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Abstract

The recent drastic increase in mobile data traffic has pushed the mobile edge computing

systems to the limit of their capacity. A promising solution is the task migration to remote

servers. Key factors to be considered in the design of offloading schemes must include the number

of tasks waiting in the system as well as their corresponding deadlines. An appropriate system cost

which is used as an objective function to be minimized comprises two parts. First, an offloading

cost which can be interpreted as the cost of using computational resources at the external server.

Second, a penalty cost due to potential task expiration. In order to minimize the expected (time

average) cost over a time horizon, we formulate a Dynamic Programming (DP) equation and

analyze it to describe properties of a candidate optimal offloading policy. The DP equation suffers

from the well-known “Curse of Dimensionality” that makes computations intractable, especially

when the state space is infinite. In order to reduce the computational burden, we identify three

important properties of the optimal policy. Based on these properties, we show that it suffices

to evaluate the DP equation on a finite subset of the state space only. We then show that the

optimal task offloading decision associated with a state can be inferred from the decision taken

at its “adjacent” states, further reducing the computational load. Finally, we provide numerical

results to evaluate the influence of different parameters on the system performance as well as

verify the theoretical results.

I. Introduction

Mobile-Edge Computing (MEC) and Mobile Cloud Computing (MCC) are important
paradigms in addressing the limited computational capability of mobile devices. In MEC, a
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remote server is placed physically near the device for computational tasks to be offloaded
to the MEC-server for remote computation. MEC is similar to MCC, however the server in
the latter case, is not necessarily physically close to the device. MEC is more appropriate if
the network latency or network congestion is a problem. In general, there are two scenarios
when MEC is most appropriate: when the application has real-time constraints or when the
user/wireless device has limited resources such as memory, storage, CPU, etc. Surveys on
MEC and MCC can be found in [1] and in [2], respectively.

A. Motivation and Related Works

Exploiting the advantage of offloading systems, computational services requested by users
can be either processed at local servers (e.g., MEC) or offloaded onto remote servers (e.g.,
MCC) that have more computational capability. This feature not only improves users’ quality
of experience by reducing the processing, latency and power consumption, but also allows
different types of applications and services to be deployed on devices with low computational
capability. Due to significant advances in practical applications, analyzing MEC and MCC
systems has been attracting a lot of attention in the research literature. For example, [3]
proposed an optimal task offloading algorithm by maximizing an appropriate utility function.
Such a function increases with users’ satisfaction characterized by tasks processed remotely,
and decreases with respect to the total amount of computation and energy consumption
overhead. In [4], the authors study the computational complexity of task offloading policies
in a MCC context where tasks have hard deadlines. In [5], they study the problem of
computational offloading in a MCC context with the goal of minimizing energy consumption
of the user device by taking into account its multi-core architecture.

In practical systems, the task offloading feature may suffer from uncertainty due to certain
factors such as network congestion and limited computational resources of remote servers.
Such factors may impose randomness in the availability of task migration. Systems that have
firm task deadlines require more attention when task migration is not always available. These
issues have not been adequately addressed in existing works which typically assume that task
offloading can always be controlled. In [6], the authors study the problem of offloading tasks
to a cloud computing infrastructure aiming at minimizing the energy consumption of the
offloading device and meeting the task deadlines. In [7], the authors consider computational
offloading in a real-time MEC setting in which tasks have hard deadlines. In [8], the authors
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study the problem of computational offloading in the context of a mixed MEC and MCC
system with the goal of minimizing the weighted cost of task processing delay and energy
consumption of the devices.

Furthermore, despite several offloading algorithms proposing improvements for the system
performance under different contexts, to the best of our knowledge, there is a lack of studies
for the the characterization of the optimal policy for task offloading to enhance the system
performance. In [9], [10], the authors consider the problem of a user offloading tasks to
multiple moving edge devices so as to maximize the utility of the task execution and minimize
the energy consumption. In the first paper, a Deep Reinforcement Learning based method
is used to solve the problem, while in the second paper, Q-learning is used.

B. Model Novelty and Main Contributions

What differentiates our model from previous studies is the combination of: (a) the ran-
domness in the connection between both the remote server and local device, (b) tasks that
have firm deadlines, and, (c) the formulation of the problem in the context of an optimal
stochastic control (DP) framework. As is well-known in DP formulations, computing the
solution of the DP equation may become computationally prohibitive (also known as the
“dimensionality curse” of DP). With this motivation, our contributions can be summarized
as follows.

• Our main contribution is the mathematical characterization of the structure of the
optimal policy. The findings are presented in Theorems 1 and 2. The properties we
prove in these theorems help reduce the computational burden associated with the DP
equation.

• Our second contribution is a further reduction in the computational effort for de-
termining the minimum expected (time average) cost. In Proposition 1 we derive a
mathematical property of this cost. This will enable us to compute it by applying the
computationally heavy DP equation to only a finite number of states (the so-called
lean states); the cost for an arbitrary state can then be calculated via a much simpler
algebraic computation.

The rest of this article is organized as follows. In the next section, we describe the system
model under consideration. In Section III, we formulate the DP equation to minimize the
expected (time average) cost. In Section IV, we introduce the notions of reduced and lean
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Fig. 1: System model.

state space and show how they are used to reduce the computational load for the calculation
of the optimal cost of our model. Next, we study properties of the optimal policy and the
minimum expected time-average (ETA) cost in Section V. The optimal policy is explicitly
presented in Section VI. Subsequently, we illustrate numerical results in Section VII. We
conclude our work with Section VIII. Finally, we provide proofs for all the theorems, lemmas,
and propositions in Appendices presented in Sections IX, X, and XI, respectively.

II. System Model

The system we consider is depicted in Fig. 1; it consists of a base station (BS) operating
in discrete-time over T time slots. Tasks sent by users in the area will be buffered at the
BS. We assume that the maximum deadline for any task is N , a fixed positive integer. The
deadline represents the number of time slots (including the current one) within which the
tasks need to be processed, otherwise they will expire and result in a penalty Cp per expired
task.

We define the system state vector at a given time slot t by

st =
(
n

(t)
1 , n

(t)
2 , . . . , n

(t)
N

)
, t ∈ {0, 1, . . . , T − 1} (1)

where n
(t)
i ∈ Z+ represents the number of tasks having deadline i = 1, 2, . . . , N , buffered

at the BS at time slot t. The state space for this system is ZN
+ , which is an N -dimensional

infinite state space. In this system, a number of different events takes place and triggers the
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system to transit to a different state in the next time slot. Those events can be listed in
order as follows.

1) Connection to a remote server: A task offloading service is provided by an external
server that is outside the communication distance of the BS. The server is accessible
by means of an autonomous mobile agent (AMA). The AMA randomly arrives in the
area and behaves as an intermediate node to connect the BS and the server. With the
AMA, the BS can offload tasks to the server at cost Co > 0 per task. Let pu be the
probability that the AMA arrives in each time slot. The remote server is assumed to
be capable of processing all tasks instantly without delay. In addition, we also assume
that the task transferring from the BS to the AMA, and then, to the remote server
incurs no delay.

2) The deadline shifting: The deadlines of all tasks are reduced by one when transition-
ing from a time slot to the next. The deadlines are strict: a penalty of Cp is incurred for
every task whose deadline has dropped to 0. In this model, we assume that Cp > Co.

3) The arrival of a new task: During our system operation, there will be new tasks sent
by users; we assume at most one new task can arrive per time slot. We use pi to denote
the probability that a new task will have deadline i; p0 denotes the probability of no
task arrival. Thus, the task arrival probability vector is given by p = (p0, p1, p2, . . . , pN) .

We will assume that task arrivals in different time slots are independent.
4) The local processing service: We assume that the BS has limited computational

capability. Therefore, the local processing service provided by the BS is assumed to be
available at random with probability µ in each time slot. When it is available, at most
one task can be processed per slot.

The sequence of the above events for our model is illustrated in Fig. 2. The randomness
in local processing and in the appearance of the AMA accounts for the uncertainty in the
task processing.

The system cost is described by the offloading and task expiration penalty costs. To be
more specific, assume that state st (as defined in Eq. (1)) is encountered at time slot t. By
Lt we denote the number of tasks that are offloaded when the system is in state st. Lt is
also called the offloading decision; determining its optimal value (to be defined shortly) is
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Fig. 2: Events taking place in a time slot.

the subject of this work. Lt can take values in the set

L (st) =
{

0, 1, 2, . . . ,
N∑

i=1
n

(t)
i

}
. (2)

In our model, all tasks share the same offloading cost Co, and result in the same penalty
Cp when expire. Trivially, it is optimal to locally process and offload tasks with the most
imminent deadlines first. In this work, when the AMA is available and L ≥ 1 tasks are
defined to be offloaded, we offload L tasks with the smallest deadlines. Whenever the local
processing is available, we process the task with the smallest deadline. The proof for this
optimality property is presented in Lemma 2.

Based on the strategy introduced above, given state st and the offloading decision Lt, we
define C (st, Lt), the expected instantaneous cost incurred at time slot t by:

C (st, Lt) = puCA (st, Lt) + (1− pu) CA (st) (3)

in which

CA (st, Lt) = CoLt + Cp max
(
n

(t)
1 − Lt, 0

)
(4)

is the instantaneous cost when the AMA arrives and Lt tasks are offloaded. Similarly,

CA = Cpn
(t)
1 (5)

is the cost when AMA is not available, thus, does not depend on the offloading decision Lt.
For a given time horizon T , an offloading policy π is a rule that determines the offloading

parameter Lt for every state st at t, i.e., Lt = π(st).

III. Dynamic Programming Formulation

Consider the expected time-average cost given by

1
T

T −1∑
t=0
E[C (st, Lt)]. (6)
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For the rest of this work, we will refer to the cost defined above as the average cost. We
wish to determine the optimal offloading policy that minimizes the above average cost for
a given time horizon.

Consider a state s, in which the decision is to offload L tasks. Suppose a new task arrives
with a deadline k. If local processing is available, the system will transit to a new state
s′

Lk; if not, the new state will be s′′
Lk. These state definitions facilitate the analysis of the

Dynamic Programming equation that will follow. They are formally defined in Eqs. (13) in
this section. We need to introduce some additional, detailed notation to that effect.

