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Abstract—Local differential privacy techniques for numerical
data typically transform a dataset to ensure a bound on the
likelihood that, given a query, a malicious user could infer
information on the original samples. Queries are often solely
based on users and their requirements, limiting the design
of the perturbation to processes that, while privatizing the
results, do not jeopardize their usefulness. In this paper, we
propose a privatization technique called Zeal, where perturbator
and aggregator are designed as a unit, resulting in a locally
differentially private mechanism that, by-design, improves the
compressibility of the perturbed dataset compared to the original,
saves on transmitted bits for data collection and protects against
a privacy vulnerabilities due to floating point arithmetic that
affect other state-of-the-art schemes. We prove that the utility
error on querying the average is invariant to the bias introduced
by Zeal in a wide range of conditions, and that under the
same circumstances, Zeal also guarantee protection against the
aforementioned vulnerability. Our numerical results show up to
94 % improvements in compression and up to 95 % more efficient
data transmissions, while keeping utility errors within 2 %.

Index Terms—differential privacy, compression, floating point.

I. INTRODUCTION

The way we collect, process and store data is usually
designed to achieve goals like low communication costs,
private queries or reduced database size. These are generally
competing objectives, and tend to be addressed with tech-
niques that specialize in a single aspect, without synergizing
with each other. For sensitive data, it is important to use priva-
tization strategies to avoid leakage of information about their
sources or owners. The design of a privatization mechanism
depends on the queries it is meant to protect against, since its
effectiveness for different data aggregations, like averaging or
finding extrema, might vary. Queries are usually considered as
inputs to the system, which limits the way we can perturb data
without causing unacceptable errors on the output. Moreover,
when dealing with floating point numbers, some privatization
techniques relying on adding noise to the original samples are
vulnerable to privacy leaks due to floating point arithmetic [1].

A. Contribution

This paper proposes a novel privatization and data-sharing
method based on local differential privacy (LDP) called Zeal,
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Fig. 1. Comparison between a standard perturbator - aggregator scheme and
Zeal. In the latter, smaller packets have to be transmitted to the database, and
they are more compressible than the original, while achieving the same result.

which combines the design of both the perturbation algorithm
and the query by extending the piecewise mechanism in [2]
with the addition transform in [3]. The combination of these
mechanisms with a judicious selection of Zeal parameter Ā,
allow to achieve improving compression and transmission
savings for growing Ā with low utility errors, while simultane-
ously protecting against floating point number vulnerabilities
that would otherwise affect the original piecewise mechanism.

This vulnerability has other solutions in the literature,
ranging from approximating the output of the perturbator
[1], to strategies using smart iterative noise sampling [4] or
integer implementations for floating point perturbation [5].
We argue that Zeal, while being equally effective in solving
the vulnerability, require simpler computations and theoretical
analyses. There are also other attempts of studying the relation
between privatizing data and its compressibility. The results
in [6] show how specific data representations, like the wavelet
transform [7], when combined with proper perturbation can
achieve better compressibility of data under specific privacy
constraints. However, those techniques rely on privacy notions
different from differential privacy, and focus on how to avoid
possible vulnerabilities in the choice of additive noise. In
[8], the aim is to provide minimal private representations
of the data transmitted to the database by building succinct
histograms. This proves to be effective in terms of accuracy
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for frequency estimation, but does not cover the query of the
average nor investigate the design of dedicated aggregators in
combination to perturbators to enhance compression.

B. System model

We consider a system illustrated in Fig. 1, where n IoT
sensors of the same kind {S1, . . . , Sn} need to send a single
floating point number xi each to an untrusted database DB for
storage. We assume that the final user is interested in querying
the DB for the average of the dataset DS = {x1, . . . , xn},
where the minimum and maximum value the sensors are rea-
sonably expected to produce are represented using H̄ and h so
that xi ∈

[
H̄− h, H̄ + h

]
. Moreover, the data being collected

are sensitive, therefore mandating the need of being privatized
with a perturbation function f (x1, . . . , xn) before reaching
the DB. We propose a specific perturbator x∗

i = f∗ (xi, Ā
)
,

where the Ā is a publicly known parameter common to
all sensors, in combination with a modified version of the
average query, namely AVG∗ {x∗

1, . . . x
∗
n, Ā

}
. Future work

can consider couplings where each sensor may have a different
Ā. This new method guarantees equal privatization level, while
allowing for transmission savings and better compressibility in
the DB. An example is a pharmaceutical company monitoring
the average glucose measurements of their devices for patients
with diabetes. Throughout this paper, we rely on the floating
point standard IEEE-754 [9] with double precision (64-bits).

