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Abstract—Vehicle trajectory prediction is a promising tech-
nology for improving the performance of Cellular Vehicle-to-
Everything (C-V2X) applications by providing future road states.
Various vehicle trajectory prediction methods have been proposed
to increase the accuracy of the predicted trajectory. Although
the existing vehicle trajectory prediction methods can accurately
predict the future trajectory under the assumption that data com-
ply with the Independent and Identically Distributed (IID), their
performance is seriously degraded in practical implementation
due to the ubiquitous distribution shifts in vehicle trajectory data.
To improve the universality of the vehicle trajectory prediction
method, generalizing the method to an environment that never
appeared in the training data, namely, the Domain Generalization
(DG) task, should be considered. Thus, we propose a plug-and-
play inFORmaTive caUsality-based vehicle trajectory predictioN
architecturE (FORTUNE) to improve the DG capability of vehicle
trajectory prediction methods. First, a novel structural causal
model (SCM) of vehicle trajectory prediction is established to
simulate the causality of the data-generating process. Second, we
utilize the principle of mutual information to learn the invariant
representation of the SCM. Third, an invariant knowledge-
transferring module is proposed to increase learning ability
without destroying the structure of the original model. The results
from simulation experiments demonstrate that the proposed
scheme can significantly improve the DG capability of vehicle
trajectory prediction methods.

Index Terms—Domain Generalization, Structural Causal
Model, Mutual Information, Invariant Knowledge-Transferring
Module

I. INTRODUCTION

As a promising communication technology, Cellular
Vehicle-to-Everything (C-V2X) enables vehicles to be con-
nected with every communication device [1]. In this way, mas-
sive applications for intelligent transportation systems (ITS),
such as mobile vehicle computing (MVC) [2] and collision
warning systems [3] can be supported by the C-V2X system.
However, the performance of most existing works in these
fields is restricted due to the highly dynamic road state. Vehicle
trajectory prediction is known as an emerging technique to
improve the performance of C-V2X applications by bringing
future road insight into C-V2X services [4]. Therefore, it is
crucial to ensure the excellent performance of the vehicle
trajectory prediction method.

More recently, various deep learning-based methods have
been proposed to extract the interaction between the vehicle

and its surroundings [5] to predict future vehicle trajectories.
Nevertheless, achieving precise vehicle trajectories merely
based on the interaction between the vehicle and its sur-
roundings is unrealistic due to the ignorance of the driving
maneuvers. Consequently, simultaneously considering the in-
teraction and driving maneuvers has become a major point
for improving the accuracy of predicted vehicle trajectories
[6]. However, these methods are all based on the assumption
that the training dataset and the test dataset comply with the
principle of Independently and Identically Distributed (IID).
It is challenging to ensure their performance in practical
implementation due to the ubiquitous distributional shifts
caused by the transformation of the environment (domain)
[7]. For instance, the distributions of historical and future
vehicle trajectories on roads with different topologies or traffic
laws are various. The distributional shifts would cause serious
performance degradation in trajectory prediction because of
insufficient prior knowledge. Specifically, the accuracy of
vehicle trajectory prediction methods may be unexpectedly
low when the test domain is not included in the training
domain set. Thus, achieving the high performance of vehicle
trajectory prediction methods even under the transformation of
domains, namely, domain generalization (DG) capability [8],
[9], is a critical issue that should be addressed.

To effectively improve the DG capability of the existing
vehicle trajectory prediction methods, we propose a plug-
and-play inFORmaTive caUsality-based vehicle trajectory
predictioN architecturE (FORTUNE), which consists of an
invariant representation learning (IRL) module and an invariant
knowledge-transferring (IKT) module. First, we establish a
structured causal model (SCM) to simulate the data-generating
process of the vehicle trajectory prediction task and guide the
learning of variant representation. Second, inspired by [10],
the mutual information is utilized to formalize the optimization
objective of the IRL module. To further improve the learning
ability of methods and simultaneously retain concerns of
the original methods for time series prediction, such as the
analysis of driving style, the IKT module is devised. Thereby,
FORTUNE can assist any existing traditional vehicle trajectory
prediction method in improving the DG capability. The main
contributions of this paper can be summarized as follows,



• An SCM of vehicle trajectory prediction is established
to guide the methods to learn the invariant representation
and reduce the impact of spurious features. To the best
of our knowledge, this is the first work that introduces
the structured causal model into the vehicle trajectory
prediction task.

