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Abstract—Millimeter-wave (mmWave) signals provide attrac-
tive opportunities for sensing due to their inherent geometrical
connections to physical propagation channels. Two common
modalities used in mmWave sensing are monostatic and bistatic
sensing, which are usually considered separately. By integrating
these two modalities, information can be shared between them,
leading to improved sensing performance. In this paper, we
investigate the integration of monostatic and bistatic sensing in a
5G mmWave scenario, implement the extended Kalman-Poisson
multi-Bernoulli sequential filters to solve the sensing problems,
and propose a method to periodically fuse user states and maps
from two sensing modalities.

Index Terms—MmWave, monostatic sensing, bistatic sensing,
integration, extended Kalman-Poisson multi-Bernoulli filter.

I. INTRODUCTION

Integrated sensing and communication (ISAC) is expected
to be one of the key features of 6G wireless systems []1]],
and sensing using millimeter-wave (mmWave) signals is at
the heart of ISAC. Sensing is a broad term and covers
everything from channel estimation and carrier sensing to
device localization and environment awareness [2]. The term
sensing, in this paper, is referred to the state estimation of the
user equipment (UE) and passive objects in the propagation
environment, termed as positioning and mapping, respectively.

Monostatic sensing and bistatic sensing are the two most
common sensing modalities [3]. In monostatic sensing, the
transmitter and receiver are co-located (or connected with
fiber and act as distributed monostatic system), and thus
share complete knowledge of the transmitted signals and the
clock [3]-[5]. In bistatic sensing, on the other hand, the
transmitter and the receiver are usually at different locations,
where the receiver may only have partial knowledge of the
transmitted signals and the synchronization problem between
the transmitter and the receive needs to be considered [3]-
[S]. Fig. [1] provides visualizations of both sensing modalities.
Although the two modalities can be employed simultaneously,
most existing works only consider one of them.

The related works can be divided into works that solve
monostatic and bistatic mmWave sensing problems and works
that integrate sensing modalities. The sensing problem (map-
ping and positioning in this paper) has been studied in many
papers and addressed by different approaches [[6]—[11]. Among
these methods, random finite set (RFS)-based methods [9]]—
[I1] and certain message passing-based methods [8] can
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Fig. 1. An example of monostatic sensing and bistatic sensing. In monostatic
sensing, the BS sends out signals (in blue), which go through the complex
propagation environment and are received back again by the BS (in red),
which is then used for sensing. In bistatic sensing, the BS sends signals to the
receiver, and those signals go via a complex propagation environment and then
reach the UE (in blue), which is then used for sensing. Two sensing modalities
are fused and overwritten by the fused map and UE state periodically.

handle the inherent challenges of unknown data associations
(DAs), the unknown number of objects/targets, misdetections,
and clutter measurements, which all sensing applications with
multiple objects/targets suffer from. Within these RFS-based
methods, [[11]] proposed a Poisson multi-Bernoulli (PMB)-
based algorithm that can keep both a good sensing perfor-
mance and an acceptable computational complexity, making
it suitable to be used in solving sensing problems. However,
only one sensing modality is considered in these works. The
integration of sensing modalities is not a new idea and has
been considered in earlier literature [4], [S], [12], [[13], but they
solely consider the integration of several monostatic sensors or
several bistatic sensors, not the combination of monostatic and
bistatic sensing. The only exception is [14], which proposed
a message-passing-based algorithm that fused both sensing
modalities in communication systems. However, [[14] assumes
perfect synchronization between UE and base station (BS),
considers the UE orientation to be known, and performs both
monostatic and bistatic sensing at the UE side, all of which
make the problem considerably easier.

In this paper, we study the integration of monostatic and
bistatic sensing to improve the sensing performances and con-



sider a scenario where monostatic sensing is performed by the
BS and bistatic sensing is performed at the UE, and clock bias
and the UE orientation are estimated. The main contributions
of this paper are summarized as follows: (i) we develop an
RFS-based integration algorithm that can fuse the UE states
and maps from monostatic and bistatic sensing together, and
provide the executable details on the proposed method; (ii) we
extend our previous work of the extended Kalman (EK)-PMB
simultaneous localization and mapping (SLAM) filter in [11]
by periodically replacing the corresponding updated maps and
UE states with the fused ones; (iii) we validate the benefits of
the integrating two sensing modalities through simulations in
the mmWave radio network context, and show the integration
can significantly enhance sensing performances.

Notations: Scalars (e.g., ) are denoted in italics, vectors
(e.g., ) in bold lower-case letters, matrices (e.g., X) in bold
capital letters, and sets (e.g., X) in calligraphic. Transpose
is denoted by (-)T. A Gaussian density with mean u and
covariance X, evaluated at x, is denoted by N (x;u, ).

