
Soft Actor-Critic Learning-Based Joint Computing,
Pushing, and Caching Framework in MEC Networks

Xiangyu Gao, Yaping Sun, Hao Chen, Xiaodong Xu, Shuguang Cui, Fellow, IEEE

Abstract—To support future 6G mobile applications, the mo-
bile edge computing (MEC) network needs to be jointly optimized
for computing, pushing, and caching to reduce transmission load
and computation cost. To achieve this, we propose a framework
based on deep reinforcement learning that enables the dynamic
orchestration of these three activities for the MEC network.
The framework can implicitly predict user future requests using
deep networks and push or cache the appropriate content to
enhance performance. To address the curse of dimensionality
resulting from considering three activities collectively, we adopt
the soft actor-critic reinforcement learning in continuous space
and design the action quantization and correction specifically to
fit the discrete optimization problem. We conduct simulations in a
single-user single-server MEC network setting and demonstrate
that the proposed framework effectively decreases both trans-
mission load and computing cost under various configurations of
cache size and tolerable service delay.

I. INTRODUCTION

Recent advancements in smart mobile devices have enabled
various emerging applications, such as virtual reality (VR) and
augmented reality (AR), which require ultra-high communica-
tion and computation capabilities in low latency. To minimize
these costs while ensuring a high-quality user experience, the
MEC network is a promising solution that can push caching
and computing resources to access points, base stations, and
even mobile devices at the wireless network edge.

Caching can improve bandwidth utilization by placing
frequently accessed content closer to users for future use,
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which is particularly useful due to the high degree of asyn-
chronous content reuse in mobile traffic. Caching policies can
be categorized into two types: static caching and dynamic
caching. Static caching policies are generally based on content
popularity distribution and involve cache states that remain
unchanged over a relatively long period [1]. In contrast,
dynamic caching policies involve content placement updates
based on instantaneous user request information, such as the
least recently used (LRU) and least frequently used (LFU)
policy [2].

A joint pushing and caching design can improve system
performance by proactively transmitting content during low-
traffic times to satisfy future user demands. Various joint
pushing and caching designs exist that aim to maximize
bandwidth utilization [3], effective throughput [4], minimize
traffic load [5], or reduce transmit energy consumption [6].
However, these policies only consider content delivery and
do not account for computation, therefore cannot be directly
applied to modern mobile traffic services, such as VR delivery.

To effectively serve mobile traffic, previous designs have
considered the joint utilization of cache and computing re-
sources at MEC servers to minimize transmission latency [7],
[8] or energy consumption [9]. Some designs also aim to
minimize transmission data [10]. However, these designs only
consider static caching and do not allow for pushing.

To address the aforementioned issues, we propose a joint
computing, pushing, and caching policy optimization approach
and validate it in a single-user single-server MEC network.
Our approach involves the following steps: (1) We formu-
late the joint optimization problem as an infinite-horizon
discounted Markov decision process, where the aim is to
minimize both computation cost and transmission dataload.
(2) We use the soft actor-critic (SAC) reinforcement learning
(RL) algorithm [11] to quickly and stably obtain dynamic
computing, pushing, and caching policies. Unlike the classic
deep Q-learning algorithm, which requires a Q-network with
output nodes for all potential actions, SAC learns Q-functions
with few parameters, addressing the curse of dimensionality.
We designed an action quantization and correction mechanism
to enable SAC, which operates in continuous space, to meet
our discrete optimization requirements. (3) We present simu-
lation results with various system parameters to demonstrate
the effectiveness of our proposed algorithm.

II. SYSTEM MODEL

The MEC network we consider comprises a server and a
mobile device with caching and computing capabilities, as
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Fig. 1: Illustration of MEC network with single MEC server
and single mobile device.

illustrated in Fig. 1. The MEC server’s cache size is large
enough to proactively store all input and output data related
to tasks requested by the mobile device. In contrast, the mobile
device’s cache size is limited to C bits. The mobile device is
equipped with multi-core computing capabilities, with each
core operating at a frequency of fD cycles per second. We
assume that the mobile device has M computing cores. The
system operates over an infinite time horizon, and time is
slotted in intervals of τ seconds, with time slots indexed as
t = 0, 1, 2, · · · . At the start of each time slot, the mobile device
submits a task request that is assumed to be delay-intolerant
and must be served before the slot ends.