• An informative causality-based IRL module is devised.
The mutual information is used to formalize the target of
the SCM of vehicle trajectory prediction to avoid learning
pseudo-invariant features and geometric skews in the
data. Moreover, we derive the tractable loss function from
the above-formalized optimization objective for vehicle
trajectory prediction.

• An IKT module is proposed to improve the learning
efficiency and avoid the reduction of basic generalization
ability and the damage to original models. In this way, a
plug-and-play invariant learning architecture is obtained
to empower the existing vehicle trajectory prediction
methods without destroying the structure of the original
model.

The rest of this paper is organized as follows. Section II
describes the system overview of our plug-and-play invariant
learning architecture and problem formulation. The details of
this architecture are presented in Section III. Experimental
evaluations and discussions are presented in Section IV. The
conclusion of this paper is presented in Section V.

II. SYSTEM MODEL

A. System Overview
In order to enable the vehicle trajectory prediction model

to accurately predict the future trajectories of vehicles in the
case of brand-new environments, we propose an informative
causal vehicle trajectory prediction architecture. The overall
architecture of FORTUNE is shown in Fig. 1, which is a plug-
and-play method for any existing traditional vehicle trajectory
prediction method. FORTUNE consists of three components,
including the encoder of input, the invariant representation
learning (IRL) module, and the domain invariant knowledge-
transferring (IKT) module, respectively. The encoder of input
is a set of parameters θg for extracting the hidden features
from the input, and it is a universal structure that can be
replaced by any encoder in the existing vehicle trajectory
prediction methods. The IRL module focuses on learning the
features that are the same across domains and considers the
causality of vehicle trajectory prediction. In addition, adaptors
θa1

and θa2
are utilized to link to the encoder and the decoder,

respectively, to suit their feature dimensions. The structure of
the adaptor is different for various vehicle trajectory prediction
methods. Furthermore, the IKT module is proposed to improve
learning ability and avoid losing generalization ability under
IID. Specifically, this module distills the invariant knowledge
from the IRL module to the original decoder, as shown by the
purple dotted line in Fig. 1. In this way, the data flow only
passes the encoder and the original decoder in the inference
process, as shown by the red line in Fig. 1. The details of
those two modules will be discussed in Section III.

B. Problem Formulation

In this section, we discuss the objective of this paper and
formulate the essential problem of the study. First, the input
and future trajectory spaces can be presented as X and Y ,
respectively. Their joint distribution P k

XY , XY ∈ X × Y is
related to the domain Dk, namely, a specific road. The set
of domain is assumed as D = {Dk}Kk=1. There are a set of
input-future trajectory pairs in each domain, and each pair is
defined as Dk = {(Xk

i , Y
k
i )}Nki=1, where Nk represents the

number of input-future trajectory pairs in this domain. The
Xk

i = {xki,t}
t0
t=t0−l is the input sequence of vehicle i in time

t in domain k, where l represents the length of the input
sequence. xki,t represents the state of itself and its surrounding
vehicles, including coordinates, velocity, acceleration, vehicle
type, lane number, etc. Y k

i = {yki,t}
t0+T
t=t0+1 is the future

trajectory sequence of vehicle i, where T is the length of
the prediction window. yki,t is the future coordinate of this
vehicle in time t. The objective of traditional vehicle trajectory
prediction methods is to reduce the deviation between the real
and the predicted future trajectory, which is defined as,

min
θψ,θf

N∑
i

L(f(ψ(Xi)), Yi) (1)