II. MODELS FOR BISTATIC AND MONOSTATIC SENSING

We consider a scenario where monostatic and bistatic sens-
ing happen at the same time, but the former is by the BS
and the latter is by the UE. In this section, we introduce
the state models, the received signal models with multiple-
input multiple-output (MIMO)-orthogonal frequency-division
multiplexing (OFDM) signals, and the measurement models.

A. State Models

The dynamic state of the UE at time step k, denoted as
Sg, consists of the 3D UE position xug x = [k, Yk, 2] 7, the
heading w;, and the clock bias b (with respect to the BS).
The UE evolves according to state dynamics, and the transition
density is given by

f(srq1lsk) = N(sry1;v(8k), Qrir), (1)

where v(-) denotes the known transition function and Qy,
is the process noise covariance. In the environment, three
types of landmarks are considered, i.e., the BS, scattering
points (SPs), and reflecting surfaces. The BS is deployed
with a uniform rectangular array (URA), and is parameterized
by a location xps € R3, which is a prior known. A SP,
corresponding to a small object, e.g., a street lamp, a traffic
sign, etc, is parameterized by a location zsp € R3. A
reflecting surface, corresponding to a large surface, e.g., wall,
building facade, etc, is parameterized by a fixed virtual anchor
(VA) with location xyva € R3. The VA is surface-specific,
which is the reflection of the BS with respect to the reflecting
surface, given by [[15]

xya = (I — QVVT):BBS +2u"vr, 2)

where v is the normal to the surface, and p is an arbitrary
point on the surface.
There are some differences in how the state models are
treated in bistatic and monostatic sensing:
o Bistatic sensing: In bistatic sensing, a VA always remains
static, even though the incidence point (IP) of the signal,

where the signal hits the landmark, is moving while the
UE is moving.

o Monostatic sensing: In monostatic sensing, the BS is not
aware of the UE dynamics and can only determine the
3D position xyg,. Therefore, the UE is modeled as a
random walk with the transition density

f(eug kt1lxuer) = N(2ugki1; 2uEk Qut1), (3)

where Qi1 is the (large) process noise covariance.
Moreover, as the BS is always fixed, the IPs do not
change over time, and there is no difference between
small objects and large surfaces. The environment is
parameterized using IPs xrp € R? for all landmarks.
Please note that the SP is the same as IP for a small
object, and the VA can be calculated from the IP

Tya = 2T1p — TBS. 4
B. Signal Models

The BS sends downlink OFDM pilot signals to the UE every
time step. These signals are denoted by fgg , %k, g, fOr time
step k, transmission g, and subcarrier s, in which z, 4 is the
pilot signal and fgg . is the precoder at BS. These signals
are received by the UE for bistatic sensing and by the BS for
monostatic sensing.

1) Bistatic Sensing: The downlink signal can reach the UE
via the line-of-sight (LoS) path or non-line-of-sight (NLoS)
paths, or both, leading to the following observation model [16]
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where ¥, 4 1 is the received signal, n,; 4 1 is the noise, WyE ¢,k
is the combining matrix at the UE side, Ay is the subcarrier
spacing, aug(-) and ags(-) are the steering vectors of the
UE and the BS antenna arrays, respectively. There are Iy
visible landmarks for bistatic sensing, and we assume that
each landmark creates only one path, thus, there are Ij paths
in total. Each path ¢ can be described by a complex gain p};, a
time-of-arrival (ToA) 7}, an angle-of-arrival (AoA) pair 6}, in
azimuth and elevation, and an angle-of-departure (AoD) pair
(;5}‘c in azimuth and elevation. The path parameters are related
to the geometry, e.g., 7. = ||@urx — @as||/c + by for the
LoS path and 7 = ||xuex — xw||/c + ||[xBs — xw||/c + b
for any NLoS path. The relations between AoA/AoD and the
geometric state can be found in [17, App. A].

2) Monostatic Sensing: The downlink signal is reflected by
the reflecting surfaces or diffused by SPs and/or the passive UE
back to the BS. Therefore, there is no LoS path in monostatic
sensing, and only NLoS paths need to be considered. The
observation becomed]
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'Doppler measurements are not considered due to short transmission
periods. However, the inclusion of Doppler measurements would greatly
facilitate the detection and estimation of the mobile UE.



where 7, 4 1. 18 the received signal across the BS array, ¢ g . is
the noise across the BS array, wgs, 4,1, is the combining matrix
at the BS side, Lj is the number of landmarks (including
the passive UE) for monostatic sensing. Similar to bistatic
sensing, each path 7 can also be described by a complex gain
0%, a ToA &}, and an AoA pair 9}, (which is equal to the
corresponding AoD). Note that since the BS is synchronized
with itself, et = 2||xp — zps]|/c, for IPs.

