
RansomAI: AI-powered Ransomware
for Stealthy Encryption

Jan von der Assen1, Alberto Huertas Celdrán1, Janik Luechinger1

Pedro Miguel Sánchez Sánchez2, Gérôme Bovet3, Gregorio Martı́nez Pérez2, Burkhard Stiller1

1Communication Systems Group CSG, Department of Informatics, University of Zurich UZH, CH–8050 Zürich, Switzerland
[vonderassen, huertas, stiller]@ifi.uzh.ch, janik.luechinger@uzh.ch

2Department of Information and Communications Engineering, University of Murcia, 30100–Murcia, Spain gregorio@um.es
3Cyber-Defence Campus, armasuisse Science & Technology, CH–3602 Thun, Switzerland gerome.bovet@armasuisse.ch

Abstract—Cybersecurity solutions have shown promising per-
formance when detecting ransomware samples that use fixed
algorithms and encryption rates. However, due to the current
explosion of Artificial Intelligence (AI), sooner than later, ran-
somware (and malware in general) will incorporate AI techniques
to intelligently and dynamically adapt its encryption behavior to
be undetected. It might result in ineffective and obsolete cyberse-
curity solutions, but the literature lacks AI-powered ransomware
to verify it. Thus, this work proposes RansomAI, a Reinforcement
Learning-based framework that can be integrated into existing
ransomware samples to adapt their encryption behavior and
stay stealthy while encrypting files. RansomAI presents an agent
that learns the best encryption algorithm, rate, and duration
that minimizes its detection (using a reward mechanism and
a fingerprinting intelligent detection system) while maximizing
its damage function. The proposed framework was validated in
a ransomware, Ransomware-PoC, that infected a Raspberry Pi
4, acting as a crowdsensor. A pool of experiments with Deep
Q-Learning and Isolation Forest (deployed on the agent and
detection system, respectively) has demonstrated that RansomAI
evades the detection of Ransomware-PoC affecting the Raspberry
Pi 4 in a few minutes with >90% accuracy.

Index Terms—Ransomware, Reinforcement Learning, Artifi-
cial Intelligence, Malware, Evasion

I. INTRODUCTION

With the growing progress of digitalization, companies have
become more dependent on information systems that uphold
their business missions. It has influenced a recent increment in
malware-based attacks targeting heterogeneous enterprises [1].
Among existing attack vectors, ransomware is one of the most
significant threats affecting companies due to its impact on
data and economic losses. In 2022, industries experienced a
rise of 87% in ransomware attacks [2]. Moreover, although
ransom payments are slowly declining [2], ransomware is still
a highly impactful threat to most companies. As an example,
IBM assessed in 2022 that the average loss of a ransomware
attack was 4.54M USD [3].

Detecting cyberattacks and ransomware, in particular, is
the first step toward mitigating their impact. As outlined by
recent work [4], dynamic detection approaches incorporating
behavioral data into machine and deep learning (ML and
DL) techniques have demonstrated to be highly effective
against ransomware. However, while these behavioral-based

approaches are not vulnerable to obfuscation (as static ap-
proaches), they rely on specific assumptions. In particular, both
classification and anomaly detection approaches assume that
malicious behavior is stable and static enough to allow ML/DL
models to differentiate it from normal or benign behavior [5].

However, integrating Artificial Intelligence (AI) into ran-
somware samples could change it by adding intelligent dynam-
icity to encryption behaviors. It would complicate the detection
since ransomware samples could learn the encryption rate
that maximizes impact while minimizing its detection. Fur-
thermore, the encryption rate could automatically change de-
pending on the device status. Therefore, the literature presents
an open challenge that focuses on studying the suitability of
integrating AI-based techniques into ransomware to learn how
and when to encrypt real devices while staying undetected.
This challenge is vital to later, in a second stage, evaluate the
detection capabilities of current cybersecurity mechanisms and
update them if needed.