where N represents the total number of the dataset, and
ψ and f represent the encoder and decoder, respectively.
However, this optimization objective merely focuses on the
overall performance of the vehicle trajectory model, which
makes it unable to generalize to a new domain in practical
implementation. Therefore, we propose a novel optimization
objective to enable vehicle trajectory prediction methods to
generalize to a brand-new environment that never appeared in
the training set. The novel optimization objective is defined
as,

min
θψ,θf

K∑
k

LDk(f(ψ(Xk
i )), Y

k
i ),

s.t. θf ∈ argmin
θf̂

LDk(f̂(ψ(Xk
i )), Y

k
i ),

(2)

where f̂ is an optimal vehicle trajectory predictor in the
domain k. However, it is not a tractable optimization objective
because it is a bi-level optimization. Accordingly, we trans-
form it into a tractable optimization function. The details will
be discussed in Section III.

III. THE SOLUTION

This section exhaustively presents each component of FOR-
TUNE. First, a structural causal model of vehicle trajectory
prediction is discussed from the aspect of data-generating.
Second, we transfer the optimization objective in Eq. (2) into
a tractable optimization function by using mutual information.
Finally, we detail the IKT module.



Fig. 1. The overall architecture of the FORTUNE.

A. Invariant Causal Model

In this section, we propose a causal view of the data-
generating process in terms of vehicle trajectory to formalize
the DG problem of vehicle trajectory prediction. As shown
in Fig. 2, we establish an SCM to represent the causality of
generating vehicle trajectories. The full line with the arrow
represents the causal relationship between two nodes and the
dotted line denotes the non-causal correlation. Each node
in this SCM denotes a feature of the process of generating
vehicle trajectories. D represents the domain information of
the road, such as lane number and traffic rulers. I denotes
the driving state that is unobservable, which includes the
vehicle state and the driving style, for instance, prudence and
aggressiveness. The input X is mainly generated based on
two kinds of variables, namely, the causal feature Zc that is
the same across the domain and the domain-dependent feature
Za that is impacted by both environments and driving states.
Zc is the only causal feature of the future vehicle trajectory
Y . Za is related to D, I , and Y , but Za is not the reason
for Y . Therefore, we can get three important conditional
independence relations for the crucial nodes from the SCM
based on the concept of d−separation. First, the marginal
distribution of the future trajectory Y is related to the domain
D, which can be defined as Y ⊥̸⊥ D. Thus, it is difficult
to generalize the prediction model to a novel domain by
directly learning the relation between X and Y . Second, the
marginal distribution of Y is dependent on the domain D if
it is conditioned on both Za and Zc, which can be defined as
Y ⊥̸⊥ D|Za, Zc. Accordingly, the predicted trajectory depends
on the domain D if the encoder simultaneously extracts the
causal feature Zc and the domain-dependent feature Za, which
causes the vehicle trajectory prediction methods to fail to
generalize to the novel domain. Finally, the crucial conditional
independence relation for learning the invariant representation
from Fig. 2, namely, Y ⊥⊥ D|Zc, which means that Y is
independent of the domain D if only conditioned on Zc.
Thus, it is possible to generalize vehicle trajectory methods
into a novel environment by extracting Zc. In other words,
Z = ψ(X) should represent the invariant representation Zc

Fig. 2. Illustration of the SCM in terms of vehicle trajectory.

rather than the knowledge about Za. The above problem can
be formalized as,

min
θψ

dist(Zc, ψ(X)),

max
θψ

dist(Za, ψ(X)),
(3)

where dist(·) denotes the distance between two distributions.