C. Measurement Models

The channel parameters of ToA, AoA, and AoD of the two
sensing modalities can be obtained by applying a channel
estimator, e.g., [T8]-[21], on (3) and (6) at the UE and BS
sides, respectively. However, the channel estimation is beyond
the scope of this paper, and the channel parameters are already
available to be utilized as measurements for bistatic and
monostatic sensing purposes. Measurements provided by the
channel estimator at time step k are modeled as RFSs, given
by 2P ={z},...,z*} and Z2M = {z},...,z;*} for bistatic
and monostatic sensing, respectively. Please note that [}, # I,
and L, # Ly, in general, as some measurements can be clutter
which are originated from noise peaks during channel estima-
tion or transient objects, and landmarks might be misdetected.
It is also important to notice that the DA problem is unsolved,
which means the source of each measurement is still unclear.
The likelihoods differ in monostatic and bistatic sensing, in
the following way:

e Bistatic sensing: For any z' € ZP originating from
landmark with IP location «?, the likelihood function is
modeled by

f(zi|x', sk) = N (2L h(z', s1), Ry), 7

where h(z’,s;) = [1},(0})7,(¢;)T]T represents the
nonlinear function that transforms the geometric informa-
tion to channel parameters, and Rz is the measurement
covariance determined by the Fisher information matrix
(FIM) of channel parameters, as in [22].

e Monostatic sensing: For any z}; € Z}XI originating from a
landmark with IP location «?, the likelihood function is
modeled by

f(z’lig|wia Sk) = N(Zz; h(wivaS)a R}c)v (8)

where h(z!,zps) = [, (9},)T]T denotes the corre-
sponding nonlinear function, and Rj, denotes the mea-
surement covariance.

III. FILTERS FOR MAPPING AND SLAM AT BS AND UE

In this section, we describe the form of the filter used
for mapping the environment and how it is combined with
tracking the UE state. The map is modeled as a PMB RFS. In
this section, the PMB density and the PMB filters are briefly
introduced. Details on the implementation of the filters are
outside the scope of this paper, but can be found in [11],
[23[]-[25]].

A. Basics of PMB Density

We assume a map X = {z',...,z!*!} is a PMB RFS.
A PMB RFS consists of two disjoint RFSs, a set Xy of
undetected objects, which are all landmarks that have never
been detected before, and a set Xp of detected objects, which
are landmarks that have been detected at least once before
[24]. We model Ay as a Poisson point process (PPP) and Ap
as a multi-Bernoulli (MB), with the following densities

fo(Xy) = e IR TT (@), ©)
rxEXy
[XD| ‘ A
Fup(Xp) = > IT &), ao

X1y XI*¥Dl=Ap i=1

where A(x) = nfp(x) is the intensity function with 7 denoting
the mean of the Possion distribution and fp(x) denoting the
spatial density; & is the union of mutually disjoint sets; f5(-)
is the Bernoulli density of the i-th landmark, following

1—rt  Xi=0
f(X) = rifie) X' ={x} (1D
0 otherwise,

where 7* € [0,1] is the existence probability, describing how
likely the landmark exists, and f(-) is the corresponding
spatial density. As X is the union of Ay and Ap, the
density of X can be computed using the convolution formula
[26, eq. (4.17)] as f(X) = > v, ap—x fp(XU) fuB(AD),
which can be parameterized by its components, i.e., A(x) and
{r?, f{(x) }sc1, with T representing the index set of Ap.

B. PMB-based Filters for Bistatic and Monostatic Sensing

Two different PMB-based filters are implemented indepen-
dently. A PMB SLAM filter is run at the UE side for bistatic
sensing to localize the UE as well as mapping the surrounding
environment, and another PMB filter is run at the BS side for
monostatic sensing to map the surrounding environment as
well as the passive UE.

1) Bistatic Sensing: At the UE side, ZE is taken as input
and a PMB SLAM filter is run to both track the UE and
map the landmarks, i.e, VAs and SPs. We denote the map for
bistatic sensing as X'B. The goal of the PMB SLAM filter is
to recursively compute the joint posterior f(sp, ,, X2, ;)
every time step, following the Bayesian filtering framework
with RFSs [11]]

Fshpr, XP |25 10) o (2R [8kp1, XP) F(XP|2E)
></f(5k|ZEk)f(Sk+1|Sk)dSk7 (12)

where ((ZP, |sk11, X®) denotes the RFS likelihood function
of the measurement set of bistatic sensing, given by [24]
egs. (5)—(6)]. Instead of tracking the joint density, the marginal
posteriors f(sk|ZP,,,) and f(X®|ZP,, ) are tracked by
marginalizing out the map state and the UE state in the joint



posterior, respectively, described as

F(sr41]ZEks1) = /f(8k+17XBIZEk+1)5X37 (13)

FXPZ8, ) = / F(skar, AP|Z8 0, dsign, (1)

where f Y(X)dX denotes the set integral [23, eq. (4)]. The
EK-PMB SLAM filter proposed in [11] is used to solve the
SLAM problem for bistatic sensing. Since there are different
types of landmarks (VAs and SPs), a multi-model implemen-
tation of the filter is applied.