This work fills this research gap and proposes RansomAI,
a framework using Reinforcement Learning (RL) and finger-
printing to maximize the stealth capabilities of ransomware
samples while maximizing their damage function. RansomAI
contains an RL-based agent that learns the optimum ran-
somware behavior (encryption rate, duration, and algorithm
combination) according to the reward received for each ran-
somware configuration and the device behavior. The reward
is calculated according to the output of a fingerprinting and
ML-based anomaly detection system and the encryption rate
of the selected ransomware configuration. A prototype of
RansomAI (available in [6]) that implements Deep Q-Learning
and Isolation Forest (for the agent and the anomaly detector,
respectively) has been integrated into a real ransomware called
Ransomware-PoC. The prototype effectiveness has been eval-
uated in a Raspberry Pi 4, acting as a crowdsensor through a
pool of experiments with six configurations of Ransomware-
PoC dealing with the encryption algorithm, rate, and duration.
The experiments have demonstrated that RansomAI evades the
detection of Ransomware-PoC in a few minutes and with high
accuracy.

The remainder of this paper is structured as follows. Sec-
tion II introduces the background and related approaches.

ar
X

iv
:2

30
6.

15
55

9v
1

 [
cs

.C
R

]
 2

7
Ju

n
20

23

Then Section III presents the problem and scenario tackled
by Section IV with the framework architecture and its imple-
mentation. The performance of the solution is demonstrated
in the experiments presented in Section V. Finally, Section VI
draws conclusions from the results.

II. RELATED WORK

In contrast to many works that demonstrate the applicability
of AI for defense, there are only a few papers discussing the
offensive perspective. TABLE I compares the most relevant
and recent ones. In [7]–[9], the authors leveraged RL to evade
a static detection system. Here, static detection refers to an
ML-based system that detects whether a piece of software is
malicious based on the static structure of the malware sample.
Thus, the three approaches consider RL to find an optimal
way to structure the malware sample before executing the
payload on the victim’s premises. This is achieved by relying
on an adversarial technique to evade the ML-based detection
system. None of these solutions consider ransomware, and
only [8] presents experimental results in a realistic scenario
where commercial antivirus systems were deployed in cloud-
based virtual machines.

Aside from using RL, [10] presented how Genetic Algo-
rithms can help with byte-level modifications to evade malware
detection. [11] proposed an ML model to inject strategic
system failure into a cyber-physical system. The model was
not used to address evasion but to optimize the time and
location of the failure. Therefore, no adversarial techniques
were used in that work. RoboTack was proposed in [12]
to estimate attacks impact instead of evading detection. A
neural network with three hidden layers gave insight into
the optimal deployment target, time, and strategy. Like the
previous two approaches, RoboTack was only evaluated in a
simulated environment.

While all aforementioned evasion approaches deal with a
static detection system, DeepLocker [13] is the first generic
malware that does not rely on static obfuscation for evasion. In
contrast, it achieves evasion by employing dynamic obfusca-
tion of arbitrary sources before the breach event. DeepLocker
encrypts the payload and injects itself into the target system,
making static analysis infeasible. The trigger conditions are
transformed into a deep neural network (DNN), encoding it in
another black box system. The DNN was trained on multiple
target markers (e.g., system-level features, geolocation, input

TABLE I
RELATED WORK USING AI FOR OFFENSIVE PURPOSES

Paper Attack Obf. Evasion Tech. Execution Eval.

[7] 2018 Adv. Yes Static RL Offline Sim.
[8] 2022 Adv. Yes Static RL Offline Real
[9] 2021 Adv. Yes Static RL Offline Sim.
[10] 2019 Malw. Yes Static GA Offline Sim.
[11] 2019 Malw. No - ML Online Simul.
[12] 2020 Adv. No - ML Online Sim.
[13] 2022 Malw. Yes Hybrid DL Offline Real

This Malw. No Dynamic RL Online Real

and output systems). Upon recognizing the target, these mark-
ers can be converted into the encryption key, unleashing the
payload. DeepLocker was evaluated in a real scenario.

In conclusion, while several approaches leverage AI for
malware, most assume a static defense model. Furthermore,
most solutions rely on adversarial attacks for evasion, thereby
focusing on optimizing the malware before its execution.
Finally, most works do not present evaluation in realistic
scenarios, and no work is focused on ransomware, which is
currently one of the most harmful malware families.