Before doing this, we provide an example, let s = (0, 1, 2, 0, 1), the next event according
to Fig. 2 is offloading, the AMA is available and L = 2 tasks with the most imminent
deadlines are to be offloaded, therefore the intermediate state is (0, 0, 1, 0, 1). The next
event is deadline shifting to account for the new deadlines of the tasks in the next time slot,
resulting in (0, 1, 0, 1, 0). Following Fig. 2, we assume a new task with deadline 3 arrives,
resulting in the intermediate state (0, 1, 1, 1, 0). The next event is local processing, which
processes the most imminent task, resulting in system state s′

23 = (0, 0, 1, 1, 0).

Vector o (s, L) = (o1, . . . , oN) represents the task offloading. Let d′ be the deadline of the
most imminent task after L tasks have been offloaded from s. If L < n1, d′ = 1. Otherwise,
d′ satisfies the inequalities

L ≤
d′∑

j=1
nj and L >

d′−1∑
j=1

nj. (7)

Then, o (s, L) is defined as follows.

• If d′ = 1:

oi =


L, if i = 1,

0, if i ≥ 2.
(8)

• If d′ satisfies inequalities (7):

oi =



ni, if i ≤ d′ − 1,

L−∑d′−1
j=1 nj, if i = d′,

0, if i ≥ d′ + 1.

(9)
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Let ak = (a1, . . . , aN) represent the task arrival vector defined as:

ai =


1 , if i = k,

0 , if i ̸= k.
(10)

Then, the intermediate state of the system after L most imminent tasks have been offloaded
from s, the deadline shifting has been performed, and the task arrival event has been realized,
can be defined as follows:

sinte = fds (s− o (s, L)) + ak (11)

where the function fds (·) performs deadline shifting on the given vector. If s = (n1, . . . , nN),
fds (s) is an N -dimensional vector (n2, . . . , nN , 0) in which the component n1 is removed,
representing task expiration.

Let l = (l1, . . . , lN) represent the local processing vector. If sinte ̸= (0, . . . , 0), we assume
d is the deadline of the most imminent task in sinte, then elements of l is given by:

li =


1, if i = d,

0, if i ̸= d.
(12)

Otherwise, l = (0, . . . , 0).

Then the system state transition is defined as:

s′
Lk = sinte − l, and s′′

Lk = sinte. (13)

To this end, let JT (s) denotes the minimum average cost over T time slots for a given
initial state s. We have the following Dynamic Programming Equation.

JT (s) = min
L∈L(s)

{C (s, L) + GT −1 (s, L)} , (14)

with

GT (s, L) =


puGA

T (s, L) + (1− pu) GA
T (s) , T ≥ 1,

0, T = 0.
(15)

where

GA
T (s, L) = µ

N∑
k=0

pkJT (s′
Lk) + (1− µ)

N∑
k=0

pkJT (s′′
Lk) (16)
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is the average future cost given that the AMA arrives at the current time slot and L tasks
are offloaded, and

GA
T (s) = µ

N∑
k=0

pkJT (s′
0k) + (1− µ)

N∑
k=0

pkJT (s′
0k) (17)

is that without the AMA, and hence, does not depend on L.
Eq. (14) is equivalent to

JT +1 (s) = puJA
T +1 (s) + (1− pu) JA

T +1 (s) (18)

in which

JA
T +1 (s) = min

L∈L(s)

{
CA (s, L) + GA

T (s, L)
}

(19)

and

JA
T +1 (s) = CA (s) + GA

T (s) . (20)

To facilitate our analysis in the subsequent sections, we define the minimum average cost
attained by offloading exactly L most imminent tasks from an initial state s given the AMA’s
presence by

JA
T (s, L) = CA (s, L) + GA

T (s, L) . (21)

We denote s̄dL the state obtained by offloading, from s, L most imminent tasks having
deadline greater than or equal to d. The following example is to provide more intuition
about this notation.

Example 1: Given state s = (0, 5, 6, 7, 8), the state s̄37 is obtained by offloading 7 most
imminent tasks starting from deadline 3, thus, s̄37 = (0, 5, 0, 6, 8). Now, if we offload 7 most
imminent tasks starting from deadline 5, the resulted state would be s̄57 = (0, 5, 6, 7, 1).

We have mentioned in the previous section that whenever offloading is possible, and L

tasks need to be offloaded from a given state s, it is optimal to offload L most imminent
tasks. This offloading behaviour results in state s̄1L which is always associated with d = 1.
However, the properties we studied in Subsection V-B are associated with a general context
where tasks can be offloaded starting from an arbitrary deadline d. Therefore, for consistency,
we introduce a general notation s̄dL where d is used in the subscript instead of 1.

For the rest of this article, the terms offloading states and non-offloading states will be
used. Therefore, they are specified in the following definition.
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Definition 1: For a given state s and a time horizon T , s is called an offloading state if the
associated optimal offloading decision is a positive integer. State s is called a non-offloading
state if the associated optimal offloading decision is 0.

IV. Computational Load Reduction

A. Reduced State Space

For a given N -dimensional state vector s, since there are at most N −1 tasks that can be
processed in N time slots. This is because the deadline shifting happens at the beginning of
every time slot as presented in Fig 2. Therefore, tasks having deadline 1 cannot be processed.
This means that there might be certain tasks that are guaranteed to expire if not offloaded
within the next N time slots; we will call such tasks excessive tasks. We define the reduced
states as the ones having no excessive tasks.

In the remainder of this sub-section we will provide a characterization and properties of
reduced states. For such a state s = (n1, . . . , nN) and from Fig. 2, all tasks having deadline
1 will expire if not offloaded, hence, we must have n1 = 0. Next, at most one task can be
processed in the next slot, therefore, we must have n1 + n2 ≤ 1. Subsequently, at most two
tasks can be processed in the next two time slots, leading to n1 + n2 + n3 ≤ 2, otherwise
at least one task will expire after two slots, and so on. Finally, at most N − 1 tasks can be
processed in N time slots including the current one, so we must have ∑N

i=1 ni ≤ N − 1. The
definition for a reduced states follows.

Definition 2: A state sr = (nr
1, . . . , nr

N) is a reduced state if and only if the following
inequalities hold:

m∑
i=1

nr
i ≤ m− 1, m = 1, 2, . . . , N. (22)

As elements of a reduced state vector is bounded, the number of reduced vectors is finite.
Moreover, the next lemma states that the number of reduced state vectors is equal to the
Catalan number [11].

Lemma 1: The number of reduced states having dimension N is finite and equals to the
Catalan number CN =

(
2N
N

)
/(N + 1).

Proof : Please see Appendix X-A.
Abusing the notation slightly, for the sake of simplicity, we can associate a corresponding

reduced state sr = (nr
1, . . . , nr

N) for any given state s = (n1, . . . , nN), in the infinite state
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space, using Algorithm IV.1. For s = (n1, . . . , nN), it can be seen from Eq. (14) and Eqs. (3)-
(5) that ni, i ≥ 2 do not contribute to the cost J1 (s). Similarly, ni, i ≥ 3 do not contribute
to the cost J2 (s). Observe, therefore that in general, tasks having deadline greater than the
considered time horizon will not contribute to the cost in Eq. (14). Therefore, these tasks
will not be considered, which is reflected by line 4 of this algorithm.

Algorithm IV.1 Derivation of Reduced States
1: Input: s = (n1, n2, . . . , nN), N , T .
2: Output: sr, Lg.
3: Initialize: tidle ← 0, Lg ← 0, s̃← (ñ1, . . . , ñN) where ñi ← ni, i ≤ T , and ñi ← 0, i > T .
4: ni ← 0, for i > min (N, T ) .

5: for i = 1, 2, . . . , N do

6: for j = 1, 2, . . . , min (N, T ) do

7: a← ∑j
d=1 ñd −max (ni − i + tidle + 1, 0).

8: if a ≥ 0 then

9: if j ≥ 2 then

10: ñd ← 0, d = 1, . . . , j − 1.

11: ñj ← ñj − a.

12: Lg ← Lg + max (ni − i + tidle + 1, 0).
13: tidle ←

∑i
d=1 ñd.

14: sr ← Offloading Lg most imminent tasks from s.
15: return sr, Lg.

Determining the reduced states is the first step in reducing the computational burden of
the DP equation (14). The next step is the determination of a new concept know as the
lean states, which also constitute a finite set and are directly used to compute the optimal
cost JT (s) according to the forthcoming Proposition 1.

B. Lean State Space

The definition of lean states is given as below:
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Definition 3: For a given state s = (n1, . . . , nN), we call sr = (nr
1, . . . , nr

N) a reduced state
obtained from s following Algorithm IV.1. We define the parameters γj, j = 1, . . . , N as
follows:

γj =


0 , if j = 1 or j > min (N, T ) ,

min
{
nj, j − 1−∑j−1

i=1 γi

}
, otherwise.

(23)

Then, the lean state sm = (nm
1 , . . . , nm

N) corresponding to s is given by

nm
i = max{γi, nr

i}, i = 1, 2, . . . , N. (24)

The relation in the minimum average cost of a given state s and that of its corresponding
lean state is presented in Proposition 1.

Proposition 1: Given state s = (n1, . . . , nN) and its lean state sm = (nm
1 , . . . , nm

N). Let Pt be
the probability that the AMA is available for the first time at time slot t. Then, the following
equality holds.

JT (s) = JT (sm) + Cg2m (25)

where

Cg2m = Co

N∑
i=1

(ni − nm
i )

i−1∑
j=0

Pt=j + Cp

N−1∑
i=1

Pt=i

i∑
j=1

(
nj − nm

j

)
+ CpPt≥N

N∑
j=1

(
nj − nm

j

)
with the probabilities Pt=j and Pt≥N are computed by

Pt=j = pu (1− pu)j ,

Pt≥N = (1− pu)N .

Proof : Please see Appendix XI-A.
As the lean state space is finite, if JT (sm) is computed for all lean states via the DP

equation (14), JT (s) can be computed for every s via the simple algebraic manipulation of
equation (25).

V. Properties of Optimal Policy and Cost Function

A. Optimality of the Most-Imminent Offloading Method

The first property of an optimal offloading policy is offloading the most imminent tasks
first. This property will be proved based on another property presented in the next propo-
sition.
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Proposition 2: Given state s = (n1, n2, . . . , nN) ̸≡ (0, . . . , 0). Assuming that d is the dead-
line of the most imminent task of s, we define the set Spp (s) as follows. If s̃ = (ñ1, . . . , ñN) ∈
Spp (s), state s̃ satisfies the following conditions:

• If N = 1: s̃ ≡ s.