2) Monostatic Sensing: At the BS side, ZM is taken as
input and a PMB filter is run to map the IPs as well as the
passive UE. We denote the map for monostatic sensing as
XM, This PMB filter is to recursively compute the posterior

(2(M|Z1 4+1)» given by (for the IP map)

FM 2V ) o (2| aM) M 2, (15)

where ((Z},|XM) denotes the RFS likelihood function of
the measurement set of monostatic sensing. Since the UE
may also reflect energy during monostatic sensing, a multi-
model implementation is used, where possible IPs are treated
as static landmarks, while the possible UE follows a ran-
dom walk model as (@), leading to f(AM |2}, )
20| F( |2, after prediction.

3) Output of the Filters: Note that (I2)-(15) are imple-
mented by the prediction and update steps of the PMB
components (please refer to [[11] for details). At the end of the
two PMB filters, we have the following components: fB(sy),
AR(z) and {7” { We, k»fg k( )}ge{VA,SP}}ieﬂg for bistatic
sensing, with wC ! and f () representing the probability of
the landmark type being C € {VA, SP} and its spatial density;
IM(@ugk), AW (z) and {r%’l,f,y"(:c)}iew for monostatic
sensing, where fM(xyg ) is picked up from XM by taking
the hard decision on the type and the rest are for XM,

IV. FUSION OF TWO SENSING MODALITIES

The two filters (one at the BS and one at the UE) run
in parallel, based on the downlink signals sent by the BS.
Periodically, the separate maps will be fused at the fusion
center, which we assume is at the BS side, and the fused
map is sent back to the BS and the UE. The operation
of such fusion is described next. We drop the condition
on measurement sets in this section for notation simplicity
and consider the two individual filters at time step k. At
the UE, from bistatic sensing, we have the UE posterior,
denoted as fk( ), and the PMB f;(XP®) with components
Ab(z) and {T {wc kvfg,}i(ﬁc)}ce{VA,SP}}ier;- At the BS,
from monostatic sensing, we have fM (a:UE k) ar;/}i‘the PMB
fr(XM) with components AM(x) and {r}"", fo'" ()} ;.
Th(is se)ction il’ltI‘OdIL)lCCS map kfl(lsi)()l‘l and{how tﬁe (Ulzl}lsi?e
density can be treated.

A. Map Fusion

To further reduce the notational burden, we will also omit
the current time step k. Then, given f(XB) and f(AM), we

aim to form a new map with PMB density f(XF), which
will be parameterized by A\F(z) and {rF¢, fF¢(x)};cr. The
process comprises two steps: map matching and component
fusion. Note that the VAs and SPs in X® should be converted
to IPs by modifying the corresponding densities, to be able
to fuse with IPs in XM, where f&f () changes according to

and fsBP’fk(m) is unchanged.
1) Map Matching: The problem of matching Bernoullis can
be cast as an optimal assignment problem [27]], given by
minimize tr(ATC)
s.t.a;p € {0,1}, Vi, 7,

E aiy <1, Vi,

k2

E Qi = 1, Vi,
K2

where A € RIPIX(MI+IP°) s the optimization variable and
B M B

C c RIFIXUTIHITD depends on the two PMBs. We define

the cost matrix C' as

c(1,1) (1, ™M) |Tg ... oo

C=| z N
c(|TB], 1) (B, M) oo ... Tg

where T is the gating threshold for matching Bernoullis, and

c(i,i") is the cost of matching Bernoulli 4 in X® with Bernoulli
i’ in XM. The cost is defined as

(16)

a7

c(i, i) = (i, i, ¢*), (18)
¢* € {VA,SP} and c(i,4’,{*) is now defined by
i #,6") = 5 (12 = €% s + 163 - 2,
C*
19)

with é’?f and E?f representing the mean and covariance of
the conversed density from fv ‘(x) to an IP density according
to @ or the density fsp (), & and =M representing the
mean and covariance of fMi(x), and |z|y = xTZ 'a.
Correspondingly, we introduce the decision on whether the
landmark for the association (7,¢) is a VA or a SP by

(" =arg mcin{c(z', i',¢) Yeeva,spy- (20)
In (T7), the left |IB| x |IM| sub-matrix corresponds to matches
of Bernoullis in X'B, the right [IB| x |I| diagonal sub-matrix
corresponds to mismatches of Bernoullis in X8, Solving this
optimal assignment problem is the main computational cost of
the fusion process, but it is much less costly than the mapping
and SLAM filters, and can be solved efficiently by the Auction
algorithm [27]. As a hard decision on the landmark type ( is
made in for each possible pair, the type of landmarks can
be determined together with solving the optimal assignment
problem.