II. BACKGROUND

A. Local differential privacy

The main goal of differential privacy is to give a bound
on the likelihood that the result of a query to a dataset will
allow unwanted insights on its original values [10]. This is
achieved by using a perturbator function, where the cost
for this privatization is that the private query result deviates
from the one on the original data: we refer to this as utility
error. In the central model of differential privacy [10], the
randomization is applied directly on the collection of real
data, which implies the need of a trusted party to receive the
data and perturb them. The local model assumes the presence
of no trusted party, meaning that the randomization needs to
occur before data is shared with the DB. Despite resulting
in generally higher utility errors, the local version intuitively
provides a more secure way of collecting and sharing data.
Data leakages from the DB, or malicious cloud providers, pose
less of a threat than in the central model, since they only hold
an already privatized version of the sensitive data. We exploit
the fact that the local privatization needs to happens between
sensors and DB to design a perturbator reducing transmission
data size. In order to quantify privacy, we use the privacy
budget ϵ > 0 which controls the privacy-utility trade off: the
more privacy we want, the lower ϵ we should choose.

Definition II.1. A perturbation function f is ϵ-locally differ-
entially private if and only if for any two inputs xi ̸= xj in
the domain of f , and for any output x∗ of f , we have

P [f(xi) = x∗] ≤ eϵ · P [f(xj) = x∗] . (1)
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Fig. 2. Example of piecewise mechanism PDF. After perturbation, the
privatized version of both xi and xj could be any x∗ ∈

[
x∗
min;x

∗
max

]
.

Given a dataset DS = {x1, x2, . . . , xn} and a privacy bud-
get ϵ, we want to transform each xi to x∗

i with a randomizer
f : xi → x∗

i so that Eq. (1) holds.

B. Piecewise LDP mechanism

The original locally differentially private piecewise mech-
anism [2] is a randomizer f whose key features are its
bounded output x∗

i ∈ [x∗
min, x

∗
max], its lower utility error

compared to other locally differentially private mechanisms,
like the Laplace transformation [10], and the fact that it is
unbiased, namely the expectation of x∗

i is E[x∗
i ] = xi. Another

peculiar characteristic is that the probability density (PDF)
from which the privatized values x∗

i are sampled, changes
shape according to xi, while x∗

min and x∗
max are fixed, as per

Fig. 2. Wang et al. [2] limited the original perturbator to DS
with xi ∈ [−1.0, 1.0], mentioning the steps to generalize it to
DS in xi ∈ [−r, r] by scaling the dataset. In Subsection III-A
we propose a generalization of the perturbator itself so that
xi ∈

[
H̄− h, H̄ + h

]
and introduce the parameter Ā for

introducing a bias to the output.

C. Addition transform and floating point compression

Data compression algorithms usually rely on identifying
repeated symbols or sequences in the data being processed,
in order to provide a compact representation of the same
information. Considering a dataset of n floating point numbers
DS = {x1, . . . , xn}, a specific kind of repeated pattern is
when the j − th bit of the 64 bits in each xi has the same
binary value ∀xi ∈ DS. In this case, it is a shared bit. The
addition transform [3] aims to improve DS compressibility
by increasing the number of shared bits in a dataset upon
transforming the original values through the addition

x̃i = xi + Ā ∀xi ∈ DS. (2)

The reason why the new DS typically has more shared bits
than DS lies in the binary representation of a floating point
number x, which is composed of a sign, an exponent and a
mantissa. We refer to them as ν, E and M , when interpreted
as unsigned integer, and use them to compute x with

x = (−1)ν · 2EU · (1 +M · 2−L), (3)

where EU = E− b is the unbiased exponent, b is its bias and
L is the length of the mantissa in bits: in double precision,
b = 1023 and L = 52. From Eq. (3), we notice that the
smallest difference between two numbers x1 > x2 having the



TABLE I
NOMENCLATURE

Ā Bias of f∗ CR Compression Ratio TR Transmission Ratio
x DS sample DS, DS∗ Dataset and privatized dataset SDS Sum of xi in DS

x∗
max Max feasible x∗

i ∆AVG Absolute error on the average ULP(x) Unit in the last place of x
x∗
min Min feasible x∗

i AVG∗ Zeal aggregator L(·), R(·) Parameters of PDF
E Exponent LDP Local differential privacy δAVG Relative error on the average
x∗ Output of f∗ pC Cumulative probability δE(xi)