• If N ≥ 2: either s̃ ≡ s, or s̃ is defined by

ñi =



nd − 1, if i = d,

nj + 1, if i = d̃ for a deadline d̃ ∈ {d + 1, . . . , N} ,

ni, otherwise.

(26)

Then, the following inequality holds:

JT (s) ≥ JT (s̃) , for all T, s, s̃ ∈ Spp (s) . (27)

Proof : Please see Appendix XI-B.

As a result of Proposition 2, the first property of the optimal policy can be proved, and
formally presented in Lemma 2.

Lemma 2: When processing is possible, it is optimal to process the most imminent task.
When it is optimal to offload L tasks, the L most imminent tasks should be offloaded.

Proof : Please see Appendix X-B.

B. Convexity of the Minimum average cost with respect to the Offloading Decision

For a given time horizon T , and an initial state s = (n1, . . . , nN), we define the following
function

F A (T, s, d, L) = JA
T (s̄dL) + LCo, (28)

in which we recall that s̄dL is the state obtained by offloading, from s, L most imminent
tasks having deadline greater than or equal to d. Function F A (T, s, d, L) is characterized
by parameters T, s, and d. This function takes L as variable. We define the domains of
F A (T, s, d, L) as follows.

L1 (s) =
{

n1, . . . ,
N∑

i=1
ni

}
, (29)

Ld (s) =
{

0, 1, . . . ,
N∑

i=d

nd

}
, for d = 2, . . . , N. (30)
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Ld (s) can be interpreted as the set of valid offloading decisions associated with state s

and deadline d. In the definition of L1 (s), because all tasks having deadline 1 are excessive
tasks and must be offloaded, the optimal offloading decision must be conveyed in the set{
n1, . . . ,

∑N
i=1 ni

}
. Hence, L < n1 can be removed from the domains of F A (T, s, d, L) when

d = 1.

Example 2: As an example, let us consider a 3-dimensional state vector s = (2, 3, 4). In
this example, we have

L1 (s) = {2, 3, . . . , 9} , (31)

L2 (s) = {0, 1, . . . , 7} , (32)

L3 (s) = {0, 1, . . . , 4} . (33)

We have the following convexity property stated in the next lemma.

Lemma 3: For every given time horizon T , an initial state s, and a deadline d, the function
F A (T, s, d, L) as defined in Eq. (28) is a discrete convex function with respect to L ∈ Ld (s)
where Ld (s) is defined in Eqs. (29) and (30).

Proof : Please see Appendix X-C.

The next lemma states the relation between function F A (T, s, d, L) and the optimal
offloading decision associated with state s and a time horizon T .

Lemma 4: Assuming that the function F A (T, s, d, L) attains its minimum at L∗ for d = 1,
then, L∗ is the optimal offloading decision of s for a time horizon T .

Proof : Please see Appendix X-D.

Other important properties of the optimal offloading decisions will be presented in the
next subsection based on the concept of adjacent states.

C. Adjacent States

The goal of this subsection is introducing the concept of adjacency among states, and
related properties. These properties facilitate the design of the optimal policy presented
later on. The definition of adjacent states is given below.

Definition 4: Consider a state s = (n1, . . . , nN) ̸= (0, . . . , 0), with d as the smallest deadline
such that nd > 0. Then, state sa = (na

1, . . . , na
N) is an adjacent state to s if there exists a
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deadline j ∈ {1, . . . , d} such that:

na
i =


ni + 1, if i = j,

ni, if i ̸= j.
(34)

If a state sa has only one task with arbitrary deadline, it is adjacent to state (0, . . . , 0).

Let us consider the following two examples.

Example 3: In the first example, we assume that a state s = (0, 0, 1, 4, 4) is given in which
the deadline of the most imminent task in s is 3. Therefore, an adjacent state sa of s can
be obtained by adding a task with deadline less than or equal to 3, e.g., sa = (0, 1, 1, 4, 4).

In the second example, assuming that sa = (0, 2, 1, 3, 3). A state s for which sa is adjacent,
can be obtained by offloading the most imminent task in sa, i.e., s = (0, 1, 1, 3, 3).

We denote by Sadj (s) the set of all adjacent states of s. For a given time horizon, the
optimal offloading decision of s can be inferred from that of sa ∈ Sadj (s) and vice versa, as
described in Theorem 1.

Theorem 1: Given two states s, sa ∈ Sadj (s), and a time horizon T . We call L∗ and L∗
a

the optimal offloading decision of s and sa, respectively, for the time horizon T . We have the
following relations:

1) If L∗
a ≥ 1, L∗ = L∗

a − 1.

2) If L∗
a = 0, L∗ = 0.

3) If L∗ ≥ 1, L∗
a = L∗ + 1.

Proof : Please see Appendix IX-A.

D. Offloading and Non-Offloading Conditions

We have defined the notion of offloading and non-offloading states in Defnition 1. In this
subsection, we mathematically identify the conditions for a state to be an offloading and
non-offloading state for a given time horizon. This is formally stated in Proposition 3.

Proposition 3: Assuming that two states s, sa ∈ Sadj (s), and a time horizon T is given. sa

is a non-offloading state if and only if the following inequality holds

JT (sa)− JT (s) < Co. (35)

Otherwise, sa is an offloading state.

Proof : Please see Appendix XI-C.
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Assume we are given a state s and a time horizon T with L∗ as the optimal offloading
decision. We recall that s̄1L is the state that resulted by removing the first L most imminent
tasks from s. Then, the next property of the optimal offloading policy is stated as follows.

Theorem 2: The optimal offloading decision is the smallest offloading decision L such that
s̄L is a non-offloading state.

Proof : Please see Appendix IX-B.

VI. Optimal Offloading Policy

A. Optimal Policy Description

Given an initial state s and a time horizon T , whenever local processing is available to
process a task, the most imminent task will be processed. When a AMA is present, the
optimal policy consists of two steps.

Step 1. Tasks are offloaded from s following Algorithm IV.1 to reach a reduced state sr.
Moreover the value of Lg, the number of offloaded tasks is determined.

Step 2. In this step, the DP equation is solved recursively and

Lr = arg min
L∈L(sr)

{C (sr, L) + GT −1 (sr, L)}

tasks are offloaded from sr. Note that as described in equation (25), the recursion involves
evaluation of only a finite number states in each one of the terms JT −1 (·) , JT −2 (·) etc. for
any state s. The optimal number of tasks that are offloaded from s is L∗ = Lg + Lr.

The computational load required to solve the recursive DP equation (14) can be further
reduced by the following strategy. Every time the optimal decision Lr associated with a
reduced state sr is computed for a given T , the triplet (sr, L∗, T ) is saved. This can be
done for all the reduced states, as the number of reduced states is finite. Then, for every sr

obtained from Step 1 for a given T , the corresponding L∗ can be retrieved instantly.

By exploiting the properties presented in Theorem 1, the computational burden can be
further reduced as follows. Let us consider a sequence of adjacent states: s1, . . . , si, . . . in
which si+1 ∈ Sadj (si). Assume the optimal decision of state si, i ≥ 1 is known, and denoted
by L∗

i . From Theorem 1, the optimal decisions L∗
i−u of states si−u, u = 1, . . . , i − 1, can be

inferred as follows

L∗
i−u = max (L∗

i − u, 0) , u = 1, . . . , i− 1. (36)
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T pu Cp Co µ p0 N pi ∀i : 1 ≤ i ≤ N

1, 000 0.7 3 1 0.7 0.5 3 1/6

TABLE I: System Parameters for Section VII-A

In the case when L∗
i ≥ 1 for state si, the optimal decision for states si+v, v = 1, 2, . . . are

computed by

L∗
i+v = L∗

i + v, v = 1, 2 . . . (37)

In general, the optimal offloading decisions of all the states si+v and si−u mentioned above
can be obtained without relying on the DP equation (14).

In the next section, we provide numerical results to verify the results presented in this
paper thus far.

VII. Numerical Results

In this section, we present numerical examples that help visualize some of the properties
and equations as well as show the memory savings of the numerical computations of the
DP equation (14) with the aid of Eq. (25) described in Sec. IV-B. Some of the examples
utilize different sets of parameters to illustrate the performance of the system under different
parameter configurations.

A. Optimal Offloading Decision Visualization

In this example, we illustrate the idea presented in Theorem 2 visually for a system with
the dimension of state vector to be N = 3, i.e. s = (n1, n2, n3). We represent states as
coordinates in a 3-D state space. Then, for n3 = 0, 1, 2, 3, we consider the 2-D slices of
this space and depict them as Figs. 3a-3c correspondingly. We use the system parameters
described in Table I. The cases when n3 ≥ 3 would result in similar figures as Fig. 3c except
that the optimal offloading decision for each offloading state would increase by n3 − 2. In
these figures, red dots represent offloading states, and black dots represent non-offloading
states. From states with component n2 ≥ 1 in Fig. 3a, such as (0, 2, 0), (1, 2, 0), (1, 1, 0),
(2, 1, 0), etc., we can reach the non-offloading state (0, 1, 0) with a smaller number of offloaded
tasks than state (0, 0, 0). A similar argument applies for states with component n2 = 0, like
(1, 0, 0), (2, 0, 0), etc., whose “nearest” non-offloading state is (0, 0, 0).
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pu Cp Co µ p0 pi ∀i : 1 ≤ i ≤ N

0.5 3 1 0.5 0.5 0.1

TABLE II: System Parameters for Fig. 4a

pu Cp Co µ p0 pi ∀i : 1 ≤ i ≤ N

0.4 4 1 0.3 0.3 0.14

TABLE III: System Parameters for Fig. 4b

In Fig. 3b, only the state (0, 0, 1) is non-offloading. The optimal offloading decisions of all
the offloading states shown are the smallest number of most imminent tasks to be offloaded to
reach state (0, 0, 1). Fig. 3c does not have any non-offloading state. For example, the optimal
offloading decision for the state (0, 0, 3) is 1 to reach the non-offloading state (0, 0, 2) which
is shown in Fig. 3b.