2) Component Fusion: After map matching, there are sev-
eral possibilities:

o Match exists for fgl(w) In this case, f?z(:c) is matched

to fM4(x) for an i’. Appendix |A| shows how to obtain
the fused Bernoulli. The same procedure applies to any



fMi(z) for which a match exists. After fusion, the type
of the corresponding landmark is determined. Therefore,
that weight wCB;” is set to 1, and another weight is set to
0 in XB for the multi-model implementation.

o No match exists for fg;l(:c): In this case, f?f(w) is not
matched to any fM(z) for all i’. Appendix [B| shows
how to obtain a Bernoulli by fusing f?;l(w) with the PPP
AM(z), where a hard decision is made on ¢ according to
[20). A similar procedure exists for any f™:¢(x) for which
no match exists.

After generating all Bernoullis in the fused map, we can
re-index these Bernoullis, making i € I¥, so that XF is a
MB with {rF% fi(x)},crr. The two PPPs are also fused,
based on Appendix [C| Finally, X® and XM are overwritten
by XF. Note that some small modifications should be made
when overwriting XB by XF. The spatial density of a VA
should be recovered based on (@). A fused Bernoulli which is
generated by fusing fM' (x) with AB, should keep the multi-
model representation with 50% of being SP and 50% of being
VA in XB, as we are not sure the type of the corresponding
landmark, and another spatial density can be generated by
simply duplicating the density of the VA/SP according to ().

B. UE State Fusion

At time step k, the UE posterior fP(s) provided by the
EK-PMB SLAM filter at the UE side for bistatic sensing can
be fused with the spatial density of the Bernoulli for the UE
provided by the EK-PMB filter at the BS side for monostatic
sensing, given by

F(sp) = fi (si) fit (zuE k)

- Y
J 1R (s Y (@yp . )ds;,

since the UE serves as a passive object in monostatic sensing,

which only provides information on the UE position, i.e.,

Tupk = [Sk|1.3. After fusion, f2(sg) and fM(zyg,y) are

overwritten by ff(sy) and ff(zyugk)-

2L

V. NUMERICAL RESULTS
A. Simulation Environment

We consider the scenario introduced in [9], which is at
28 GHz and contains a single mmWave BS with a known
location, and four VAs and four SPs with unknown locations.
Additionally, there is a UE doing a counterclockwise constant
turn-rate movement around the BS on the x-y plane, and its
state is unknown. The BS and UE are both equipped with
an 8 x 8 omnidirectional URA. The BS broadcasts OFDM
pilot signals with 16 symbols, 64 subcarriers, and 200 MHz
bandwidth. Random precoders and combiners are used in both
modalities. The transmitted power is set to 35 dBm. The noise
figure at the BS is 20 dBm lower than the noise figure at the
UE. The noise spectral density is -174 dBm/Hz. Path loss
is generated according to [22, eq. (45)], with the reflection
coefficient of reflecting surfaces and the radar cross-section
of small objects as 0.7 and 50 m?2, respectively. The Fisher
information matrix of channel parameters [22] is used as the
covariance in and (). The UE, VAs, and SPs are always
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Fig. 2. Comparison of mapping performances for VAs and SPs in bistatic
sensing between two cases: with and without fusion.
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Fig. 3. Comparison of mapping performances for IPs, VAs, and SPs in
monostatic sensing between two cases: with and without fusion.

visible to the BS. The BS and VAs are always visible to the
UE, while SPs are only visible to the UE within the field of
view of the UE, which is set as 50 m. The detection probability
of each visible path is set as 0.9. The gating threshold T is
set as 25.

The EK-PMB (SLAM) filters with considering 10 best DAs
are implemented to solve the SLAM and mapping problems
for bistatic and monostatic sensing. To evaluate the benefits of
the integration of bistatic and monostatic sensing, we run two
simulations: individual bistatic and monostatic sensing without
any fusion, and bistatic and monostatic sensing with periodic
map and UE state fusion. The simulations are run for one
vehicle cycle, which is 40 time steps, and the fusion happens
every 5 time steps. The mapping performance is evaluated
by the generalized optimal subpattern assignment (GOSPA)
distance [28] for both VAs and SPs for bistatic sensing, and
for IPs, VAs and SPs for monostatic sensing. The positioning
performance is quantified by the root mean squared error
(RMSE). Overall, 100 Monte Carlo simulations are performed.