Relative error on expected value of x∗
i

f∗ Zeal perturbator F Error estimation due to Ā n Number of samples in DS
f Perturbator h, H̄ Parameters on feasible DS γmin Min number of shared bits per sample

EU Unbiased exponent p PDF probability level P (·) Probability
E∗

U Selected unbiased exponent ϵ Privacy budget

same unbiased exponent E∗
U is x1−x2 = 2E

∗
U−52. It is called

unit in the last place, or ULP(·), defined as

ULP
(
x ∈

[
2E

∗
U , 2E

∗
U+1

))
= 2E

∗
U−52. (4)

ULP(x) effectively represents the precision of x, since all
x′ ∈ (x−ULP(x)/2;x+ULP(x)/2), assuming rounding to
nearest, will be represented and stored as x. If we apply Eq. (2)
choosing Ā large enough so that we can fit all x̃i in a single
exponent region

[
2E

∗
U , 2E

∗
U+1

)
, the k most significant bits in

x̃i mantissas will be shared when

∃j ∈
[
0, 2k − 1

]
⊂ N : x̃i ∈ 2E

∗
U ·
[
1 +

j

2k
, 1 +

j + 1

2k

)
. (5)

Note that the transformation in Eq. (2) is lossy, as shown
in [3]. A function g is lossy when, for some xi

g−1 (g (xi)) ̸= xi. (6)

III. ZEAL

The original formulation of the piecewise mechanism is
susceptible to a privacy vulnerability due to floating point
arithmetic. Since the image of the perturbator f (xi) is a finite
set of floating point numbers Ixi , and for some xi ̸= xj ,
Ixi − Ixj ̸= Ø, some privatized samples can be traced back
to their original datum, breaking Eq. (1). Zeal’s perturbator
f∗ (xi, Ā

)
extends f (xi) feasible inputs and introduces the

bias Ā: in Section IV, we show that the extended images I∗
xi

and I∗
xj

guarantee I∗
xi

− I∗
xj

= Ø ∀xi, xj ∈ DS, solving the
vulnerability. Moreover, since a similar bias is used as part of
the addition transform to improve compressibility, we benefit
from both advantages with the same concept.

A. Extension of Piecewise Mechanism

Given the input dataset DS = {x1, . . . xn} and the desired
privacy level ϵ, the PDF of the output x∗

i = f∗ (xi, Ā
)

is

P (f∗ (xi) = x∗
i ) =


p
eϵ if x∗

i ∈ [x∗
min,L (xi))

p if x∗
i ∈ [L(xi),R(xi)]

p
eϵ if x∗

i ∈ (R(xi), x
∗
max]

(7)

where x∗
i ∈ [x∗

min, x
∗
max]∀xi ∈ DS∗, with DS∗ being the

privatized dataset {x∗
1, . . . , x

∗
n}, and

(x∗
min, x

∗
max) =

(
H̄− C+ Ā, H̄ + C + Ā

)
, (8)

p =
(
eϵ − eϵ/2

)
/
(
2h
(
eϵ/2 + 1

))
, (9)

C = h ·
(
eϵ/2 + 1

)
/
(
eϵ/2 − 1

)
. (10)

The elements that cause the PDF to vary depending on xi are

L(xi) =
C + h

2

(
xi − H̄

h

)
− C− h

2
+ H̄ + Ā, (11)

R(xi) = L(xi) + C− h. (12)

f∗ is ϵ-locally differentially private, since the original proof in
[2] holds. Ā introduces a bias to the output, as per Thm. III.1,
while H̄ and h affect the variance according to Thm. III.2.

Theorem III.1. Given x∗
i = f∗ (xi, Ā

)
, its expected value is

E [x∗
i ] = xi + Ā. (13)

Proof.

E [x∗
i ] =

∫ L(xi)

x∗
min

p

eϵ
x dx+

∫ R(xi)

L(xi)

px dx+

∫ x∗
max

R(xi)

p

eϵ
x dx

=
p (1− eϵ)

2eϵ
[
L2 − R2

]
+

p

2eϵ
[
4
(
H̄ + Ā

)
C
]
= xi + Ā

Theorem III.2. Given x∗
i = f∗ (xi, Ā

)
, its variance is

VAR(x∗
i ) = h2 ·

(
(xi−H̄

h )2

eϵ/2 − 1
+

eϵ/2 + 3

3(eϵ/2 − 1)2

)
. (14)

Since we introduce the same bias Ā to all samples of DS∗,
we propose to remove it by using an altered version of the
standard average computation, defined as

AVG∗ (DS∗, Ā
)
=

1

n

n∑
i=1

x∗
i − Ā. (15)

Probability bounds of the error on the average: The
error ∆AVG between the calculated average from the privatized
database and the original one is defined as

∆AVG = AVG∗ (DS∗)−AVG(DS) . (16)

Since DS∗ is the output of a stochastic process with variance
as per Eq. (14), it is possible to formulate a probabilistic bound
on |∆AVG| according to Thm. III.3.