A. Task Model

We consider a set of F tasks that can be requested by the
mobile device and denote this set as F ∆

= {1, 2, . . . , f, . . . , F}.
Specifically, each task f ∈ F is characterized by a 4-tuple{
If (in bits), Of (in bits), wf (in cycles/bit), τ (in seconds)

}
.

Specifically, If represents the size of the remote input data
that can be proactively generated from the Internet and
cached. The output data size is represented by Of . The
parameters wf and τ denote the required computation cycles
per bit and the maximum allowable service latency.

B. System State

1) Request State: At the beginning of each time slot t,
the mobile device generates one task request. Let A(t) ∈
F denote the request state of the mobile device, where
A(t) = f represents that the mobile device requests task
f . The cardinality of F is F . Assume that A(t) evolves
according to a first-order F -state Markov chain, denoted as
{A(t) : t = 0, 1, 2, . . . }, which captures both task popularity
and inter-task correlation of order one of the task demand
process. Let Pr[A(t + 1) = j|A(t) = i] denote the transition
probability of going to state j ∈ F at time slot t + 1, given
that the request state at time slot t is i ∈ F for the task
demand process. Assume that {A(t)} is time-homogeneous.
Denote with Q ≜

(
qi,j

)
i∈F,j∈F the transition probability

matrix of {A(t)}, where qi,j ≜ Pr [A(t+ 1) = j|A(t) = i].
Furthermore, we restrict our attention to irreducible Markov
chain and denote with p ≜ (pf )f∈F the limiting distribution
of {A(t)}, where pf ≜ limt→∞ Pr[A(t) = f ]. Note that
pf =

∑
i∈F piqi,f for all f ∈ F .

2) Cache State: Let SI
f (t) ∈ {0, 1} denote the cache state

of the input data for task f in the storage of the mobile device,
where SI

f (t) = 1 means that the input data for task f is cached
in the mobile device, and SI

f (t) = 0, otherwise. Let SO
f (t) ∈

{0, 1} denote the cache state of the output data for task f in
the storage of the mobile device, where SO

f (t) = 1 means that
the output data for task f is cached in the mobile device, and
SO
f (t) = 0, otherwise. Denote with C (in bits) the size of the

cache space at the mobile device, and the cache size constraint
is given by

F∑
f=1

IfS
I
f (t) +OfS

O
f (t) ≤ C. (1)

Let S(t) ≜ (SI
f (t), S

O
f (t))f∈F ∈ S denote the cache

state of the mobile device at time slot t, where S ≜
{(SI

f , S
O
f )f∈F ∈ {0, 1}F ×{0, 1}F :

∑
f∈F IfS

I
f +OfS

O
f ≤

C} represents the cache state space of the mobile device. The
cardinality of S is bounded by

(
F

Nmin

)
and

(
F

Nmax

)
from below

and above, respectively, where Nmin ≜ C
maxf∈F {If ,Of} , and

Nmax ≜ C
minf∈F {If ,Of} .

3) System State: At time slot t, the system state consists
of both system request state and system cache state, denoted
as X(t) ≜ (A(t),S(t)) ∈ F × S, where F × S represents the
system state space.

C. System Action

1) Reactive Computation Action: At time slot t, we denote
with BR(t) and ER(t) the reactive transmission bandwidth
cost and the reactive computation energy cost. Based on the
system state X(t) = (A(t),S(t)), the task request A(t) is
served as below:

• If SO
A(t)(t) = 1, the output of task A(t) can be directly

obtained from the local cache without any transmission
or computation. In this way, the delay is negligible, and
the reactive computation energy or transmission cost is
zero.