B. Results

We first analyze how the integration of two sensing modal-
ities affects the mapping performance. Fig. [2| compares the
GOSPA distances between bistatic sensing with and with-
out periodic fusion for VAs and SPs, and Fig. [3] compares
the GOSPA distances between monostatic sensing with and
without periodic fusion for IPs, VAs and SPs. Both figures
demonstrate that the EK-PMB (SLAM) filter can map the
landmarks in both sensing modalities and the mapping perfor-
mance continuously increases with more measurements being



received, as GOSPA distances for VAs and SPs in Fig. [Z] and
IPs in Fig. |3| decrease over time. These figures also show
that the type of landmarks can be distinguished accurately in
bistatic sensing, which is due to the VAs and SPs generating
measurements by following different observation models and
the multi-model implementation of the EK-PMB SLAM filter
proposed in [[11]] is utilized to solve this problem. However,
we cannot distinguish landmark types in monostatic sensing,
as landmarks are treated all the same as IPs. Moreover,
the periodic fusion of two sensing modalities improves the
mapping performances in both cases, as solid lines are always
lower than dashed lines in both figures, which benefits from
using information from both modalities, i.e, the fusion con-
siders measurements at the UE side in bistatic sensing and
measurements at the BS side in monostatic sensing, and the
better UE positioning in bistatic sensing (see later). Especially,
in bistatic sensing, SPs are detected sequentially due to the
limited field of view of the UE to SPs, and all SPs can be
detected until time step 34. This is also the reason why the
red dashed line in Fig. 2]drops step by step, as the misdetection
of these unseen SPs brings a penalty to the GOPSA distance,
which remains until all unseen SPs are seen and detected.
However, SPs are always visible to the BS, and the fusion with
the monostatic sensing map introduce the unseen landmarks
in bistatic sensing but detected in monostatic sensing to the
bistatic sensing map, which makes the fused map detects all
SPs after the first fusion at time step 5 and distinguish the
unseen SPs types one step later. Therefore, the red solid line
in Fig. [2] dramatically decreases at time step 6. The SP and VA
GOSPA distances are provided merely to show that without
fusion the BS has no way to distinguish the landmark type,
leading to high GOSPA distances, but the fusion introduces
the landmark types into the monostatic sensing map.

Finally, we validate the benefits of the integration of two
sensing modalities in positioning performance. Fig. |4| displays
the RMSEs of the estimated UE position, heading, and bias
for both sensing modalities with and without fusion. From the
figure, we observe that monostatic sensing can only estimate
the UE position, and cannot estimate its heading and clock
bias, as the UE serves as a passive object in monostatic
sensing, while UE position, heading, and clock bias can be
estimated in bistatic sensing, as channel parameters depend
on all three terms. Bistatic sensing provides roughly four
times better position estimates than monostatic sensing. This
big gap is caused by the consideration of the UE movement
model as well as the benefit of the mapping in bistatic
sensing. However, monostatic sensing does not have a good
UE movement model and all the rest measurements from other
landmarks cannot contribute to UE positioning, as they do not
contain any information on the UE state. Fig. 4] also displays
that the periodic fusion can further improve the positioning
performance in bistatic sensing, as all blues bars are lower
than the red bars, indicating better position, heading and clack
bias estimations can be acquired. The reason is that a better
map can be obtained by the periodic fusion of two maps
and measurements from the passive UE in monostatic sensing
are also used, which benefit the UE positioning. Please note
that the better UE positioning can also enhance the mapping
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Fig. 4. Comparison of UE state estimation in bistatic and monostatic sensing
between two cases: with and without fusion.

performance in turn. With periodic fusion, monostatic sensing
can also obtain better UE position estimates. This is because
the estimation error drops when the fusion happens and is
more or less the same as before for the rest time steps.

VI. CONCLUSIONS

In this paper, we address the SLAM problem in bistatic
sensing and the mapping problem in monostatic sensing
using EK-PMB (SLAM) filters. A RFS-based algorithm for
integrating monostatic and bistatic sensing is first introduced
in this paper, and executable details on the fusion of maps
and UE states are also provided. Via simulations, which use
realistic mmWave signal parameters, we demonstrate that the
implementation of the EK-PMB (SLAM) filters can map
the environment and position the UE state simultaneously
in bistatic sensing, and map the environment as well as the
passive UE in monostatic sensing. The results also indicate
that periodic fusion of monostatic and bistatic sensing helps
the filters to acquire better mapping and SLAM performances
in monostatic and bistatic sensing, respectively.
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APPENDIX
MaP FUSION

A. Fusion of Two Bernoullis

By following the generalized covariance intersection (GCI)
approach, the fusion of two Bernoullis {r® f8(z)} and
{rM fM(z)} results in a Bernoulli with parameters [29]-[31]

. CrP) (™)

e e e
B () M ()8

fF(:I:) — %’ (23)

where C = [ fB(z)*fM(z)?d(x), o and 3 are the fusion
weights, satisfying o + 8 = 1, with a = 78/(r® + M), and
B=rM/(rB + M),



B. Fusion of a Bernoullis with a PPP

The fusion of a Bernoulli {r®, fB(x)} and a PPP \M(x) =
™ M results in a Bernoulli with parameters [31]

Sl Uil
e o e
B )% M T B

with € = [ f2(@)* ffi(@)?d(@), o = r®/(r® + ), and
B = M/ g o).