Theorem III.3. Given a dataset DS = {x1, . . . , xn} and a
utility error λ ≥ 0, an upper bound on the probability of the
absolute value of the error being greater than λ is

P (|∆AVG| ≥ λ) ≤ e
−

1
2
(nλ)2∑n

i=1
VAR(x∗

i
)+ 1

3
(C+h)nλ . (17)



Proof. We can use the independent and unbiased random
variable Vi = x∗

i − Ā− xi to write

P (|∆AVG| ≥ λ) = P

(∣∣∣∣∣
n∑

i=1

Vi

∣∣∣∣∣ ≥ n · λ

)
. (18)

We can reach the formulation in Eq. (17) using the Bernstein
inequality together with the output bounds in Eq. (8), the
sampling expected value in Eq. (13) and variance Eq. (14).

Since we are more interested in expressing the error on the
average relatively to the original average, which is

δAVG = (AVG∗ (DS∗)−AVG(DS)) /AVG(DS) , (19)

we can adapt the bound in Thm. III.3 to have a relative
formulation using δAVG, as per Thm. III.4.

Theorem III.4. Given a dataset DS = {x1, . . . , xn}, SDS =∑n
i=1 xi and a utility error λ ≥ 0, an upper bound on the

probability of the absolute value of the relative error being
greater than λ is

P (|δAVG| ≥ λ) ≤ e
−

1
2 (nSDSλ)2∑n

i=1
VAR(t∗

i
)+ 1

3
(C+E)nSDSλ . (20)

Remark 1. Since neither Eq. (17) nor Eq. (20) depend on Ā,
both error bounds are Ā invariant. In Section V we empirically
show that errors are Ā invariant as well, meaning that selecting
different values of Ā result in similar |∆AVG| and similar
|δAVG|. However, this is true only when assuming infinitely
precise numbers. In Subsection III-B we detail the reasons and
show possible consequences of finite precision.

B. Selection of addition transform parameter

The Ā parameter allows us to manipulate the binary repre-
sentation of the private dataset so that some bits are shared by
all x∗

i . An effective selection of Ā fulfilling the recommen-
dations in [3] and the conditions in Subsection II-C, while
guaranteeing that all sign and exponent bits are shared, is
presented in Thm. III.5.

Theorem III.5. Given a dataset DS, we define the unbiased
exponent Eenc

U of the smallest region of numbers with equal
exponents that can enclose the privatized dataset DS∗ as

Eenc
U = ⌈log2(2C)⌉ . (21)

By selecting E∗
U ≥ Eenc

U > −1022 ∈ Z, we compute Ā as

Ā = 2E
∗
U+1 − 2 ·ULP

(
2E

∗
U

)
− H̄− C. (22)

This formulation ensures that all sign and exponent bits are
shared ∀x∗

i ∈ DS∗. The larger the selected E∗
U , the more

mantissa bits will be shared as well.

The selection of Ā should also take into consideration the
loss due to the floating point finite precision, since the expected
value in Eq. (13), and the error bounds in Eq. (17) and
Eq. (20) hold only assuming infinite precision. However, the
error with finitely precise numbers is significant only when
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Fig. 3. Effects of large Ā on expected value, δAVG and PDF, with F as an
estimation. x∗

j in the bottom plot are unbiased to be able to compare them.

Ā is computed according to Eq. (22) with E∗
U ≫ Eenc

U ,
potentially resulting in unacceptable alterations to Zeal.

