semantic
generator fg which generates unknown cochains. Multiple
layers of simplicial convolution are used on fe and fg .

z = fe(c|L,We)

ĉ = fg(z|L,Wg)
(11)

We start with the complete simplicial complex S extracted
from the training dataset. First, a set of large number T of
small simplical complexes Strain =

{
S(1), . . . , S(T )

}
at differ-

ent orders are downsampled, where Strain ⊂ S and T ≪ |S|. In
the training phase, we randomly mask p% simplices with ran-
dom cochain values. The masked simplices are within N hops
from known simplices. This is to guarantee message passing
when using convolution. We train the model with an objective
function to minimize the predicted masked cochains to their
ground-truth citations. Denoting T = {σ1, . . . , σT } as the set
of masked simplices with σi ∈ S(i), D as number of edges
between simplices and cmax the maximum of coauthorship
citation, the training procedure is formulated as:

min
We,Wg

T∑
i=1

|fg(fe(c(σi))− ĉ(σi)|

s.t. c(σi)← U(1, cmax), ∀i
D(σi, S

(i)\σi) ≤ N, ∀i

(12)

where U (a, b) means a random integer between a and b.
Different from the cochain imputation work [12], our objective
is to minimize the loss of the masked cochains instead of the
known cochains.

We leverage a recursive prediction to generate the missing
citations. The missing simplices inM are ranked according to

their highest Laplacian w.r.t. known simplices. It then selects
maximum p% simplices to predict their cochains from the
trained SCAE. In the next iteration, the predicted simplices are
added to the known simplices, to predict the next p% simplices
based on the same selection criteria. The process continues
until all queried citations are predicted. An example of the
masked training and recursive prediction is given in Fig. 2.

Fig. 2: Example of masked training and recursive prediction

C. Joint Semantic Communication and Inference

The masked SCAE provides a method to predict cochains
on the simplicial complex. To best leverage the knowledge
of the student and teacher agent for query, we develop a joint
semantic communication and inference scheme (Algorithm 1).

When the student receives a query request for coauthorship
σq , it first encodes the known simplices H(σq) that are super-
sets of σq with a semantic encoder fe(H(σq)). It then ranks
the elements of H(σq) according to their highest Laplacians
to σq , and downselects a set of simplices G(σq) ⊂ H(σq)
with |G(σq)| = p|H(σq)|. In turn, the teacher encodes the
remaining simplices T (σq) = H(σq)\G(σq) and transmits the
embedding fe(T (σq)) to the student over wireless channel.
The student then uses the semantic generator with the em-
beddings of known and received simplices to predict ĉ(σq) =
fg(fe(H(σq), T (σq))). Before ending the query, we update H
based on T (σq) for every simplex.

Algorithm 1 Joint Semantic Communication and Inference

1: When received query to coauthorship data σq , do:
2: Student encodes known simplices fe(H(σq));
3: Student ranks the known simplices H(σq) w.r.t. σq ac-

cording to their highest Laplacians;
4: Student downselects simplices G(σq) ⊂ H(σq) according

to step (3) with G(σq) = p|H(σq)|;
5: Student requests teacher to transmit the cochains of sim-

plices in T (σq) = H(σq)\G(σq) if T (σq) ̸= ∅;
6: Teacher encodes fe(T (σq)) and send to student;
7: Student predicts ĉ(σq) from fg(fe(H(σq), T (σq)));
8: Update H(σ) for all simplex σ ∈ S;

In order to improve the performance in dynamic wireless
channels, we incorporate channel information into the embed-
ded cochains, and train a semantic generator to reduce the
distortions. This enables the model to perform robustly under



different channel conditions, without increasing the size of the
structure at the student or sending more semantic embeddings.

IV. SIMULATION AND PERFORMANCE EVALUATION

To corroborate the effectiveness of proposed approaches,
we use a dataset from the Semantic Scholar Open Research
Corpus [16], which contains over 39 million research papers
in computer science, with attributes such as author list and
citations. To construct a co-authorship complex, we perform a
random walk for 80 papers with citations between 1 and 10,
from a randomly sampled starting paper. A set of k-simplicial
complexes is created by joining k-cochains sharing authors.
An additive white Gaussian noise (AWGN) channel is used.