III. PROBLEM STATEMENT & SCENARIO DESCRIPTION

Some of the most recent and promising cybersecurity so-
lutions combine fingerprinting and ML to successfully detect
anomalies and classify ransomware samples [14]. However,
they do not consider ransomware adapting its encryption
mechanisms according to specific criteria to stay undetected.
Therefore, this work seeks to answer the following question:
Is it possible to effectively and automatically evade novel
detection systems by incorporating AI-based techniques into
ransomware? Here, the main goal of AI would be to learn and
select in an online and autonomous fashion what malicious
configuration maximizes encryption while minimizing its de-
tection. In addition, if evasion is possible, the next question
would be: How much time is needed to adapt the ransomware
behavior? This work considers the following scenario to tackle
these questions.

• A Raspberry Pi 4 acting as a real sensor of Elec-
troSense [15], a platform that monitors the radio fre-
quency spectrum. The Raspberry Pi would host the
intelligent fingerprinting detection system that must be
evaded. More information about the potential detection
mechanism can be found in [14].

• An extended version of Ransomware-PoC composed of
i) a client running on the Raspberry Pi and encrypting
files by using different algorithms, rates, and duration;
and ii) a command and control (C&C) server that selects
between six different configurations (see TABLE II) the
encryption setup executed by the client. It is important to
mention that the C&C only has control over the client, so
it is not able to change the configuration of the Raspberry
Pi or the anomaly detector.

IV. RansomAI ARCHITECTURE

This section presents the design and implementation details
of RansomAI, a framework adding intelligence to existing

TABLE II
RANSOMWARE CONFIGURATIONS

Conf. Algorithm Rate (B/s) Burst Duration Burst Pause (s)

1 ChaCha20 16 1 file 60
2 AES-CTR 565’565.65 unlimited 0
3 Salsa20 632’834.80 unlimited 0
4 AES-CTR 500 10 s 5
5 ChaCha20 200 20 s 40
6 Salsa20 200 120 s 30

Agent
(DQ-Learning)

Environment
(Raspberry Pi)

Action
(Ransomware
Configuration)

State
(Fingerprint

Monitor)

Anomaly
Detector

Ransomware
Client

Ransomware
C&C

Reward

Fig. 1. RansomAI Architecture

ransomware samples to evade detection systems while max-
imizing encryption. Fig. 1 shows the main components of
RansomAI, which is available in [6].

In summary, the Agent uses RL to learn and deploy (inter-
acting with the C&C) the best ransomware configuration (from
a list of existing ones, see TABLE II). The learning process is
driven by the feedback provided by a Reward function, which
prioritizes the ransomware configuration that maximizes the
encryption rate while minimizing its detection. For that, the
Reward function computes the output of an Anomaly Detector
that uses behavioral fingerprinting and ML, and the encryption
rate of the selected ransomware configuration. More in detail,
the Anomaly Detector (which tries to mimic a genuine system
potentially deployed in the Raspberry Pi) compares the current
state (behavior) of the Raspberry Pi with its normal one (mon-
itored when it is not under attack). The Fingerprint Monitor is
responsible for continuously gathering the Raspberry Pi states.
All the previous components are deployed on the server where
the C&C runs, except the Fingerprint Monitor, which runs on
the Raspberry Pi with the Ransomware client. More details
about each component are provided below.

A. State

A state is the agent vision of the environment (Raspberry
Pi) at a given time. Modeling states precisely is crucial to
allow the agent to understand the impact of each action on
the environment and learn proper actions.

RansomAI proposes behavioral fingerprinting to represent
states. In particular, it uses the perf Linux command to
collect different events from system calls, CPU, device drivers,
scheduler, network, file system, virtual memory, and random
numbers families. The reason for selecting these heteroge-
neous data sources is to detect small perturbations produced
by encryption phases and later evade robust detection systems.
More in detail, 50 features were chosen from the previous
families. For this selection, 103 features were initially moni-
tored in time windows of 5 s (decided according to previous
work [14]) during 8 hours of Raspberry Pi normal behavior
(sensor without being attacked). Then, duplicated, temporal,
and constant features were removed during a data cleaning

process. All remaining features were plotted, and 28 features
whose normal behavior was volatile overall fingerprints were
manually identified and subsequently dropped. Finally, fea-
tures with more than 99% correlation were removed. After the
whole process and as mentioned, 50 features were selected to
create the device fingerprints.

B. Action

Actions are the way in which the agent interacts with
the environment. In RansomAI, actions correspond to the
execution of the six ransomware configurations created in the
extended version of Ransomware-PoC (see TABLE II). It is
important to mention that the original version of Ransomware-
PoC provides a fixed encryption configuration (in terms of
algorithm and rate), and this work extended it with new
functionality in terms of different algorithms, encryption rates,
and pauses between bursts.