C. Fusion of two PPPs
Fusion of two PPPs \B(z) = 7B f8 and \M(z) = nM M
results in a new PPP with parameters [31]]

M) = AP (2)* W (z)” = 0" f5 (z), (26)
n = Cm®)*(m™)?, 27)
fllj(m) _ W, (28)

C

where C = [ fB(z)* fM(z)Pd(x), and a = B = 1/2.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

A. Liu, Z. Huang, M. Li, Y. Wan, W. Li, T. X. Han, C. Liu, R. Du,
D. K. P. Tan, J. Lu, et al., “A survey on fundamental limits of integrated
sensing and communication,” IEEE Commun. Surv. Tutor., vol. 24, no. 2,
pp. 994-1034, 2022.

C. Chaccour, M. N. Soorki, W. Saad, M. Bennis, P. Popovski, and
M. Debbah, “Seven defining features of terahertz (THz) wireless sys-
tems: A fellowship of communication and sensing,” IEEE Communica-
tions Surveys & Tutorials, vol. 24, no. 2, pp. 967-993, 2022.

Y. Ge, O. Kaltiokallio, H. Kim, J. Talvitie, S. Kim, L. Svensson,
M. Valkama, and H. Wymeersch, “Mmwave mapping and SLAM for
5G and beyond,” in Integrated Sensing and Communications. Springer,
2023, pp. 445-475.

D. Crouse, “Basic tracking using nonlinear 3D monostatic and bistatic
measurements,” [EEE Aerospace and Electronic Systems Magazine,
vol. 29, no. 8, pp. 4-53, 2014.

P. Stinco and F. Gini, “Performance analysis of bistatic radar and
optimization methodology in multistatic radar system,” University of
Pisa, Pisa, 2012.

A. Yassin, Y. Nasser, A. Y. Al-Dubai, and M. Awad, “MOSAIC:
Simultaneous localization and environment mapping using mmwave
without a-priori knowledge,” IEEE Access, vol. 6, pp. 68 932-68 947,
2018.

H. Zhang, B. Di, K. Bian, Z. Han, H. V. Poor, and L. Song, “Toward
ubiquitous sensing and localization with reconfigurable intelligent sur-
faces,” Proceedings of the IEEE, vol. 110, no. 9, pp. 1401-1422, 2022.
E. Leitinger, F. Meyer, F. Hlawatsch, K. Witrisal, F. Tufvesson, and M. Z.
Win, “A belief propagation algorithm for multipath-based SLAM,” I[EEE
Trans. Wireless Commun., vol. 18, no. 12, pp. 5613-5629, Sep. 2019.
0. Kaltiokallio, Y. Ge, J. Talvitie, H. Wymeersch, and M. Valkama,
“mmWave simultaneous localization and mapping using a computa-
tionally efficient EK-PHD filter,” in IEEE International Conference on
Information Fusion (Fusion), 2021, pp. 1-6.

H. Kim, H. Chen, M. F. Keskin, Y. Ge, K. Keykhosravi, G. C.
Alexandropoulos, S. Kim, and H. Wymeersch, “RIS-enabled and access-
point-free simultaneous radio localization and mapping,” arXiv preprint
arXiv:2212.07141, 2022.

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

(25]

[26]
[27]

[28]

[29]

[30]

[31]

Y. Ge, O. Kaltiokallio, H. Kim, F. Jiang, J. Talvitie, M. Valkama,
L. Svensson, S. Kim, and H. Wymeersch, “A computationally efficient
EK-PMBM filter for bistatic mmWave radio SLAM,” IEEE Journal on
Selected Areas in Communications, 2022.

E. Denove, “Multiple target tracking in experimental multistatic MIMO
mmWave radar sensor networks,” Ph.D. dissertation, Massachusetts

Institute of Technology, 2021.
H. Kim, A. Fascista, H. Chen, Y. Ge, G. C. Alexandropoulos, G. Seco-

Granados, and H. Wymeersch, “RIS-aided radar sensing and object
detection with single and double bounce multipath,” arXiv preprint
arXiv:2212.07142, 2022.

J. Yang, C.-K. Wen, and S. Jin, “Hybrid active and passive sensing for
SLAM in wireless communication systems,” IEEE Journal on Selected
Areas in Communications, vol. 40, no. 7, pp. 2146-2163, 2022.