B. Optimization Objective Of FORTUNE

However, considering that Zc and Za in Eq. (3) are both
unobservable, it is infeasible to compute those distances of
distribution. Therefore, we transform it into a tractable form
by using the mutual information to learn the invariant repre-
sentation of the vehicle trajectory prediction task, the Eq. (2)
can be redefined as,

max
θψ

I(ψ(X), Y )− βI(Y,D|ψ(X)), (4)

where I(·) means the mutual information of two random
variables. The mutual information represents the relevance
of those two random variables. In addition, the above opti-
mization objective for causal invariant representation may fail
due to ignoring pseudo-invariant features and geometric skews
[10]. Consequently, we also extend an extra penalty function
into the optimization objective, which can be defined as,

max
θψ

I(ψ(X), Y )− βI(Y,D|ψ(X))− γI(X,ψ(X)), (5)



where the penalty function I(X,ψ(X)) is used to avoid learn-
ing the spurious features caused by the pseudo-invariant fea-
ture and statistical geometric skews. The term I(ψ(X), Y )−
γI(X,ψ(X)) is the typical form of the information bottle [11].
Suppose the encoder obeys the distribution of p(ψ(X)|X) =
N (ψ(X)|ψµ(X), ψΣ(X)), where µ and Σ represent the mean
and covariance, respectively. In order to compute the tractable
loss function, we use the reparameterization trick to trans-
form ψ(X) as shown in Fig. 1, and the two adaptors are
used to adjust the feature dimension without changing the
architecture of the original model. In this way, we have
q(ψ(X)|X)dψ(X) = q(ϵ)dϵ, and Z = ψ(X, ϵ), ϵ ∼ N (0, 1).
Thus, the optimization objective of the information bottle can
be transformed as follows,

Lbottle = L2(Y, fi(ψ(X))) + γLZ(ψ), (6)

where the LZ = KL[p(Z|X, r(Z))], and fi denotes the
predictor. The term I(Y,D|ψ(X)) can be represented as,

I(Y,D|ψ(X)) = H(Y |ψ(X))−H(Y |D,ψ(X)), (7)

Based on the principle of maximum conditional entropy
[12], we have H(Y |ψ(X)) = E[V ar(Y |ψ(x))] and
H(Y |D,ψ(X)) = E[V ar(Y |ψ(x), D)], the loss function of
these two terms can be respectively defined as,

Li = L2(Y, fi(ψ(X))),

Le = L2(Y, fd(ψ(X), d))
(8)

where fd is the domain-dependent predictor. To better mini-
mize the I(Y,D|ψ(X)), we propose to use the form of the
mean square error to optimize the equation 7, the optimization
objective is defined as,

min
θψ

I(Y,D|ψ(X)) = L2(Li,Le), (9)

Finally, the overall loss function of the invariant representation
learning module can be defined as follows,

Linv = Lbottle + βL2(Li,Le). (10)

C. IKT Module

Given that the invariant representation learning module
could destroy the structure of existing vehicle trajectory pre-
diction methods and impact the focus of the original methods,
thereby reducing their generalization ability without domain
shift, we design an invariant knowledge-transferring module to
solve this problem. Inspired by the concept of self-distillation
[13], we transfer the invariant knowledge from the invariant
representation learning module into the original decoder. Un-
like self-distillation, the objectives of the two modules in our
architecture are different. In this way, the invariant represen-
tation learning module becomes a plug-and-play module to
improve the DG capability of the existing methods without
destroying their time series prediction structure. As shown in
Fig. 1, the knowledge from the invariant decoder fi is distilled
for the original decoder fo. In our architecture, there are
two routes for transferring knowledge, hidden distillation, and

output distillation. First, the loss function of hidden distillation
is defined as,

Lh = L2(ho, hi), (11)

where ho is the hidden features of the original decoder and hi
denotes the hidden features of the invariant decoder. The loss
function of output distillation is defined as,

Lo = (1− α)L2(Y
o, Y ) + αL2(Y

o, Y i), (12)

where Y o represents the output of the original decoder and
Y i denotes the output of the invariant decoder.

Finally, the total loss function of FORTUNE can be defined
as,

Ltotal = Linv + Lo + λLh. (13)

IV. RESULT AND DISCUSSION

This section demonstrates the performance of FORTUNE.
First, the basic settings of the experimental environment are
discussed. Then, we conduct sufficient experiments to evaluate
the performance of FORTUNE.