C. Anomaly Detector

The Anomaly Detector component is critical for RansomAI
since it tries to mimic the functionality of existing novel
detection systems that might be deployed on the Raspberry
Pi to detect ransomware attacks. Specifically, its outputs are
used by the Reward function to provide positive or negative
feedback for each encryption configuration.

RansomAI proposes the combination of unsupervised ML
and behavioral fingerprint. More in detail, it considers an
anomaly detection system to model the normal behavior of
the Raspberry Pi (acting as a sensor of ElectroSense) and
detect anomalies produced by each ransomware configuration.
The behavior of the device is represented by the 50 features
selected to model the environment state (previously described).
These features cover as many different data sources as possible
to detect changes in device resource usage. Then, different un-
supervised ML models such as Isolation Forest, Autoencoder,
Local Outlier Factor, and One Class-Support Vector Machine
were trained with the normal behavior of the device (running
for 8 hours) and evaluated with the normal and six ransomware
configurations. Isolation Forest was selected for the prototype
implementation after analyzing the performance of each model
when detecting normal and under-attack behaviors. More in
detail and as can be seen in TABLE III, normal behavior and
configurations 2 and 3 were correctly detected with almost
89% True Negative Rate (TNR) and 0% False Negative Rate
(FNR), respectively. Then, configurations 1, 4, 5, and 6 were
incorrectly detected as normal behavior with 77-91% FNR.
These results were achieved with a 5% contamination factor
in Isolation Forest hyperparameters. At this point, it can be
concluded that it is feasible to encrypt files without being
detected by novel works. However, evaluating if RansomAI
can automatically learn the optimum encryption configuration
within an acceptable time is still essential.

D. Reward

Positive and negative rewards allow the Agent to learn if se-
lected ransomware configurations are good or bad. RansomAI

provides rewards according to the output of the anomaly de-
tector and the encryption rate of the selected configuration. In
other words, if one ransomware configuration is not detected,
a higher encryption rate should be more favorable than a lower
encryption rate. Moreover, if the ransomware configuration is
detected, a lower encryption rate is worse than a higher one.
In summary, encryption time is important and considered by
the reward mechanism.

RansomAI proposes two separate reward functions, one
for hidden and another for detected encryption. After several
experiments and fine-tuning, Rhid(r) = 10 ∗ ln(r + 1) + h
and Rdet(r) = −d

max(r,1) − d are the two proposed reward
functions. In both functions, h and d are constants aiming to
distinguish clearly between rewards for hidden and detected
behaviors, and r is the current encryption rate. The constants
were set as h = 0 and d = 20 to avoid impacting the weights
in the network with unnecessarily high rewards. Therefore,
with the reward functions and the probability of being detected
(see TABLE III), the Agent should learn that configuration 4
is the most convenient because it achieves the best expected
average reward (0.8018∗62.166+0.1982∗(−20.04) = 45.87).
More in detail, following configuration 4, Ransomware-PoC
could encrypt approximately 200 KB per minute, 12 MB per
hour, 288 MB per day, and 8.6 GB per month without being
detected.

E. Agent

The agent of RansomAI considers RL and learns following
a trial-and-error approach. When the agent takes one action
(selects a ransomware configuration), the environment (Rasp-
berry Pi) changes to a new state (behavioral fingerprint called
afterstate) and receives a reward. This loop is repeated, and
sequences of the previous steps (state, action, afterstate, and
reward) are called episodes. An episode concludes when no
more actions can be taken.

In RansomAI, since the state space is vast due to the number
of features (50) modeling the behavior fingerprint and their
continuous values, a tabular approach for the RL model is
not feasible. Instead, a neural network is used together with
the Deep Q-Learning algorithm. Q-learning is an off-policy
temporal difference control algorithm defined by Q(St, At)←
Q(St, At) + α

[
Rt+1 + γ maxa Q(St+1, a) − Q(St, At)

]
.