B. Optimal Offloading Decisions for Adjacent States

In Fig. 4a-4c we visualize the results of equations (36), (37) and Theorem 1. The figures
show the optimal offloading decisions marked with a star symbol in adjacent states. For these
examples, all figures have a state size N = 5 over a time horizon T = 1, 000. Fig. 4a, 4b
and 4c use the parameters listed in Tables II, III and IV, respectively. On the vertical axis,
we graph the minimum cost CA (si, L) + GA

T (si, L) attained by offloading L most imminent
tasks from state si given that the AMA is available. This is introduced in Eq. (21).

In these three figures, for i = 1, 2, 3, 4, we consider the states s1 = (0, 0, 0, 0, 1), s2 =
(0, 0, 0, 0, 2), s3 = (0, 0, 1, 0, 2), and s4 = (0, 1, 1, 0, 2). These states are chosen such that si

is adjacent to si+1, i = 1, 2, 3. The presented results indicate that the optimal offloading
decision of a state differs from that of its adjacent state by 1, or both are capped at 0, as
Eqs. (36)-(37) and Theorem 1 suggest. For example, in Fig. 4a, the optimal decision of s4 is
2, and that of s3 is 1, hence, the difference is 1. The same observation applies for the pair s3

and s2. The optimal decision of s2 is 0, therefore, that of s1 is also 0. Figs 4b and 4c present
the same properties.
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Fig. 3: Offloading states for varying n3 values
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(c) Adjacent states using parameters in Table IV

Fig. 4: Visual interpretation of Eqs. (36)-(37) and Theorem 1.
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pu Cp Co µ p0 pi ∀i : 1 ≤ i ≤ N

0.7 2 1 0.6 0.6 0.08

TABLE IV: System Parameters for Fig. 4c

C. Memory Savings Using Equation (25)

In order to numerically compute the DP equation (14), we store the computed value of
JT (s) in memory for a given arbitrary state s and time horizon T . By using Eq. (25), the
size of memory required is reduced. This is because saving JT (·) values is only required for
lean states sm where the number of lean states is smaller than that of “generic” states. Note
that these savings are achieved at the expense of calculating the term Cg2m in Eq. (25).

In Fig. 5a, 5b, and Fig. 5c, we show the resulting difference in the number of JT (·) values
saved for 2 cases when N = 5, N = 4 and N = 3, respectively. Note that different parameters
other than the system parameters N and T will not affect the memory savings. In the first
case, Eq. (14) is used, while in the second case, Eq. (14) is used with the aid of Eq. (25).
The line in blue represents the values saved using only Eq. (14), while the line in red utilizes
both Eqs. (14) and (25).

VIII. Conclusion

In this work, we studied a mobile edge computing system with dynamic user demand. In
the context of an optimal stochastic control framework for serving user tasks, we considered
the following features: tasks with firm deadlines, their random offloading to a remote server
(AMA) or their processing by a local server (BS) with intermittent service. We considered
an expected time-average cost over a finite time horizon and formulated a Dynamic Pro-
gramming problem towards the minimization of this cost. In order to tackle the “Curse of
Dimensionality”, we studied important characteristics of the optimal policy and reduced the
computational load for its calculation. In particular, we proved that the DP equation can
be evaluated for every given state (in the infinite state space of our model) by considering a
specific finite space called lean state space. Further reduction in the computational load was
achieved by using the concept of “adjacent states”. This allowed us to evaluate the optimal
cost for all such states from knowledge of the cost in only one state. Finally, based on these
properties, we described an optimal task offloading policy.
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Fig. 5: Memory Savings using Eq. (25)
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IX. Appendix A: Proofs of Theorems

For a given initial state s, and a time horizon T , we recall that s̄1L is the state obtained
by offloading L most imminent tasks from state s. Combining this definition with that of
JA

T (s, L) in Eq. (21), we have the following relation

JA
T (s, L) = JA

T (s̄1L, 0) + LCo, for L ∈ L (s) (38)

which can be explained as follows. We note that by offloading L most imminent tasks from s,
we pay a cost LCo, and arrive at state s̄1L. Therefore, if we wish to describe the offloading of
L tasks on the left hand side of Eq. (38), this is equivalent to removing the L most imminent
tasks from state s to reach state s̄1L, and offloading 0 task from s̄1L. Finally, we further add
the offloading cost LCo to the overall cost. The right hand side of Eq. (38) describes this
idea.

Since the minimum average cost when offloading no task is the same regardless of the
presence of the AMA’s availability, i.e.,

JA
T (s̄1L, 0) = JA

T (s̄1L) , for L ∈ L (s) , (39)

we have

JA
T (s, L) = JA

T (s̄1L) + LCo, for L ∈ L (s) . (40)

Furthermore, considering two offloading decisions L1 and L2 where L1 +L2, L1, L2 ∈ L (s),
we note that offloading L1 +L2 tasks from the original state s would result in the same state
that is obtained by offloading L2 tasks from s̄1L1 . An example for this point is as follows:

Example 4: Assume s = (0, 1, 2, 2, 3) , L1 = 2, L2 = 3, then, the resulting states by
offloading L1 + L2 = 5 and L1 = 2 tasks from s, respectively, are

s̄1(L1+L2) = (0, 0, 0, 0, 3) , (41)

s̄1L1 = (0, 0, 1, 2, 3) . (42)

Now, offloading L2 = 3 tasks from s̄1L1 would give us the same state as in Eq. (41).

From Eq. (40), we have

JA
T (s, L1 + L2) = JA

T

(
s̄1(L1+L2)

)
+ (L1 + L2) Co, (43)

JA
T (s̄1L1 , L2) = JA

T

(
s̄1(L1+L2)

)
+ L2Co. (44)
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The above two expressions result in the following one:

JA
T (s, L1 + L2) = JA

T (s̄1L1 , L2) + L1Co. (45)

A. Proof of Theorem 1

From Lemma 3, we have that function F A (T, s, d, L) is discrete convex with respect to
L for every given T , d, and s = (n1, . . . , nN). Let us consider the case when d = 1, and we
call L∗ ∈ L1 (s) the value at which F A (T, s, 1, L) attains its minimum. From Lemma 4, L∗

is also the optimal offloading decision for s. Hence,

JA
T (s, L) ≥ JA

T (s, L∗) , for all L ∈ L1 (s) , (46)

Let us consider the following cases:

• If L∗ ≥ 1 which means that s ̸≡ (0, . . . , 0), the set of inequalities (46) can be re-written
as

JA
T (s, 1 + L− 1) ≥ JA

T (s, 1 + L∗ − 1) , for all L ∈ L1 (s) \ {0} . (47)

Applying Eq. (45) with L1 = 1, L2 = L − 1 to the left-hand side of Ineqs. (47), and
with L2 = L∗ − 1 to the right-hand side of Ineqs. (47), we have

JA
T (s̄11, L− 1) ≥ JA

T (s̄11, L∗ − 1) , for all L, L∗ ∈ L1 (s) \ {0} , (48)

in which we recall that s̄11 is obtained by offloading the most imminent task from s,
thus, s ∈ Sadj (s̄11).
Since L, L∗ ∈ L1 (s) \ {0}, we have L − 1, L∗ − 1 ∈ L1 (s̄11) 1. Therefore, Ineqs. (48)
suggests that L∗−1 is the optimal offloading decision for s̄11. This proves the first point
of Theorem 1.

• If L∗ = 0, i.e., s is a non-offloading state. Then, if s has only one task, we have
s̄11 ≡ (0, . . . , 0). Therefore, s̄11 is a non-offloading state trivially.
If s has at least 2 tasks. From the convexity of the function F A (T, s, d, L) = JA

T (s̄dL) +
LCo, and the condition that L∗ = 0, we have

JA
T (s) ≤ JA

T (s̄11) + Co, for all L ∈ L1 (s) \ {0, 1} ,

JA
T (s̄11) + Co ≤ JA

T (s̄1L) + LCo, for all L ∈ L1 (s) \ {0, 1} .
(49)

1Note: The set L1 (s) is the same as L1(s̄11) except that L1 (s) contains an element which is the total number of

tasks in s, while L1(s̄11) does not contain that element.
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where the two inequalities in Ineq. (49) are from the optimality of L∗, and the convexity
of cost functions proven in Subsec. X-C, respectively.
Applying Eq. (39) to the second inequality of Ineqs. (49), we have

JA
T (s̄11, 0) + Co ≤ JA

T (s̄1L, 0) + LCo, for all L ∈ L1 (s) \ {0, 1} . (50)

Using Eq. (45) with L1 = 1 and L2 = L− 1 gives us

JA
T (s, L) = JA

T (s̄11, L− 1) + Co. (51)

Also, using Eq. (45) with L1 = L and L2 = 0 yields

JA
T (s, L) = JA

T (s̄1L, 0) + LCo. (52)

From Eqs. (51) and (52), we have

JA
T (s̄11, L− 1) + Co = JA

T (s̄1L, 0) + LCo. (53)

Combining Eq. (53) with Ineqs. (50) gives the following set of inequalities:

JA
T (s̄11, 0) ≤ JA

T (s̄11, L− 1) , for all L ∈ L1 (s) \ {0, 1} . (54)

By replacing L− 1 with L̃ in the above inequalities, we have

JA
T (s̄11, 0) ≤ JA

T

(
s̄11, L̃

)
, for all L̃ ∈ L1 (s̄11) \ {0} , (55)

indicating that s̄11 is a non-offloading state. This proves the second point of Theorem
1.

Finally, from the first two points of Theorem 1, we can conclude that, for given time
horizon T , if L∗ ≥ 1 is the optimal offloading decision for state s, L∗

a = L∗ + 1 is optimal
for every state sa ∈ Sadj (s). This is because if L∗

a ̸= L∗ + 1 and L∗
a ≥ 1, from the first point

of Theorem 1, the optimal decision for s must be L∗
a − 1 ̸= L∗ which is a contradiction.

Moreover, if L∗
a = 0, from the second point of Theorem 1, s must be a non-offloading state,

leading to another contradiction. This proves the third point of Theorem 1.