We first evaluate the performance when minimizing the
simplicial complex structure, using Laplacian or degree values
to reduce edges or simplices. Fig. 3 demonstrates the query
accuracy after applying the structure minimization schemes.
First, we can see that reducing simplices by ranking with
degrees significantly reduces the size of simplicial complexes
by 76%, without reducing query accuracy. Meanwhile, the
accuracy starts dropping only after reducing 86% of the
complex size. Compared to a baseline scheme that randomly
removes edges, our scheme improves accuracy by up to
35%. Furthermore, when reducing edges using the Laplacian,
the system performs slightly better and the accuracy starts
dropping after only 83% of the complex is reduced. This is
because simplices with sparse edges can still be predicted from
an edge with a high Laplacian value. In summary, a small
percentage of simplices and edges with higher Laplacians have
major impact on the query accuracy.

Fig. 3: Query accuracy under different percentages of reduced sim-
plicial complexes

In Fig. 4, we evaluate the the joint semantic communication
and inference based on a masked SCAE with impact of SNR.
The local query achieves 60% accuracy when the student has
50% of the known cochains. When fully relying on a query
from the teacher, the accuracy is lower at SNR = −5 dB
due to channel noise, and increases gradually as the channel
improves reaching 100% at SNR = 10 dB. With joint semantic
communication and inference, the accuracy is much higher
at SNR < 5 dB than both remote and local query. Further-
more, the query accuracy versus the percentage of semantic
embedding transmitted from the teacher is shown in Fig. 5. It

can be seen that at high SNR > 5 dB, transmitting more
information (60%) achieves the best performance, whereas
at low SNR < −5 dB, the best percentage of transmission
decreases down to 40%. These results indicate that jointly
utilizing the student and teacher’s knowledge can largely
improve the query performance at poor channel conditions
while reducing transmitted information.

Fig. 4: Query accuracy of semantic communication and inference at
different SNR levels

Fig. 5: Query accuracy under different percentages of transmitted
simplices

The performance of combining minimal semantic structures
with joint semantic communication and inference is shown
in Fig. 6. First we can see that by reducing the simplicial
complex size to 15%, the accuracy of all the transmission
schemes are not affected. Joint communication and inference
has higher accuracy of 15% higher than remote query and 25%
higher than local prediction. The performance drops by 30%
when the structure size is further reduced. We can see that
with the edges removed by Laplacian thresholds above 0.4,
the generation accuracy drops significantly. Fig. 7 shows the
simplical complex size in different dimensions. We can see that
with Laplacian threshold 0.4 all the edges on simplices below
order 2 are removed, while those above order 7 are retained.
This further demonstrates that a high order structure contains
more semantic information, which is essential in achieving
the targeted goal. This suggests the semantic structure can be
minimized by removing most of the low order simplices.

The performance of taking into account CSI is demonstrated
in Fig. 8 under the impact of SNR. It can be observed



Fig. 6: Performance of semantic communication and inference under
different percentages of minimal structure

Fig. 7: Reduced simplicial complex size at each dimension

that training the SCAE with low SNR, the system achieves
significantly higher accuracy in communication at low SNR.
The performance drops when the SNR is lower than that
used in CSI for training. With training on SNR above 20
dB the accuracy is close to the baseline without CSI. This
emphasizes that joint semantic channel coding significantly
improves system reliability in poor channel conditions.

Fig. 8: Performance of training SCAE with channel state information

V. CONCLUSION

In this paper, we proposed a joint semantic communication
and inference framework between a teacher and a student
agents. We first characterized semantic information on high
order simplical complexes, and minimized its simplicial struc-
ture by Hodge Laplacians. We developed a masked SCAE
model to recursively predict query data from the semantic

structures. Furthermore, a joint semantic communication and
inference scheme is developed to best leverage the teacher and
student’s knowledge. To account for wireless communications,
channel information was used in training the SCAE to improve
performance in poor channel. Experiments in querying cita-
tions of a coauthorship data show that the proposed methods
largely reduce the simplical complex structure by up to 85%,
while improving query accuracy by 25% and 15% compared
to baselines considering local and remote based queries.

The proposed framework examines the potential of simpli-
cial complexes in studying semantic information and commu-
nication, leveraging minimally sufficient semantic structure to
generate query data with significantly reduced transmissions. It
can be extended to learning the simplicial complexes directly
from unstructured data in other modalities. Furthermore, the
generation of latent simplical complexes and message passing
between different orders is an important research direction.
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