Q is the learned action-value function that approximates the
optimal action-value function based on value estimates of
state-action pairs (S,A) and reward R independent of the
followed policy. In addition, the agent follows an epsilon-
greedy policy that decides with probability ϵ to take a random
action, which may not coincide with the current estimated
optimal action. This policy ensures the agent explores different

TABLE III
TPR AND FNR OF ISOLATION FOREST

Normal Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5 Conf. 6

88.94 91.62 0.62 0.21 80.18 82.05 77.38

actions to find the optimum one. Regarding the Agent neural
network, it has three fully-connected layers. The input layer
has 50 neurons (matching the features of the fingerprint), the
hidden layer has 25 neurons, and the output layer size is 6,
corresponding to the number of ransomware configurations.
The details regarding the hyperparameters selection, such as
exploration versus exploitation (ϵ and δ), learning rate (α),
discount factor (γ), hidden neurons, activation function, and
weights initialization, are provided in Section V.

V. EXPERIMENTS

This section evaluates the performance of RansomAI while
learning the optimum configuration to encrypt the Raspberry
Pi presented in Section III. For that, the First experiment
performs an individual search of hyperparameters to optimize
the agent accuracy and learning time. Then, the second shows
the learning accuracy across time.

A. Hyperparameters Search

The goal of this experiment is to find the optimum config-
uration of hyperparameters to maximize accuracy and reduce
the training time of RansomAI. In this sense, the following
hyperparameters of the RL-based Agent are considered: i)
exploration settings (ϵ, δ, α, and γ), ii) number of hidden
neurons in the neural network, iii) activation functions used
in the forward and backward pass of the neural network, and
iv) method for weight initialization in the neural network. The
following baseline configuration is fixed while one hyperpa-
rameter per test is fine-tuned. Episodes = 5,000, ϵ = 0.4, δ =
0.01, α = 0.0050, γ = 0.10, hidden neurons = 40, activation
= Log and SiLU, weights = He.

1) Exploration vs. Exploitation: It presents the trade-off
between exploring new actions to discover new states and
exploiting learned optimal actions. For different exploration
and exploitation configurations, TABLE IV shows the average
learning time of the Agent, the accuracy after training, the
number of episodes required to find the best encryption
configuration, and the average Q-value difference (AQD). As
can be seen, the exploration does not significantly impact the
training or learning duration, as most values for the average
training time are similar. Instead, the impact is manifested
in the final accuracy as well as the number of episodes
and AQD. The best setting (ϵ = 0.20, δ = 0.01) has the
highest performance considering the trade-off for exploration
and exploitation. It offers great accuracy, 99.63%, close to the
maximum of 99.84%, needs one of the lowest numbers of
episodes, and achieves high differences between the Q-values
of configuration 4 and the closest ones (5 and 6).

2) Learning Rate: It represents the weight given to the
update of the Q-values. If the step size is too small, the
current Q-value estimates will likely get stuck in a local
maximum. In contrast, when α is too large, convergence is
impossible in most cases. TABLE V shows that adjusting
the learning rate causes significant differences in the average
learning time. In this sense, it was infeasible to do a complete
hyperparameter exploration given the infinite value space.

TABLE IV
AGENT PERFORMANCE FOR DIFFERENT EXPLORATION SETTINGS

Settings Learning (min) Accuracy Episodes AQD

ϵ = 0.10, δ = 0.01 140.2 99.84% 50 80.1
ϵ = 0.20, δ = 0.01 141.8 99.63% 40 125.1
ϵ = 0.30, δ = 0.01 139.1 99.34% 40 60.5
ϵ = 0.40, δ = 0.01 139.4 99.24% 150 60.5
ϵ = 0.50, δ = 0.01 126.7 99.24% 300 59.5
ϵ = 0.10, δ = 0.001 127.0 98.75% 400 33.3
ϵ = 0.20, δ = 0.001 126.0 97.19% 120 55.3
ϵ = 0.30, δ = 0.001 131.4 52.43% 260 13.5
ϵ = 0.40, δ = 0.001 130.1 94.64% 900 61.4
ϵ = 0.50, δ = 0.001 124.7 92.81% 1400 27.0

However, α = 0.0050 is the best configuration considering
the average training time and episodes to learn the best
encryption configuration (configuration 4). Although other
variants achieved a higher AQD, they required more episodes
and time to find configuration 4 as the best. In summary, it
trades the speed against distinction capabilities as the Q-values
for configuration 4 are very close to those of configurations 5
and 6. Nevertheless, given the presented selection of variants,
α = 0.0050 is considered the best approximation of the opti-
mal setting due to its clear advantage in speed and accuracy.