B. Proof of Theorem 2

We recall that given an current state s, s̄1L denotes the resulting state by offloading L

most imminent task from s. If L∗ = 0 is the optimal offloading decision of state s, then, s is
a non-offloading state. It is trivially that L∗ = 0 is the smallest offloading decision to reach
a non-offloading state.
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Let us consider the sequence of states s̄10 = s, s̄11, s̄12, . . . , s̄1i, . . .. By definition of the
notation s̄1i, state s̄1(i+1) is obtained by offloading the most imminent task from state s̄1i

in the sequence. Therefore, state s̄1i is adjacent to s̄1(i+1). Assume L∗ > 0 is the optimal
offloading decision for s. From the first point of Theorem 1, the optimal offloading decision
of state s̄11 would be L∗

1 = L∗ − 1. By alternatively applying this property, the optimal
offloading decisions L∗

i of states s̄1i for i = 1, . . . , L∗ can be derived as

L∗
i = L∗ − i, for i = 1, . . . , L∗. (56)

The above result suggests that the optimal offloading decision of the state s̄1L∗ would be
L∗

i = 0 for i = L∗. From the second point of Theorem 1, the optimal offloading decision of
s̄1(L∗+1) would also be 0. Repeatedly applying this property allows us to derive the optimal
decisions for state s̄1i, i > L∗ as follows:

L∗
i = 0, for i > L∗. (57)

In conclusion, states s̄1i for i ≤ L∗ − 1 are offloading states, and states s̄1i for i ≥ L∗

are non-offloading states. Therefore, L∗ > 0 is the smallest offloading decision to reach a
non-offloading state s̄1L∗ .

X. Appendix B: Proofs of Lemmas

A. Proof of Lemma 1

A sequence (a1, a2, . . . , aN) of non-negative integers is called Catalan if

1 ≤ a1 ≤ a2 ≤ · · · ≤ aN and ai ≤ i, for all 1 ≤ i ≤ N . (58)

In the proof we show that there is a one-to-one correspondence betweeb reduced sequences
and Catalan sequences of the same length N . The correspondence is defined as follows.

Given a reduced sequence (n1, n2, . . . , nN), which satisfies inequalities (22), define a se-
quence (a1, a2, . . . , aN) as follows

ai = (n1 + 1) + n2 + · · ·+ ni.

It is clear that the resulting sequence satisfies the Catalan sequence property (58).
Conversely, given a Catalan sequence (a1, a2, . . . , aN), which satisfies property (58), define

the sequence (n1, n2, . . . , nN) as follows

ni =

 0 if i = 1
ai − ai−1 if 2 ≤ i ≤ N
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The resulting sequence contains elements of a reduced state vector because

n1 + n2 + n3 + · · ·+ ni = 0 + a2 − a1 + a3 − a2 + · · ·+ ai − ai−1

= ai − a1

≤ i− 1,

since a1 = 1. Also observe that the resulting correspondence between reduced and Catalan
sequences of the same length N is one-to-one.

The proof of this lemma is now complete since in exercise 78 from [11], the number of
Catalan sequences of length N is equal to the Catalan number CN .

B. Proof of Lemma 2

We assume that an offloading state s = (n1, . . . , nN) is given with d is the deadline of
the most imminent task. It is trivially that when s = (0, . . . , 0), the optimal decision is
offloading 0 task. When N ≥ 2, in the following two cases, the optimal decision is offloading
the most imminent task:

• d ≤ N − 1, and ni = 0 for i = d + 1, . . . , N .
• d = N .

Examples for these cases are given below:

Example 5: In the following two examples, it is trivially that the optimal policy offloads
the most imminent tasks:

• s = (0, 0, 4, 0, 0) where N = 5, d = 3, and ni = 0, i = 4, 5.

• s = (0, 0, 0, 0, 7) where d = N = 5.

Now, we will consider the remaining case which is: N ≥ 2, and d ≤ N−1, and there exists
a deadline d′ ∈ {d + 1, . . . , N} such that nd′ > 0. This indicates that ni = 0, i = 1, . . . , d−1,
nd ≥ 1, and nd′ ≥ 1. Let us recall the following notation:

• s̄d1 is the state obtained by offloading a task at deadline d from state s.
• s̄d′1 is the state obtained by offloading a task at deadline d′ from state s.

We notice that the ith elements of state s̄d1 is defined by
nd − 1, if i = d,

ni, if i ̸= d.
(59)
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The ith elements of state s̄d′1 is defined by
nd′ − 1, if i = d′,

ni, if i ̸= d′.
(60)

Therefore, we have: s̄d1 ∈ Spp (s̄d′1). From Proposition 2, we have

JT (s̄d1) ≤ JT (s̄d′1) , for every given time horizon T. (61)

This indicates that state s̄d1 is associated with a lower average cost than that of state s̄d′1

for every deadline d′ ∈ {d + 1, . . . , N}. Therefore, if s is an offloading state, it is optimal
to offload the most imminent task from s. Moreover, from the above proof, we can also
conclude that whenever the local processing is available, it is optimal to process the most
imminent task in s.

To this end, by considering state s̄d1 in the place of state s and repeating the proof above,
we have that: If s̄d1 is an offloading state, it is optimal to offload the most imminent task
from s̄d1. Therefore, we can conclude that: If s is an offloading state and the corresponding
optimal offloading decision is 2, it is optimal to offload 2 most imminent tasks from s.
Keeping repeating the same analysis leads us to the final conclusion as follows: If s is an
offloading state, and the corresponding optimal offloading decision is L∗, it is optimal to
offload the L∗ most imminent tasks from s.

C. Proof of Lemma 3

From the definition of function F A (T, s, d, L) in Eq. (28), we notice that LCo is discrete
linear, and hence, discrete convex with respect to L. Therefore, in order to prove that
F A (T, s, d, L) is discrete convex with respect to L, we need to prove that

fA (T, s, d, L) = JA
T (s̄dL) (62)

is discrete convex with respect to L. To begin with, let us define two other functions as
follows:

f (T, s, d, L) = JT (s̄dL) , (63)

fA (T, s, d, L) = JA
T (s̄dL) . (64)
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The three functions f (T, s, d, L), fA (T, s, d, L), and fA (T, s, d, L) are characterized by the
parameters T , s, and d. All of them take L as variable. The domains of these three functions
are the same as that of F A (T, s, d, L) which are given in Eqs. (29) and (30).

The definitions of JA
T (·) and JA

T (·) are given in Eqs. (19) and (20). In this subsection, we
re-express JA

T (s̄dL) and JA
T (s̄dL) as follows:

JA
T (s̄dL) = min

L′∈L(s̄dL)

{
CA (s̄dL, L′) + GA (s̄dL, L′)

}
, (65)

JA
T (s̄dL) = CA (s̄dL) + GA (s̄dL) = CA (s̄dL, 0) + GA (s̄dL, 0) . (66)

By denoting Md = ∑N
i=d ni. We can express the functions fA (T, s, d, L) and fA (T, s, d, L)

as follows:

fA (T, s, d, L)
L∈Ld(s)

= min
L̂∈{0,...,Md−L}

{(
L + L̂

)
Co + GT −1

(
s, d, L + L̂

)}
+ 1d≥2n1Cp, (67)

fA (T, s, d, L)
L∈Ld(s)

= GT −1 (s, d, L) + 1d≥2n1Cp. (68)

In (67), we denote L̄ = L+L̂. Then, the average future cost function GT

(
s, d, L̄ = L + L̂

)
is given by

GT −1
(
s, d, L̄

)
= µ

N∑
k=0

pkJT −1
(
s′

dL̄k

)
+ (1− µ)

N∑
k=0

pkJT −1
(
s′′

dL̄k

)
(69)

where s′

dL̄k
is the state transited from s with the following steps: offloading L̄ = L + L̂ most

imminent tasks starting from deadline d, deadline shifting, a task arrives with deadline k

(k = 0 implies no task arrival), and local processing. s′′

dL̄k
is defined similarly but without

the local processing at the end.
Subsequently, we will show that each term JT −1 (·) on the right-hand side of Eq. (69) can

be presented by the family of function f . Let us consider an initial state s = (n1, . . . , nN) ̸≡
(0, . . . , 0). First of all, we need to find states s1 and s2 such that s1

dL̄
≡ s′

dL̄k
and s2

dL̄
≡ s′′

dL̄k

where s1
dL̄

and s2
dL̄

are obtained by removing L̄ most imminent tasks having deadline greater
than or equal to d from s1 and s2, respectively. Then, we will have the followings:

f
(
T − 1, s1, d′, L′

)
= JT −1

(
s̄1

d′L′

)
= JT −1 (s′

dL̄k) , (70)

f
(
T − 1, s2, d′′, L′′

)
= JT −1

(
s̄2

d′′L′′

)
= JT −1 (s′′

dL̄k) . (71)

Hereafter, we will defined s1, s2, d′, d′′, L′, and L′′ in different cases, and provide examples
to support interpretation.
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• When k + 1 < d which implies d ≥ 2, we have: s1 ≡ s′
k, s2 ≡ s′′

k, d′ = d′′ = d − 1, and
L′ = L′′ = L̄. The state s′

k is obtained from s by: performing deadline shifting, adding
a new task with deadline k (k = 0 implies no new task is added), and removing the
most imminent task. State s′′

k is defined similarly as state s′
k, but without removing the

most imminent task at the end.

Example 6: As an example for the case “k + 1 < d”, we consider an initial state s =
(0, 6, 0, 5, 7), and a time horizon T > 5. We assume that d = 3, and L̄ = 7 most
imminent tasks having deadline greater than or equal to d are offloaded, and k = 1
implying that a new task arrives with deadline 1 in the next time slot. Then, we have

s′
dL̄k = s′

371 = (6, 0, 0, 5, 0) , (72)

s′′
dL̄k = s′′

371 = (7, 0, 0, 5, 0) . (73)

The states s′
k and s′′

k in this example are

s′
k = s′

1 = (6, 0, 5, 7, 0) , (74)

s′′
k = s′

1 = (7, 0, 5, 7, 0) . (75)

With s1 ≡ s′
k, s2 ≡ s′′

k, d′ = d′′ = d− 1 = 2, and L′ = L′′ = L̄ = 7 as presented above,
the states s̄1

d′L′ and s̄2
d′′L′′ are given by

s̄1
d′L′ = s1

27 = (6, 0, 0, 5, 0) , (76)

s̄2
d′′L′′ = s2

27 = (7, 0, 0, 5, 0) . (77)

This shows that state s̄1
d′L′ in Eq. (76) is the same as state s′

dL̄k
in Eq. (72). Also, state

s̄2
d′′L′′ in Eq. (77) is the same as state s′′

dL̄k
in Eq. (73). Therefore, Eqs. (70) and (71)

can be achieved.