A. Evaluation Scenarios And Performance Metrics
To evaluate the performance of FORTUNE in terms of DG

of the vehicle trajectory prediction, extensive experiments in
the HighD [14] and NGSIM [15], [16] datasets are conducted
in this section. The HighD dataset contains 60 different roads
on German highways. The NGSIM dataset consists of data on
two roads, namely, the US101 highway and the I80 highway.
Our experiments are conducted on a machine with an Intel
Xeon Gold 6226R CPU@2.90GHZ, 128GB memory, and the
platform is based on Python 3.8 and Pytorch 1.12.1. Moreover,
the simulation parameters are shown in Table I.

TABLE I
SIMULATION PARAMETERS

Parameter Value
γ 5× 10−8

β 0.1
α 0.3
λ 0.02
learning rate 0.0005
batch size 128

Then, the performance metrics for evaluating FORTUNE
are introduced as follows,

• Root Mean Square Error (RMSE): It is used to measure
the root mean square deviation between the predicted
vehicle trajectory and the real vehicle trajectory. RMSE
is more sensitive to the large deviation compared with
MAE. RMSE is defined as,

RMSE =

√√√√ 1

N

M∑
i=1

(
Ŷi − Yi

)2

(14)

where M denotes the number of vehicles, Ŷi, and Yi
represent the real future trajectory and predicted future
trajectory of vehicle i, respectively.



• Mean Absolute Error (MAE): It measures the mean
absolute error between the generated and real future
vehicle trajectory. MAE is defined as,

MAE =
1

N

N∑
i=1

∣∣∣Ŷi − Yi

∣∣∣ (15)

We evaluate the effectiveness of FORTUNE for improving
the model ability of DG by comparing it with the following
different methods.

• Convolutional Social-LSTM (CS-LSTM) [17]: This paper
proposes an LSTM encoder-decoder model that learns
the interdependencies in vehicle motion by using convo-
lutional social pooling layers.

• Dual Learning Model (DLM) [18]: this paper proposes to
use lane occupancy and risk maps for predicting future
vehicle trajectories. These two features are used in the
encoder-decoder model.

• Spatial-Temporal Dynamic Attention Network (STDAN)
[6]: This basic model comprehensively considers the tem-
poral and social patterns in vehicle trajectory prediction,
and it fuses the driving intention-specific feature into the
extracted temporal and social features. In this way, this
model has achieved excellent performance in predicting
the future vehicle trajectory.

Moreover, we design two types of experimental settings to
evaluate the DG ability of FORTUNE.

• Independently and Identically Distributed (IID): It trains
and tests the model in the training domain set.

• Domain Shift: It trains the model in the training domain
set and tests the model in the test domain set, where the
dissimilarity between the domain in the training domain
set and the test domain set is higher than that between
the domain in the same domain set.

B. Ablation Experiments

This section demonstrates the effectiveness of each com-
ponent in FORTUNE for improving the DG ability of the
existing vehicle trajectory prediction methods, including the
IRL module and IKT module. In order to verify the DG
capability, we conduct FORTUNE in two kinds of domain sets,
which are the training domain set and the test domain set. The
training domain set contains three domains from the US101
highway of the NGSIM dataset. The test domain set consists
of three domains from the I80 highway of the NGSIM dataset.
In both the training domain set and test domain set, data over
each period denotes a domain. In addition, the original method
is STDAN in this part. As shown in Table II, the RMSE of
the predicted trajectory of STDAN is 3.96m in the 5th second
when testing the method in the training domain. However, the
RMSE of the predicted result of STDAN degrade to 4.26m in
the 5th second when testing the method in the test domain. The
average RMSE of the predicted result decreases from 2.17m
to 2.14m by adding the IRL module into the original method
under the setting of domain shift. By simultaneously adding
the IRL module and the IKT module to the original method,
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Fig. 3. The predicted error in the first kind of domain shift.

the average RMSE in 5s continues to decrease to 2.09m. Thus,
the IRL module and IKT module can effectively improve the
DG capability of the original method.