TABLE V
AGENT PERFORMANCE FOR DIFFERENT LEARNING RATES

Learning rate Learning (min) Accuracy Episodes AQD

α = 0.0001 331.3 00.10% – 0.7
α = 0.0005 124.9 99.24% 320 69.7
α = 0.0010 149.5 99.34% 200 74.0
α = 0.0050 139.4 99.24% 150 60.5
α = 0.0100 162.1 99.25% 150 45.7

3) Discount Factor: It controls the importance of future
estimations over the current one. With γ approaching 1, the
agent considers future value estimations more strongly. In
contrast, with γ = 0, the agent only maximizes immediate
estimates. TABLE VI shows the impact of the discount factor
on the average learning time, the accuracy, the number of
episodes, and the AQD values to find configuration 4 as the
best one. Interestingly, the accuracy remains relatively stable
for a discount factor between 0.2 and 0.6. Analyzing the
results, the setting γ = 0.10 is considered best as it has the
shortest average training time and the third lowest number of
episodes. In addition, it provides a reasonable distinction of
Q-values from configuration 4 (the best) and the rest.

4) Hidden Neurons: TABLE VII shows how the number of
neurons in the hidden layer affects the learning time, accuracy,
number of episodes, and AQD of the agent. Sizes from 10 to
50 neurons were tested, achieving the best setup configuration
with 25 hidden neurons.

5) Activation Function: TABLE VIII lists the activation
functions evaluated in the first and second layers of the neural
network and their impact on the learning process. As can be
seen, the activation function significantly impacts the average
training time. More in detail, the Log-SiLU setting obtains

TABLE VI
AGENT PERFORMANCE FOR DIFFERENT DISCOUNT FACTORS

Discount Learning (min) Accuracy Episodes AQD

γ = 0.00 154.1 54.03% 110 18.7
γ = 0.10 139.4 99.24% 150 60.5
γ = 0.20 161.8 99.22% 260 86.1
γ = 0.30 158.1 99.29% 130 81.5
γ = 0.40 163.2 99.18% 130 102.5
γ = 0.50 162.3 99.29% 300 34.4
γ = 0.60 152.0 99.21% 320 71.8
γ = 0.70 156.5 51.80% 400 63.8
γ = 0.80 187.0 51.89% 410 29.8
γ = 0.90 207.6 51.79% 300 07.3
γ = 1.00 253.0 49.69% 760 83.2

TABLE VII
AGENT PERFORMANCE FOR DIFFERENT HIDDEN NEURONS

Neurons Learning (min) Accuracy Episodes AQD

10 155.3 99.46% 220 44.6
20 155.4 99.45% 150 45.2
25 195.8 99.52% 110 63.9
30 198.7 99.42% 240 51.4
35 200.4 99.33% 100 56.6
40 139.4 99.24% 150 60.5
45 195.5 99.26% 130 42.5
50 204.0 99.21% 580 53.2

the best results because, although Log-ReLU achieves slightly
better accuracy, many Q-values are equal to zero due to the
dying ReLU problem.

TABLE VIII
AGENT PERFORMANCE FOR DIFFERENT ACTIVATION FUNCTIONS

Activation Func. Learning (min) Accuracy Episodes AQD

Log - Log 343.6 00.02% – -0.0022
Log - ReLU 110.9 99.32% 350 49.9
Log - SiLU 139.4 99.24% 150 60.5
ReLU - Log 109.2 00.25% – -0.3
ReLU - ReLU 334.3 00.07% – -10.5
ReLU - SiLU 151.4 00.18% – -27.9
SiLU - Log 137.2 00.27% – -3300
SiLU - ReLU 361.0 00.11% – 0
SiLU - SiLU 171.5 00.12% – -36.7

6) Weights Initialization: Plain random-uniform distri-
bution, Xavier uniform distribution, and He initialization
were tested. The plain uniform initialization randomly selects
weights from a uniform distribution in the [0, 1] range. In
the Xavier initialization, the distribution is dynamically scaled
according to the dimensions of the previous layer. Lastly,
He initialization generates random numbers selected from a
standard normal distribution. After evaluating the three of
them, Xavier provided the best learning time (105.4 min),
accuracy (99.31%), and the number of episodes (90).