• When k + 1 ≥ d, let βdk = ∑k+1
i=d ni, we have:

– If d ≥ 2: For L̄ ≤ βdk, s1 ≡ s′
k, s2 ≡ s′′

k, d′ = d′′ = d − 1, and L′ = L′′ = L̄. For
L̄ > βdk, s1 ≡ s′

dβdkk, s2 ≡ s′′
dβdkk, d′ = d′′ = k + 1, and L′ = L′′ = L̄− βdk.

– If d = 1: For L̄ ≤ βdk, s1 ≡ s′
k, s2 ≡ s′′

k, d′ = d′′ = d, and L′ = L′′ = L̄ − n1. For
L̄ > βdk, s1 ≡ s′

dβdkk, s2 ≡ s′′
dβdkk, d′ = d′′ = k + 1, and L′ = L′′ = L̄− βdk.

We note that state s′
dβdkk is obtained following the steps: offloading βdk most imminent

tasks having deadline greater than or equal to d from the initial state s, performing
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deadline shifting, adding a task with deadline k, and removing the most imminen task.
State s′′

dβdkk is defined in the same way but without removing the most imminent task
at the end.

Example 7: Two examples for this case corresponding to d ≥ 2 and d = 1 are as follows.
Let us consider an initial state s = (0, 3, 0, 7, 5), a time horizon T > 5, and L̄ = 9. For
the first example, we assume that d = 2, and k = 2. We have βdk = β22 = 3. The states
s′

dL̄k
and s′′

dL̄k
are computed as

s′
dL̄k = s′

292 = (0, 0, 1, 5, 0) , (78)

s′′
dL̄k = s′′

292 = (0, 1, 1, 5, 0) . (79)

Since L = 9 > βdk = 3, we compute states s′
dβdkk and s′′

dβdkk as follows:

s′
dβdkk = s′

232 = (0, 0, 7, 5, 0) , (80)

s′′
dβdkk = s′′

232 = (0, 1, 7, 5, 0) . (81)

As presented above, we have s1 ≡ s′
k, s2 ≡ s′′

k, d′ = d′′ = k + 1 = 3, and L′ = L′′ =
L̄− nd = 9− 3 = 6. Therefore, states s̄1

d′L′ and s̄2
d′′L′′ are computed as

s̄1
d′L′ = s1

19 = (0, 0, 1, 5, 0) , (82)

s̄2
d′′L′′ = s2

19 = (0, 1, 1, 5, 0) . (83)

Then, state s̄1
d′L′ in Eq. (82) is the same as state s′

dL̄k
in Eq. (78). State s̄2

d′′L′′ in Eq.
(83) is the same as state s′′

dL̄k
in Eq. (79). Therefore, we obtained Eqs. (70) and (71).

In the second example, we assume that d = 1 and k = 3. We have βdk = β13 = 10. The
states s′

dL̄k
and s′′

dL̄k
are

s′
dL̄k = s′

193 = (0, 0, 0, 6, 0) , (84)

s′′
dL̄k = s′′

193 = (0, 0, 1, 6, 0) .. (85)

Now L̄ = 9 ≤ βdk = 10, we define state s′
k and s′′

k as follows:

s′
k = (2, 0, 7, 6, 0) , (86)

s′′
k = (3, 0, 7, 6, 0) . (87)
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We have s1 ≡ s′
k, s2 ≡ s′′

k, d′ = d′′ = d = 1, and L′ = L′′ = L̄ − n1 = 9. Thus, states
s̄1

d′L′ and s̄2
d′′L′′ are computed as

s̄1
d′L′ = s1

19 = (0, 0, 0, 6, 0) , (88)

s̄2
d′′L′′ = s2

19 = (0, 0, 1, 6, 0) ., (89)

which suggests that state s̄1
d′L′ in Eq. (88) is the same as state s′

dL̄k
in Eq. (84). State

s̄2
d′′L′′ in Eq. (89) is the same as state s′′

dL̄k
in Eq. (85). As a result, we achieve Eqs. (70)

and (71).

From the presented cases, the terms JT −1
(
s′

dL̄k

)
and JT −1

(
s′′

dL̄k

)
are expressed by func-

tions f as follows:

• If k + 1 < d:

JT −1 (s′
dL̄k) = f

(
T − 1, s′

k, d− 1, L̄
)

, (90)

JT −1 (s′′
dL̄k) = f

(
T − 1, s′′

k, d− 1, L̄
)

. (91)

• If k + 1 ≥ d and d ≥ 2:

JT −1 (s′
dL̄k) = g′

dk

(
L̄
)

=


f
(
T − 1, s′

k, d− 1, L̄
)

, if L̄ ≤ βdk,

f
(
T − 1, s′

dβdkk, k + 1, L̄− βdk

)
, if L̄ > βdk,

(92)

JT −1 (s′′
dL̄k) = g′′

dk

(
L̄
)

=


f
(
T − 1, s′′

k, d− 1, L̄
)

, if L̄ ≤ βdk,

f
(
T − 1, s′′

dβdkk, k + 1, L̄− βdk

)
, if L̄ > βdk,

(93)

where βdk = ∑k+1
i=d ni.

• If k + 1 ≥ d and d = 1:

JT −1 (s′
1L̄k) = g′

1k

(
L̄
)

=


f
(
T − 1, s′

k, 1, L̄
)

, if L̄ ≤ β1k,

f
(
T − 1, s′

1β1kk, k + 1, L̄− β1k

)
, if L̄ > β1k,

(94)

JT −1 (s′′
1L̄k) = g′′

1k

(
L̄
)

=


f
(
T − 1, s′′

k, 1, L̄
)

, if L̄ ≤ β1k,

f
(
T − 1, s′′

1β1kk, k + 1, L̄− β1k

)
, if L̄ > β1k,

(95)

where β1k = ∑k+1
i=1 ni.

In the above, g′
dk

(
L̄
)

and g′′
dk

(
L̄
)

are functions characterized by parameters d and k, and
take L̄ as their variables.
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Next, we will prove the convexity of functions f using induction, starting with an initial
case.

Initial case: We consider state s = (n1, . . . , nN), and a time horizon T = 1.

In this case, if N = 1, we have s = (n1), then, there is only one valid offloading decision
L1 (s) = {n1}. For N ≥ 2, it is trivially that all tasks having deadline 1 are excessive tasks,
and should be offloaded whenever the AMA is available, which results in a cost n1Co. If the
AMA is not available at the initial time slot, tasks with deadline 1 will expire and result in
a cost n1Cp. Since in this case, we are considering a time horizon with only one time slot,
the minimum average cost can be computed straightforwardly. Thus, we have the following

f (1, s, 1, L) = J1 (s1L) = (puCo + (1− pu) Cp) n1 + (L− n1) Co, for L ∈ L1 (s) , (96)

f (1, s, d, L) = J1 (sdL) = n1Cp + LCo, for d ≥ 2 and L ∈ Ld (s) . (97)

We recall that the smallest offloading decision in the set L1 (s) is n1. From Eqs. (96) and
(97), f (1, s, d, L) , d = 1, . . . , N are discrete linear function with respect to L, hence, they
are discrete convex function with respect to L. Next is an inductive step where we prove
the convexity of f (T, s, d, L) gven that of f (T − 1, s, d, L) for every parameters s and d.

Inductive step: Let us make the following assumption: The functions f (T − 1, s, d, L)
is discrete convex with respect to L for every given state s and deadline d.

Now, we consider Eqs. (90)-(95) with L̄ is replaced by L+ L̂. From the above assumption,
f
(
T − 1, s′

k, d− 1, L + L̂
)

in Eq. (90), and f
(
T −1, s′′

k, d−1, L + L̂
)

in Eq. (91) are discrete
convex with respect to L. Next, we will prove that g′

dk

(
L + L̂

)
in Eq. (92) is discrete convex

with respect with respect to L. Then, the convexity of functions g′′
dk

(
L + L̂

)
in Eq. (93),

g′
1k

(
L + L̂

)
in Eq. (94), and g′′

1k

(
L + L̂

)
in Eq. (95) can also be proved in a very similar

way.

Let us consider function g′
dk

(
L + L̂

)
in Eq. (92). With our assumption above, f

(
T −

1, s′
k, d − 1, L + L̂

)
for L + L̂ ≤ βdk, and f

(
T − 1, s′

dβdkk, k + 1, L + L̂− βdk

)
for L + L̂ >

βdk are discrete convex with respect to L. Therefore, in order to prove the convexity of
g′

dk

(
L + L̂

)
we will prove that the discrete Jensen’s inequality holds at the connecting point

of f
(
T − 1, s′

k, d− 1, L + L̂
)

and f
(
T − 1, s′

dβdkk, k + 1, L + L̂− βdk

)
, i.e., at L̄ = βdk. To be

more specific, we will prove the following:

f (T − 1, s′
k, d− 1, βdk) + f

(
T − 1, s′

dβdkk, k + 1, 2
)
≥ 2f

(
T − 1, s′

dβdkk, k + 1, 1
)

. (98)
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From the definition of function f in Eq. (63), we have

f (T − 1, s′
k, d− 1, βdk) = JT −1

(
s′

dβdkk

)
, (99)

and also

f
(
T − 1, s′

dβdkk, k + 1, 0
)

= JT −1
(
s′

dβdkk

)
. (100)

Hence,

f (T − 1, s′
k, d− 1, βdk) = f

(
T − 1, s′

dβdkk, k + 1, 0
)

. (101)

Moreover, since f
(
T − 1, s′

dβdkk, k + 1, L + L̂
)

is discrete convex with respect to L due to
our assumption, we have

f
(
T − 1, s′

dβdkk, k + 1, 0
)

+ f
(
T − 1, s′

dβdkk, k + 1, 2
)
≥ 2f

(
T − 1, s′

dβdkk, k + 1, 1
)

. (102)

By combining Eq. (101) and Ineq. (102), we prove that Ineq. (98) is true. Therefore,
g′

dk

(
L + L̂

)
in Eq. (92) is discrete convex with respect to L. Similarly, g′′

dk

(
L + L̂

)
in Eq.

(93), g′
1k

(
L + L̂

)
in Eq. (94), and g′′

1k

(
L + L̂

)
in Eq. (95) are also discrete convex with

respect to L.

By using Eqs. (90)-(95), we can express GT −1
(
s, d, L + L̂

)
defined in Eq. (69) (where

L̄ is replaced by L + L̂) by the sum of multiple functions f having T − 1 as the first
argument. Furthermore, these functions are discrete convex with respect to L according to
our assumption at the beginning of this Inductive step. Therefore, GT −1

(
s, d, L + L̂

)
is a

discrete convex function with respect to L.