We examine the effects of large Ā on Zeal by considering a
uniformly distributed DS with n = 1000, H̄ = 1000, h = 100
and the privatization f∗ (DS, Ā

)
for various values of Ā, as

per Fig. 3. We first investigate the expected value of x∗
1 =

f∗(x1, Ā) with x1 = 1000 by plotting δE(x1), defined as

δE(xi) =
(
E(x∗

i )− Ā− xi

)
/xi, (23)

where E(x∗
1) is estimated by averaging 105 samples of x∗

1. For
this dataset, when Ā ≥ 1018 (red area), δE(x1) starts to deviate
from the ideal 0% we would have with infinite precision and
infinite samples, clipping to 100% for Ā ≥ 1020 since

f∗(x1) = Ā =⇒ E(x∗
1) = Ā. (24)

When Eq. (24) is true ∀xi ∈ DS, there is

AVG∗ (x∗
1, . . . , x

∗
n) = 0.0, (25)

which causes the |δAVG| to clip at 100% as well. It should be
noted that |δAVG| could potentially be greater than 100% for
some Ā, since this approximation effects drastically change f∗

PDF as well, as we can see in the plot at the bottom of Fig. 3.
For Ā ≥ 1020, (x∗

min,L(x1),R(x1), x
∗
max)− Ā = (0, 0, 0, 0).

In order to estimate both δE(x1) and δAVG for large Ā
without knowing DS but only h and H̄ we introduce F ,
computed as the average of the approximation error on the
values H̄− C and H̄ + C due to Ā. F is defined as

F =
[(
∆x∗

min/
(
H̄− C

))
+
(
∆x∗

max/
(
H̄ + C

))]
/2, (26)

where ∆x∗
min = H̄ − C −

(
x∗
min − Ā

)
and ∆x∗

max =
H̄ + C −

(
x∗
max − Ā

)
. In Fig. 3 we plot F and notice that

it is pretty accurate in describing when Ā is too large to
maintain acceptable error. Therefore, we can use it to select
an appropriate Ā.



C. Transmission savings

As discussed in Subsection III-B, the selection of Ā depends
only on H̄, h and ϵ, thus Ā can be fixed even before the sensors
are deployed. Assuming that Ā is chosen as per Eq. (22), we
can guarantee that a minimum number of bits per sample γmin,
computed according to Thm. III.6, is shared by all x∗

i and
whose binary value is known a priori. Therefore, if each one
of the n sensors transmits only 64− γmin bits per sample, the
database will still be able to reconstruct DS∗. We measure the
savings in communication costs with this strategy by defining
the transmission ratio (TR) as

TR(DS) =
DS size in bits − n · γmin

DS size in bits
= 1− γ

64
. (27)

Theorem III.6. Given a privatized dataset DS∗ = f∗ (DS, Ā
)

with Ā computed according to Eq. (22), the minimum number
of guaranteed bits shared per sample in DS∗ is

γmin = 1+11+E∗
U −

⌈
log2(2 · C+ 3 ·ULP

(
2E

∗
U

)⌉
. (28)

Proof. Computing Ā as per Eq. (22) ensures that

x∗
i ∈

[
2E

∗
U+1 − 2 · C− 3 ·ULP

(
2E

∗
U

)
, 2E

∗
U+1

)
∀x∗

i . (29)

To represent all floating point numbers in the interval, we need
the number m of changing mantissa bits to be such that

2m ·ULP
(
2E

∗
U

)
≥ 2 · C+ 3 ·ULP

(
2E

∗
U

)
, (30)

from which we can find mmin. The expression in Thm. III.6
follows by summing the count of guaranteed shared mantissa
bits, namely 52−mmin, with 1 for the single sign bit and 11
for the exponent bits, that are all shared due to Eq. (22).

IV. FLOATING POINT VULNERABILITY

In differential privacy for numerical datasets, perturbing
data generally involves sampling a random variable with spe-
cific PDF. When the datatype is floating point, this step should
be performed with particular caution, since its arithmetic rules
might lead to privacy leaks, as discussed in [1] and [4].

One of the most common methods to sample a PDF
is to use its CDF−1, namely the inverse of its cumulative
distribution function. CDF−1 has the cumulative probability
as input, with values pC ∈ [0.0, 1.0), and x∗

i ∈ [x∗
min, x

∗
max]

as output: it can be proved that by sampling a uniformly
distributed random variable from 0.0 to 1.0, and then applying
the CDF−1 on the sample, the output is distributed as the
desired PDF [11]. Given xi, the vulnerability arises from the
fact that the set of possible x∗

i if finite, meaning that some
floating point number in [x∗

min, x
∗
max] might be unreachable

output of f∗ (xi, Ā
)
. As depicted in Fig. 4, if the reachability

of any x∗
i ∈ [x∗

min, x
∗
max] depends on xi, the mechanism is

not locally differentially private as per Def II.1.
Zeal solves the vulnerability by guaranteeing no unreach-

able x∗
i , since the selection of Ā according to Thm. IV.1

implies that each x∗
i is the output of at least one pC , as per

the second row in Fig. 4.