B. Agent Final Performance

According to the results obtained in the previous experi-
ment, the Agent of RansomAI is configured with the following
configuration of hyperparameters: ϵ = 0.20, δ = 0.01,

α = 0.005, γ = 0.30, hidden neurons = 25, activation
functions = Log-SiLU. TABLE IX shows the accuracy with
which the Agent selects configuration 4 for different episodes
and therefore learning times. As can be seen, >96% accuracy
is obtained in less than 10 minutes.

TABLE IX
AGENT PERFORMANCE WITH BEST HYPERPARMETER CONFIGURATION

Episodes Learning (min) Accuracy

100 2.0 91.43%
200 5.1 94.86%
300 6.5 96.32%
400 8.1 96.21%
1’000 23.9 98.61%
2’000 66.4 99.07%
5’000 172.2 99.71%

In conclusion, the obtained results demonstrated that Ranso-
mAI is able to learn how to evade intelligent detection systems
in just a few minutes and with promising accuracy. Therefore,
more efforts are needed to improve detection systems against
intelligent ransomware samples.

VI. SUMMARY AND FUTURE WORK

This work proposes RansomAI, a framework able to in-
telligently and automatically adapt the encryption behaviors
of ransomware and avoid being detected by dynamic defense
mechanisms. The main contribution of RansomAI is an Agent
that combines RL and device fingerprinting to learn the
encryption rate, duration, and algorithm combination that max-
imizes encryption and minimizes detection. The learning task
is driven by a reward mechanism that prioritizes the encryption
rate and stealth capabilities of ransomware configurations.
Stealth is evaluated using an anomaly detection system that
uses ML and fingerprinting, as proposed in the literature.

RansomAI has been deployed in a real scenario composed
of a Raspberry Pi 4 acting as a crowd-sensor affected by
a recent ransomware called Ransomware-PoC. More in de-
tail, the components of RansomAI have been integrated into
Ransomware-PoC, which has been modified to dynamically
adapt its algorithms, encryption rates, and duration. A pool of
experiments combining Deep Q-Learning and Isolation Forest
(in the Agent and detection system, respectively) has demon-
strated that RansomAI evades the detection of Ransomware-
PoC affecting the Raspberry Pi 4 in 2 minutes with >90%
accuracy.

Future work plans to evaluate the functionality of RansomAI
with different benign device behaviors to show its adaptability.
It is also planned to try other malware samples, such as
backdoors leaking sensitive data. Finally, it is expected to work
on intelligent and adaptive detection mechanisms to detect
RansomAI.

ACKNOWLEDGMENT

This work has been partially supported by (a) the Swiss
Federal Office for Defense Procurement (armasuisse) with the
CyberForce project (CYD-C-2020003) and (b) the University
of Zürich UZH.

REFERENCES

[1] World Economic Forum, “The Global Risks Report 2023,” 2023, https:
//www3.weforum.org/docs/WEF Global Risks Report 2023.pdf, Last
Visit January 2023.

[2] J. Gillum, “Ransomware Attacks on Industrial Firms
Increased by 87% in 2022,” https://www.bnnbloomberg.ca/
ransomware-attacks-on-industrial-firms-increased-by-87-in-2022-1.
1883569, 2023, last Visit March 2023.

[3] IBM, “Cost of a data breach 2022,” https://www.ibm.com/reports/
data-breach, 2023, last Visit March 2023.

[4] P. M. S. Sánchez, J. M. J. Valero, A. H. Celdrán, G. Bovet, M. G.
Pérez, and G. M. Pérez, “A Survey on Device Behavior Fingerprinting:
Data Sources, Techniques, Application Scenarios, and Datasets,” IEEE
Communications Surveys & Tutorials, vol. 23, pp. 1048–1077, 2021.

[5] P. M. S. Sanchez, A. H. Celdran, G. Bovet, G. M. Perez, and B. Stiller,
“Specforce: A framework to secure iot spectrum sensors in the internet
of battlefield things,” IEEE Communications Magazine, pp. 1–7, 2022.

[6] J. Lüchinger, “RansomAI source code,” https://github.com/jluech/roar
client, 2023, last Visit March 2023.