Now, we will refer to the constant term 1d≥2n1Cp in (67) as constant, and denote

g
(
L + L̂

)
=
(
L + L̂

)
Co + GT

(
s, d, L + L̂

)
. (103)

where GT

(
s, d, L + L̂

)
has been proved to be a discrete convex function. In addition,

(
L + L̂

)
Co

is discrete linear, hence, also discrete convex. As a result, g
(
L + L̂

)
is a discrete convex

function with respect to L. Then, Eq. (67) becomes

fA (T, s, d, L)
L∈Ld(s)

= min
L̂∈{0,1,...,Md−L}

{
g
(
L + L̂

)}
+ constant. (104)

Assuming that g
(
L + L̂

)
attains its minimum gmin (L∗) at L∗ ≥ n1. Note that the condition

L∗ ≥ n1 holds because all tasks having deadline 1 are excessive tasks, and will result in a
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penalty Cp per task if not offloaded. Therefore, given that Cp > Co, the optimal offloading
decision cannot be less than n1. Then, we have

fA (T, s, d, L)
L∈Ld(s)

=


gmin (L∗) + constant, if L ≤ L∗,

g (L) + constant where L̂ = 0, if L > L∗.
(105)

As a results, fA (T, s, d, L) are discrete convex functions with respect to L ∈ Ld (s) for all
states s and deadlines d.

GT −1 (s, d, L) in Eq. (68) can be expressed in a similar fashion as Eq. (69) with L̄ is
replaced by L, since without the AMA, L̂ = 0. Thus, GT −1 (s, d, L) in Eq. (68) can also be
written as the sum of several functions f , each has T −1 as its first argument. This suggests
that in Eq. (68), GT −1 (s, d, L) is a discrete convex function with respect to L for every given
s and d, and so is fA (T, s, d, L). Afterwards, by combining our definitions presented in Eqs.
(62)-(64) with the following equation:

JT (s̄dL) = puJA
T (s̄dL) + (1− pu) JA

T (s̄dL) , (106)

we have

f (T, s, d, L) = pufA (T, s, d, L) + (1− pu) fA (T, s, d, L) . (107)

Therefore, f (T, s, d, L) is also a discrete convex function with respect to L for every given
state s and deadline d.

This result together with the presented Initial case lead us to a conclusion that f (T, s, d, L)
are discrete convex functions with respect to L for all parameters T , s, and d. As GT (s, d, L)
is expressed by the sum of multiple functions f , so is fA (T, s, d, L), which is shown in Eq.
(68). Therefore, fA (T, s, d, L) is also discrete convex functions with respect to L. Then, from
our discussion at the beginning of this subsection, we can conclude that F A (T, s, d, L) are
discrete convex functions with respect to L for all parameters T , s, and d. This completes
our proof.

D. Proof of Lemma 4

We assume that function F A (T, s, d, L) attains its minimum at L∗ for d = 1, the following
set of inequalities hold

JA
T (s̄1L∗) + L∗Co ≤ JA

T (s̄1L) + LCo, for all L ∈ L1 (s) . (108)
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From Eq. (40) and Ineqs. (108), we have

JA
T (s, L∗) ≤ JA

T (s, L) , for all L ∈ L1 (s) . (109)

Equivalently,

JA
T (s, L∗) = min

L∈L1(s)

{
JA

T (s, L)
}

. (110)

We recall a fact that the optimal offloading decision must not be less than the number of
tasks having deadline 1 which are all excessive tasks. Thus, L∗ is the optimal offloading
decision of s for the time horizon T .

XI. Appendix C: Proofs of Propositions

A. Proof of Proposition 1

Considering a state s = (n1, . . . , nN) and a time horizon T . Let sr = (nr
1, . . . , nr

N) be the
corresponding reduced state obtained via Algorithm IV.1, and let sm = (nm

1 , . . . , nm
N) denote

the corresponding lean state obtained according to Definition 3. As nm
i , i = 1, . . . , N , are

defined by Eq. (24) with the parameters γi, i = 1, . . . , N , are given in Eq. (23), we have

nr
i ≤ nm

i ≤ ni, i = 1, . . . , N. (111)

Moreover, we recall that ni−nr
i tasks having deadline i in s, i = 1, . . . , N are excessive tasks,

i.e., they are guaranteed to expire if not offloaded within the first i time slots. Therefore,
ni − nm

i tasks having deadline i in s, i = 1, . . . , N are also excessive tasks. In other words,
for each deadline, tasks that s has more than sm are excessive tasks.

Example 8: For example, with s = (0, 3, 4, 0, 5), the corresponding lean state would be
sr = (0, 1, 1, 0, 4). Then, for deadline 1, there are 3− 1 = 2 excessive tasks. For deadline 2,
there are 4− 1 = 3 excessive tasks. For deadline 4 and 5, there is 0 excessive task.

Now let us consider the following cases in which we use the notations JT (s)
∣∣∣
j

and JT (sm)
∣∣∣
j

to denote the minimum average cost of s and sm, respectively, given that the AMA arrives
for the first time at time slot t. Then, there are following cases.

• Case 0: The AMA is available for the first time at the current time slot, t = 0. As we
mentioned, for every deadline, tasks that state s has more than state sm are excessive
tasks which should be offloaded by the optimal policy whenever the AMA is available.
Therefore, in this case, if L∗

m denotes the optimal number of tasks to offload of sm, that
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of s will be L∗
m + y, where y = ∑N

i=1(ni − nm
i ) is the partial number of excessive tasks

in s. Hence,

JT (s)
∣∣∣
0

= JT (sm)
∣∣∣
0

+ Co

N∑
i=1

(ni − nm
i ) . (112)

• Case 1: If the AMA is available for the first time at time slot 1, the number of tasks
having deadline 1 expiring from s is more than that from sm by n1− nm

1 . All the other
remaining excessive tasks can be offloaded from both states s and sm. Hence,

JT (s)
∣∣∣
1

= JT (sm)
∣∣∣
1

+ Co

N∑
i=2

(ni − nm
i ) + (n1 − nm

1 ) Cp. (113)

The same logic can be applied to other cases when the AMA first arrives at time slot
2, 3, . . . , N . Therefore, we present next the last case.

• Case N : If the AMA is available for the first time at time slot N , the number of tasks
having deadline i expiring from s is more than that from sm by ni− nm

i . Therefore, we
have

JT (s)
∣∣∣
N

= JT (sm)
∣∣∣
N

+ Cp

N∑
i=1

(ni − nm
i ) . (114)

The probability that the AMA arrives for the first time at time slot t is computed as

Pt = pu (1− pu)t . (115)

Also, the probability that the AMA does not arrive within the first N time slots is

Pt≥N = (1− pu)N . (116)

From the above logic, JT (s) can be expressed in terms of JT (sm) as follows:

JT (s) = Pt=0

(
JT (sm)

∣∣∣
0

+ Co

N∑
i=1

(ni − nm
i )
)

+ Pt=1

(
JT (sm)

∣∣∣
1

+ Co

N∑
i=2

(ni − nm
i ) + Cp (n1 − nm

1 )
)

+ . . .

+ Pt=N−1

(
JT (sm)

∣∣∣
N−1

+ Co (nN − nm
N) + Cp

N−1∑
i=1

(ni − nm
i )
)

+ Pt≥N

(
JT (sm)

∣∣∣
t≥N

+ Cp

N∑
i=1

(ni − nm
i )
)

.

(117)

JT (sm) is the minimum cost averaged over all cases, hence, can be expressed by

JT (sm) =
N−1∑
i=0

Pt=iJT (sm)
∣∣∣
i
+ Pt≥NJT (sm)

∣∣∣
t≥N

. (118)

In conclusion, with the aid of Eq. (118), the equation (117) can be simplified to Eq. (25).
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B. Proof of Proposition 2

Given an initial state s = (n1, . . . , nN) ̸≡ (0, . . . , 0), and a time horizon T . We call d the
deadline of the most imminent task of s, i.e., d is the smallest deadline such that nd > 0.
Denoting s̃ = (ñ1, . . . , ñN) ∈ Spp (s). Trivially, we have

JT (s̃) = JT (s) , if N = 1. (119)

If N ≥ 2, by definition of set Spp (s), there must be a deadline d̃ ∈ {d, . . . , N} such that

ñi =



ni, if i ̸= d̃ and i ̸= d,

nd − 1, if i = d,

nd̃ + 1, if i = d̃.

(120)

If d̃ = d, s ≡ s̃. It is trivially that

JT (s̃) = JT (s) , if N ≥ 2 and d̃ = d. (121)

For the rest of this part, we will prove that

JT (s̃) ≤ JT (s) , when d̃ ≥ d + 1, d ≤ N − 1, N ≥ 2. (122)

We conduct our proof via induction starting with an initial case.
Initial case: Given s = (n1, . . . , nN), s̃ = (ñ1, . . . , ñN) ∈ Spp (s), and T = 1.

• If n1 = 0, ñ1 = 0 according to Eq. (120). Therefore,

J1 (s̃) = J1 (s) = 0. (123)

• If n1 ≥ 1, ñ1 = n1 − 1 according to Eq. (120). We have

J1 (s) = (puCo + (1− pu) Cp) n1, (124)

J1 (s̃) = (puCo + (1− pu) Cp) (n1 − 1) . (125)

Therefore,

J1 (s̃) ≤ J1 (s) . (126)

The subsequent part is an inductive step.
Inductive step: In this step, we make the following assumption: For every given state s

and s̃ ∈ Spp (s), the following holds

JT −1 (s̃) ≤ JT −1 (s) , (127)
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Initially, we highlight an observation in the following remark.

Remark 1: Given two states s and s̃ which are assumed to transit to s′ and s̃′ in the next
time slot, respectively, if no offloading is performed. If s̃ ∈ Spp (s) and the number of tasks
having deadline 1 of s is 0, then, s̃′ ∈ Spp (s′).

Remark 1 can be proved as follows. Given state s and s̃ ∈ Spp (s) as above with n1 = 0. We
assume that no offloading is performed, and that s and s̃ becomes sds =

(
nds

1 , . . . , nds
N

)
and

s̃ds =
(
ñds

2 , . . . , ñds
N

)
, respectively, after the deadline shifting, in which

nds
i =


ni+1, if i ̸= N,

0, if i = N,
(128)

and

ñds
i =



nds
i , if i ̸= d̃− 1 and i ̸= d− 1,

nds
d − 1, if i = d− 1,

nds
d̃

+ 1, if i = d̃− 1,

0, if i = N.