J. Palacios, G. Bielsa, P. Casari, and J. Widmer, “Single-and multiple-
access point indoor localization for millimeter-wave networks,” IEEE
Trans. Wireless Commun., vol. 18, no. 3, pp. 1927-1942, 2019.

R. W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. M.
Sayeed, “An overview of signal processing techniques for millimeter
wave MIMO systems,” IEEE Journal of Selected Topics in Signal
Processing, vol. 10, no. 3, pp. 436453, 2016.

Y. Ge, F. Wen, H. Kim, M. Zhu, F. Jiang, S. Kim, L. Svensson,
and H. Wymeersch, “5G SLAM using the clustering and assignment
approach with diffuse multipath,” Sensors (Basel, Switzerland), vol. 20,
no. 16, August 2020. [Online]. Available: https://doi.org/10.3390/
$20164656

A. Richter, “Estimation of radio channel parameters: Models and algo-
rithms,” Ph.D. dissertation, Ilmenau University of Technology, 2005.
K. Venugopal, A. Alkhateeb, N. G. Prelcic, and R. W. Heath, “Channel
estimation for hybrid architecture-based wideband millimeter wave
systems,” IEEE Journal on Selected Areas in Communications, vol. 35,
no. 9, pp. 1996-2009, 2017.

A. B. Gershman, M. Riibsamen, and M. Pesavento, “One- and two-
dimensional direction-of-arrival estimation: An overview of search-free
techniques,” Signal Processing, vol. 90, no. 5, pp. 1338 — 1349, 2010.
F. Jiang, F. Wen, Y. Ge, M. Zhu, H. Wymeersch, and F. Tufvesson,
“Beamspace multidimensional ESPRIT approaches for simultaneous
localization and communications,” arXiv preprint arXiv:2111.07450,
2021.

Z. Abu-Shaban, X. Zhou, T. Abhayapala, G. Seco-Granados, and
H. Wymeersch, “Error bounds for uplink and downlink 3D localiza-
tion in 5G millimeter wave systems,” IEEE Transactions on Wireless
Communications, vol. 17, no. 8, pp. 4939-4954, 2018.

J. L. Williams, “Marginal multi-Bernoulli filters: RFS derivation of
MHT, JIPDA, and association-based MeMBer,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 51, no. 3, pp. 1664-1687, 2015.
A.F Garcia-Ferndndez, J. L. Williams, K. Granstrom, and L. Svensson,
“Poisson multi-Bernoulli mixture filter: Direct derivation and imple-
mentation,” [EEE Transactions on Aerospace and Electronic Systems,
vol. 54, no. 4, pp. 1883-1901, 2018.

M. Fatemi, K. Granstrom, L. Svensson, F. J. Ruiz, and L. Hammarstrand,
“Poisson multi-Bernoulli mapping using Gibbs sampling,” IEEE Trans-
actions on Signal Processing, vol. 65, no. 11, pp. 2814-2827, 2017.
R. P. Mahler, Advances in Statistical Multisource-Multitarget Informa-
tion Fusion. Artech House, 2014.

S. S. Blackman and R. Popoli, Design and analysis of modern tracking
systems. Artech House, 1999.

A. S. Rahmathullah, A.F Garcia-Ferndndez, and L. Svensson, “General-
ized optimal sub-pattern assignment metric,” in 20th IEEE International
Conference on Information Fusion (Fusion), 2017.

R. P. Mahler, “Optimal/robust distributed data fusion: A unified ap-
proach,” in Signal Processing, Sensor Fusion, and Target Recognition
IX, vol. 4052. SPIE, 2000, pp. 128-138.

G. Battistelli, L. Chisci, C. Fantacci, A. Farina, and A. Graziano,
“Consensus CPHD filter for distributed multitarget tracking,” IEEE J.
Sel. Topics Signal Process., vol. 7, no. 3, pp. 508-520, Jun 2013.

M. Frohle, K. Granstrom, and H. Wymeersch, “Decentralized Poisson
multi-Bernoulli filtering for vehicle tracking,” IEEE Access, vol. 8, pp.
126414-126 427, 2020.


https://doi.org/10.3390/s20164656
https://doi.org/10.3390/s20164656

	Introduction
	Models for bistatic and monostatic sensing
	State Models
	Signal Models
	Bistatic Sensing
	Monostatic Sensing

	Measurement Models

	Filters for Mapping and SLAM at BS and UE
	Basics of PMB Density
	PMB-based Filters for Bistatic and Monostatic Sensing
	Bistatic Sensing
	Monostatic Sensing
	Output of the Filters


	Fusion of Two Sensing Modalities
	Map Fusion
	Map Matching
	Component Fusion

	UE State Fusion

	Numerical Results
	Simulation Environment
	Results

	Conclusions
	Appendix: Map Fusion
	Fusion of Two Bernoullis
	Fusion of a Bernoullis with a PPP
	Fusion of two PPPs

	References