[7] H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth, “Learning
to evade static PE machine learning malware models via reinforcement
learning,” 2018. [Online]. Available: https://arxiv.org/abs/1801.08917

[8] W. Song, X. Li, S. Afroz, D. Garg, D. Kuznetsov, and H. Yin,
“Mab-malware: A reinforcement learning framework for blackbox
generation of adversarial malware,” in Proceedings of the 2022 ACM
on Asia Conference on Computer and Communications Security,
ser. ASIA CCS ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 990–1003. [Online]. Available:
https://doi.org/10.1145/3488932.3497768

[9] R. Labaca-Castro, S. Franz, and G. D. Rodosek, “Aimed-rl: Exploring
adversarial malware examples with reinforcement learning,” in Machine
Learning and Knowledge Discovery in Databases. Applied Data Science
Track, Y. Dong, N. Kourtellis, B. Hammer, and J. A. Lozano, Eds.
Cham: Springer International Publishing, 2021, pp. 37–52.

[10] R. L. Castro, C. Schmitt, and G. Dreo, “Aimed: Evolving malware
with genetic programming to evade detection,” in 2019 18th IEEE
International Conference On Trust, Security And Privacy In Computing
And Communications/13th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE), 2019, pp. 240–247.

[11] K. Chung, Z. T. Kalbarczyk, and R. K. Iyer, “Availability attacks
on computing systems through alteration of environmental control:
Smart malware approach,” in Proceedings of the 10th ACM/IEEE
International Conference on Cyber-Physical Systems, ser. ICCPS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
1–12. [Online]. Available: https://doi.org/10.1145/3302509.3311041

[12] S. Jha, S. Cui, S. Banerjee, J. Cyriac, T. Tsai, Z. Kalbarczyk, and
R. K. Iyer, “ML-driven malware that targets AV safety,” in 2020 50th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2020, pp. 113–124.

[13] M. P. Stoecklin, “Deeplocker: How AI can power a stealthy new
breed of malware,” Security Intelligence, August, vol. 8, 2018,
accessed: 2022-10-26. [Online]. Available: https://securityintelligence.
com/deeplocker-how-ai-can-power-a-stealthy-new-breed-of-malware/

[14] A. Huertas Celdrán, P. M. Sánchez Sánchez, M. Azorı́n Castillo,
G. Bovet, G. Martı́nez Pérez, and B. Stiller, “Intelligent and behavioral-
based detection of malware in iot spectrum sensors,” International
Journal of Information Security, pp. 1–21, 2022.

[15] S. Rajendran, R. Calvo-Palomino, M. Fuchs, B. Van den Bergh, H. Cor-
dobés, D. Giustiniano, S. Pollin, and V. Lenders, “Electrosense: Open
and big spectrum data,” IEEE Communications Magazine, vol. 56, no. 1,
pp. 210–217, 2017.

 https://www3.weforum.org/docs/WEF_Global_Risks_Report_2023.pdf
 https://www3.weforum.org/docs/WEF_Global_Risks_Report_2023.pdf
https://www.bnnbloomberg.ca/ransomware-attacks-on-industrial-firms-increased-by-87-in-2022-1.1883569
https://www.bnnbloomberg.ca/ransomware-attacks-on-industrial-firms-increased-by-87-in-2022-1.1883569
https://www.bnnbloomberg.ca/ransomware-attacks-on-industrial-firms-increased-by-87-in-2022-1.1883569
https://www.ibm.com/reports/data-breach
https://www.ibm.com/reports/data-breach
https://github.com/jluech/roar_client
https://github.com/jluech/roar_client
https://arxiv.org/abs/1801.08917
https://doi.org/10.1145/3488932.3497768
https://doi.org/10.1145/3302509.3311041
https://securityintelligence.com/deeplocker-how-ai-can-power-a-stealthy-new-breed-of-malware/
https://securityintelligence.com/deeplocker-how-ai-can-power-a-stealthy-new-breed-of-malware/

	Introduction
	Related Work
	Problem Statement & Scenario Description
	RansomAI Architecture
	State
	Action
	Anomaly Detector
	Reward
	Agent

	Experiments
	Hyperparameters Search
	Exploration vs. Exploitation
	Learning Rate
	Discount Factor
	Hidden Neurons
	Activation Function
	Weights Initialization

	Agent Final Performance

	Summary and Future Work
	References