(129)

Eqs. (128) and (129) indicate that s̃ds ∈ Spp (sds). Therefore, with the same realizations of
task arrival and local processing, sds and s̃ds would transit to states s′ and s̃′, respectively,
where s̃′ ∈ Spp (s′).

Based on the emphasized observation above, let us consider the following two cases:
Case 1: s is a non-offloading state.
Case 2: The AMA does not presents at the initial time slot, and n1 = 0.

We note that in Case 1, s is a non-offloading state, implying that n1 = 0. This is because
tasks having deadline 1 are all excessive tasks and must be offloaded whenever the AMA is
available. Applying the DP equation (14) in Case 1, we have

JT (s) = µ
N∑

k=0
pkJT −1 (s′

0k) + (1− µ)
N∑

k=0
pkJT −1 (s′′

0k) , (130)

JT (s̃) = µ
N∑

k=0
pkJT −1 (s̃′

0k) + (1− µ)
N∑

k=0
pkJT −1 (s̃′′

0k) . (131)
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Applying Eq. (20) to Case 2 yields

JA
T (s) = µ

N∑
k=0

pkJT −1 (s′
0k) + (1− µ)

N∑
k=0

pkJT −1 (s′′
0k) , (132)

JA
T (s̃) = µ

N∑
k=0

pkJT −1 (s̃′
0k) + (1− µ)

N∑
k=0

pkJT −1 (s̃′′
0k) .. (133)

As both Case 1 and Case 2 match the condition mentioned in Remark 1 that s̃ ∈ Spp (s)
and n1 = 0, we have: s̃′

0k ∈ Spp (s′
0k) and s̃′′

0k ∈ Spp (s′′
0k). Combining this with our assumption

in Eq. (127), we have

JT −1 (s̃′
0k) ≤ JT −1 (s′

0k) , (134)

JT −1 (s̃′′
0k) ≤ JT −1 (s′′

0k) . (135)

Combining Ineqs. (134)-(135) with Eqs. (130)-(131) gives

JT (s̃) ≤ JT (s) , when s is a non-offloading state. (136)

Combining Ineqs. (134)-(135) with Eqs. (132)-(133) gives

JA
T (s̃) ≤ JA

T (s) , when n1 = 0. (137)

The other case without AMA’s presence is as follows:
Case 3: The AMA does not presents at the initial time slot, and n1 ≥ 1.

In this case, assuming that s and s̃ transit to s′ = (n′
1, . . . , n′

N) and s̃′ = (ñ′
1, . . . , ñ′

N) in
the next time slot, respectively. Based on Eq. (120), we have

ñ′
i =


n′

i, if i ̸= d̃− 1,

n′
d̃

+ 1, if i = d̃− 1.
(138)

We note that all tasks having deadline 1 cannot be processed and will expire, since the
deadline shifting happens before the local processing event as presented in Fig. 2. Therefore,
from Eq. (120), there is a fact that after the first time slot, the number of tasks expiring
from s is more than that from s̃ by 1. This observation leads to the following equation.

JA
T (s)− JA

T (s̃) = Cp + JA
T (s′)− JA

T (s̃′) . (139)

From Eq. (138), we can also observe that s̃′ only differs from s′ by an additional task having
deadline d̃. Furthermore, Cp is the largest cost that can possibly be incurred by a task. We
have the following inequality.

Cp + JA
T (s′)− JA

T (s̃′) ≥ 0. (140)
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Applying Ineq. (140) to Eq. (139) gives us

JA
T (s̃) ≤ JA

T (s) when n1 ≥ 1. (141)

From Ineqs. (137) and (141), we have

JA
T (s̃) ≤ JA

T (s) . (142)

Finally, it remains to consider the following case.
Case 4: The AMA presents at the initial time slot, and s is an offloading state.

In this case, we consider two contexts in which both are associated with a time horizon T .
In the first context, state s is given initially, and L∗ is the corresponding optimal offloading
decision. In the second one, s̃ is given as an initial state, and task offloading is done according
to a policy π (L∗) in the first time slot. The task offloading decision of policy π (L∗) in the
first time slot is defined as follows.

• Situation 1: L∗ ≥ 1 +∑d̃−1
i=1 ni, then, π (L∗) offloads L∗ most imminent tasks from s̃.

• Situation 2: 0 < L∗ < 1 + ∑d̃−1
i=1 ni, then, π (L∗) offloads L∗ − 1 most imminent tasks,

and offloads a task with deadline d̃ from s̃.

For the two situations mentioned above, the policy π (L∗) guarantees that in both contexts,
we arrive at the same state after the offloading step. For intuition, we consider the following
example which corresponds to Situation 1.

Example 9: Given s = (0, 0, 5, 4, 5) and s̃ = (0, 0, 4, 4, 6) ∈ Spp (s) where d̃ = 5. Assuming
that 12 most imminent tasks are removed from s resulting in state (0, 0, 0, 0, 2). Since 12 >

1+5+4, we remove 12 most imminent tasks from s̃, which also results in state (0, 0, 0, 0, 2).

The next example corresponding to Situation 2 is as follows.

Example 10: Given s = (0, 0, 5, 1, 1) and s̃ = (0, 0, 4, 1, 2) ∈ Spp (s) where d̃ = 5. Assuming
that 5 most imminent tasks are removed from s resulting in state (0, 0, 0, 1, 1). Since 0 <

5 < 1 + 5 + 1, we remove 5 − 1 = 4 most imminent tasks, and a task with deadline d̃ = 5
from s̃, which also gives state (0, 0, 0, 1, 1).

With the AMA’s availability, we denote JA
T,π (s̃) the minimum average cost associated with

state s̃ and time horizon T given that the task offloading is done according to policy π (L∗)
at the initial time slot. Since in both contexts described above, we arrive at the same state
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after the task offloading step by offloading the same number of tasks, we have the following
equality

JA
T,π (s̃) = JA

T (s) . (143)

Trivially, JA
T (s̃) ≤ JA

T,π (s̃). Thus, we have

JA
T (s̃) ≤ JA

T (s) . (144)

We recall the following expression:

JT (s) = puJA
T (s) + (1− pu) JA

T (s) for every state s. (145)

Combining Ineqs. (142) and (144) with (145) gives us

JT (s̃) ≤ JT (s) , when s is an offloading state. (146)

Ineqs. (136) and (146) lead us to the following inequality

JT (s̃) ≤ JT (s) . (147)

Combining Ineq. (147) with the presented Initial case allows us to conclude that

JT (s̃) ≤ JT (s) , for every state s and s̃ ∈ Spp (s) . (148)

C. Proof of Proposition 3

Given a time horizon T , if sa is a non-offloading state, the corresponding optimal offloading
decision is 0, thus,

JA
T (sa, 0) < JA

T (sa, 1) . (149)

From Eq. (40), the above inequality is equivalent to

JA
T (sa) < JA

T (s) + Co. (150)

Here, we have sa ∈ Sadj (s). According to Theorem 1, if sa is a non-offloading state, s is also
a non-offloading state. Hence, trivially, we have

JA
T (sa) = JA

T (sa) , (151)

JA
T (s) = JA

T (s) . (152)
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Combining Eqs. (151) and (152) with Eq. (18) and Ineq. (150), we have

JT (sa)− JT (s) < Co. (153)

We make a conclusion at this point that: For two states s and sa ∈ Sadj (s), if sa is a
non-offloading state, Ineq. (153) holds.

Now, we will prove the reverse in which there are two states s and sa ∈ Sadj (s), and the
inequality (153) holds. We assume, in contradict, that sa is an offloading state. By applying
Eq. (18) to Ineq. (153), we have

pu

(
JA

T (sa)− JA
T (s)

)
+ (1− pu)

(
JA

T (sa)− JA
T (s)

)
< Co. (154)

We denote L∗
a ≥ 1 the optimal offloading decision of sa. From Theorem 1, the optimal

offloading decision of s would be L∗
a − 1. Combining this with Eq. (38), we have

JA
T (sa) = JA

T (sa, L∗
a) = JA

T

(
s̄a1L∗

a
, 0
)

+ L∗
aCo, (155)

JA
T (s) = JA

T (s, L∗
a − 1) = JA

T

(
s̄1(L∗

a−1), 0
)

+ (L∗
a − 1) Co, (156)

where state s̄a1L∗
a

is obtained by offloading L∗
a most imminent tasks from sa, and s̄1(L∗

a−1) is
obtained by offloading L∗

a − 1 most imminent tasks from s.

We recall that

JA
T (s, L) = CA (s, L) + GA

T (s, L) (157)

denotes the minimum average cost attained over T time slots by offloading L most imminent
tasks from s given the AMA’s availability. From the definition of adjacent states in Definition
4, we have that s̄a1L∗

a
≡ s̄1(L∗

a−1). As a result,

JA
T (sa)− JA

T (s) = Co. (158)

Combining the above equality with Ineq. (154), we have

JA
T (sa)− JA

T (s) < Co. (159)

Using the fact that s is obtained by offloading the most imminent task from sa, the above
inequality can be re-written as

JA
T (s̄a10) < JA

T (s̄a11) + Co, (160)



44

in which state s̄a10 and s̄a11 are obtained by offloading 0 task, and offloading the most
imminent task from sa, respectively. From the definition of function F A in Eq. (28), the
above inequality is equivalent to

F A (T, sa, 1, 0) < F A (T, sa, 1, 1) . (161)

Now, combining Ineq. (161) with the convexity of function F A presented in Lemma 3, we
have

F A (T, sa, 1, 0) < F A (T, sa, 1, L) + LCo, for all L ∈ L1 (sa) . (162)

This suggests that 0 is the optimal offloading decision associated with state sa for the
given time horizon T , which is contradict to our assumption that sa is an offloading state.
Therefore, we can make a conclusion that: As Ineq. (153) holds, sa is a non-offloading state.

To this end, the following has been proved: For two states s and sa ∈ Sadj (s), state sa is
a non-offloading state if and only if Ineq. (153) holds. As a consequence, sa is an offloading
state if and only if JT (sa)− JT (s) ≥ Co.
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