TABLE II
ABLATION STUDY RESULT (RMSE)

Source / Target Measures 1s 2s 3s 4s 5s Average
US101 / US101 STDAN 0.4 1 1.73 2.7 3.96 1.96

STDAN 0.5 1.15 1.95 2.99 4.26 2.17
US101 / I80 STDAN + IRL 0.51 1.14 1.94 2.94 4.17 2.14

STDAN + IRL + IKT 0.49 1.13 1.89 2.87 4.07 2.09

C. Experimental Results and Performance Analysis

To demonstrate the effectiveness of FORTUNE in im-
proving the DG capability of the existing vehicle trajectory
prediction methods, we test the performance of FORTUNE
under two kinds of extreme domain shifts in this section. In
the first domain shift, we chose 10 roads with 2 lanes as the
training domain and 10 roads with 3 lanes as the test domain
from the HighD dataset. The baseline method of FORTUNE
in this part is STDAN. As shown in Fig. 3, the RMSE
and MAE of the predicted trajectory of the baseline method
are no more than 1.5m under the setting of IID. However,
serious accuracy degradation in the baseline method can be
observed when being tested in the test domain, where the
RMSE and the MAE of STDAN are 6.58m and 3.54m in the
5th second, respectively. Moreover, the RMSE and the MAE
of CS-LSTM are up to 8.2m and 4.82m in the 5th second,
respectively. By adding the FORTUNE into the STDAN, the
RMSE, and the MAE respectively be decreased to 5.3m and
2.57m, which shows that FORTUNE can significantly improve
the DG capability.

In the second kind of domain shift, the above 20 roads,
including 10 roads with 2 lanes and 10 roads with 3 lanes, from
the HighD dataset are set to be the training domain set, and
the test domain set is the two roads from the NGSIM dataset.
In this part, we test the performance of FORTUNE based on
CS-LSTM and STDAN, respectively. As shown in Fig. 4, CS-
LSTM and STDAN all suffer from varying degrees of accuracy
degradation in the second kind of domain shift, where the
accuracy degradation of STDAN is more serious from 0.67m
to 11.34m and the performance of CS-LSTM degrades from
1.62m to 7.34m in the 5th second. The performance of these
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methods in the second kind of domain shift is all improved by
FORTUNE in 5s, where the RMSE of CS-LSTM is reduced
from 7.34m to 6.81m and that of STDAN is reduced from
11.34m to 8.24m in the 5th second. Therefore, FORTUNE
can significantly improve the DG capability of the existing
vehicle trajectory prediction methods.

In addition to improving the model ability of DG, it is also
essential to ensure the predicted accuracy under the setting
of IID. Thus, we compare the performance of FORTUNE
with that of the existing vehicle trajectory prediction methods
under the setting of IID. In this part, the baseline method of
FORTUNE is the STDAN. As shown in Table III, we test
the performance of FORTUNE in the data of all roads in the
NGSIM dataset. The performance of FORTUNE is slightly
lower than that of DLM in the first two seconds, but better than
that of the existing models in 3-5s. Furthermore, the prediction
errors of FORTUNE are all lower than those of STDAN in
5s, which indicates that Fortune is also able to improve the
generalization ability of the model without domain shift.

TABLE III
PREDICTION ERRORS IN NGSIM DATASET

Measures 1s 2s 3s 4s 5s Average
CS-LSTM 0.61 1.27 2.09 3.10 4.37 2.29

DLM 0.41 0.95 1.72 2.64 3.87 1.92
STDAN 0.42 1.01 1.69 2.56 3.67 1.87

FORTUNE (ours) 0.42 1 1.68 2.54 3.63 1.85

V. CONCLUSION

In this paper, we propose an informative causality-based
vehicle trajectory prediction method, namely, FORTUNE, to
address the issue of domain shift during the practical de-
ployment of the vehicle trajectory prediction model. The ex-
tensive experimental results demonstrate that FORTUNE can
significantly improve the DG capability without reducing the
performance under IID. Given the limitations of the existing
methods in a specific scenario, as a concrete future step, we
plan to investigate the proposed FORTUNE in more different
operating conditions and real scenarios.
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