Theorem IV.1. Ā preventing the vulnerability described in
Section IV from causing privacy leaks are computed according
to Eq. (22) with E∗

U ≥ Evul
U , where

Evul
U = max (⌈−1 + log2 (e

ϵ/p)⌉ , Eenc
U ) . (31)

Proof. In order to ensure that every x∗
i ∈ [x∗

min, x
∗
max] has

a corresponding pC pointing to it via CDF−1, any interval
CDF−1(ULP(pC)) wide should always contain at least one
floating point x∗

i . Since CDF−1 is composed of lines with
angular coefficient ai ∈ { eϵ

p ,
1
p}, we need

ULP (pC) · ai ≤ ULP (x∗
i ) , (32)

where ai = eϵ

p and pC ∈ [0.5, 1.0) are the worst scenario,
since steeper lines and bigger ULP(pC) lead to more x∗

i being
unreachable. Under these conditions, Eq. (32) becomes

2E
∗
U−52 · 253 ≥ (eϵ/p) =⇒ E∗

U ≥ −1 + log2 (e
ϵ/p) . (33)

The Eq. (31) comes from combining Eq. (33) with E∗
U ≥

Eenc
U , since we need ULP (x∗

i ) to be constant ∀x∗
i ∈ DS∗.

V. RESULTS

In this section we present the results of Zeal on the first
5000 elements of the dataset “aarhus-citylab-humidity” [12]
and the first 1000 of “chicago-taxi-trips-fares” [13]. Given
their extrema, we assume that the former has feasible values
xi ∈ [23.5, 83.9], and the latter xi ∈ [1.0, 120.0]. To measure
compression, we use the compression ratio (CR), defined as

CR(DS) =
Compressed DS size in bits

Uncompressed DS size in bits
. (34)

The compressor used for these analyses is Greedy-GD [14],
which is based on bits deduplication. As reported in [3],
Greedy-GD benefits from an increased number of shared bits.

Utility error on the average: In Fig. 5 we compare the
probabilistic upper bounds on the utility error, both in absolute
(∆AVG) and in relative terms (δAVG), with the probability
based on samples averaged over 10 iterations of Zeal. The two
are comparable, and both show that the probability decreases
as λ increases. Moreover, for sufficiently large λ values
both probabilities are guaranteed to be zero: under ϵ-local
differential privacy, this can not be achieved by perturbators
with unbounded outputs, like the Laplace mechanism.

In order to estimate the impact of ϵ and Ā on Zeal’s utility
error, we compute δAVG over 100 iterations for multiple ϵ
and Ā, as shown in Fig. 6. We see that with smaller ϵ the
perturbator has to introduce more noise to privatize the data,
increasing the utility error, and that similar ϵ result in different
errors depending on the dataset. Moreover, as per Remark 1,
different Ā values result in similar utility errors.

Transmission savings and compressibility: In Fig. 7, we
analyze transmission ratio (TR) and compression ratio (CR)
against δAVG for a range of Ā, with ϵ = 1.0. TR and CR
improve with very similar rates by increasing Ā, since lower
TR means less data to transmit from the sensors to the DB,
and lower CR means better compressed privatized dataset.
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Fig. 4. Floating point vulnerability for a DS with H̄ = 10, h = 5 and ϵ = 1, with and without Ā. When Ā = 0.0, the reachable x∗
i could change depending

on xi. With a large enough Ā, all x∗ are reachable, causing no differentiating results that would lead to a privacy leak.
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Fig. 7. Transmission savings and compressibility against δAVG. Any Ā in
the green area achieves improvements with comparable error levels.

For Ā < 1018 (end of green area), the relative utility error
|δAVG| remains nearly the same as for Ā = 0. Using the
largest feasible Ā in the green area, we reach up to a 94%
improvement in CR, and up to a 95% improvement in TR.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced Zeal, a privatization technique
composed of a perturbator and an aggregator for measuring the
average of a dataset, which aims at reducing transmission data
size and data storage, as well as solving a privacy vulnerability
related to floating point data. We presented its characteristics,
proved the necessary conditions for solving the vulnerability
and showed its capabilities on a real-life dataset. We plan to
improve Zeal so to process datasets with multiple dimensions,
both in terms of attributes and as time-series, and expand the
core ideas to other privatization mechanisms based on local
differential privacy and to metrics other than the average.
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