• If SI
A(t)(t) = 1 and SO

A(t)(t) = 0, the mobile device can
directly compute the task based on the locally cached
input data. Let cR,f (t) ∈ {1, · · · ,M} denote the number
of computation cores at the mobile device allocated for
reactively processing task f at time slot t. Thus, we
directly have cR,f (t) = 0 for ∀f ∈ F\A(t). In order
to serve the requested task A(t) within τ , we assume
that Ifwf

τ 1(A(t) = f) ≤ MfD,∀f ∈ F and require
IA(t)wA(t)

τ ≤ cR,A(t)(t)fD. The energy consumed for
computing one cycle with frequency cR,f (t)fD at the
mobile device is µc2R,f (t)f

2
D, where µ is the effective

switched capacitance related to the chip architecture indi-
cating the power efficiency of CPU at the mobile device.
The reactive computation energy cost ER(t) is given by
µc2R,A(t)(t)f

2
DIA(t)wA(t), and the reactive transmission

cost BR(t) is zero.
• If SI

A(t)(t) = 0 and SO
A(t)(t) = 0, the mobile device

should first download the input data of the task A(t) from
the MEC server, and then compute it locally. The required
latency is given by IA(t)

BR(t)
+

IA(t)wA(t)

cR,A(t)(t)fD
. In order to satisfy

the latency constraint, i.e., IA(t)

BR(t)
+

IA(t)wA(t)

cR,A(t)(t)fD
≤ τ , the

minimum reactive transmission cost BR(t) is given by



IA(t)

τ−
IA(t)wA(t)

cR,A(t)(t)fD

, and the reactive computation energy cost

ER(t) is given by µc2R,A(t)(t)f
2
DIA(t)wA(t).

In summary, at time slot t, the reactive computation action
cR,f (t) should satisfy

cR,f (t) ≤ 1(A(t) = f)
(
1− SO

f (t)
)
M, ∀f ∈ F , (2)

and the reactive transmission cost BR(t) is given by

BR(t) =
(
1− SI

A(t)(t)
)(

1− SO
A(t)(t)

) IA(t)

τ − IA(t)wA(t)

cR,A(t)(t)fD

,

(3)
and the reactive computation cost ER(t) is given by

ER(t) =
(
1− SO

A(t)(t)
)
µc2R,A(t)(t)f

2
DIA(t)wA(t). (4)

Denote with cR ≜ (cR,f )f∈F ∈ ΠR
C(X) the

system reactive computation action, where ΠR
C(X) ≜{

(cR,f )f∈F ∈ {0, 1, · · · ,M}F : (2)
}

denotes the system re-
active computation decision space under system state X. From
(2), we can see that the cardinality of reactive computation
action space is M + 1.

2) Proactive Transmission or Pushing Action: Denote with
bf (t) ∈ {0, 1} the pushing decision of task f ∈ F , where
bf (t) = 1 means that the remote input data of task f is pushed
to the mobile device, and bf (t) = 0, otherwise. Assume that
by the end of the time slot, the pushed data are transmitted to
the mobile device. In order to satisfy the latency constraint,
we have

∑F
f=1 If bf (t)

τ ≤ BP (t), where BP (t) denotes the
proactive transmission bandwidth cost. Thus, the minimum
proactive transmission cost is given by

BP (t) =

∑F
f=1 Ifbf (t)

τ
. (5)

In summary, denote with b ≜ (bf )f∈F ∈ {0, 1}
F the sys-

tem pushing action, where 2F represents the system pushing
action space under system state X.

3) Cache Update Action: The cache state of each task f ∈
F is updated according to

SI
f (t+ 1) = SI

f (t) + ∆sIf (t), (6)

SO
f (t+ 1) = SO

f (t) + ∆sOf (t), (7)
where ∆sIf (t) ∈ {−1, 0, 1} and ∆sOf (t) ∈ {−1, 0, 1} denote
the update action for the cache state of the input and output
data of task f , respectively. Then, we have ∀f ∈ F
− SI

f (t) ≤ ∆sIf (t) ≤ min
{
bf (t) + cR,f (t), 1− SI

f (t)
}

(8)

− SO
f (t) ≤ ∆sOf (t) ≤ min

{
cR,f (t), 1− SO

f (t)
}
, (9)∑F

f=1 If

(
SI
f (t) + ∆sIf (t)

)
+Of

(
SO
f (t) + ∆sOf (t)

)
≤ C, (10)

where the left-hand side of Eq. (8) indicates that only when
the input of task f is cached at the mobile device, can it be
removed, the right-hand side of Eq. (8) indicates that only
when the input of task f is proactively transmitted from the
MEC server or is reactively transmitted, i.e., bf (t) = 1 or
cR,f (t) > 0, and has not been cached before, can it be cached
into the mobile device. The left-hand side of Eq. (9) indicates
that only when the output of task f is cached at the mobile
device, can it be removed, and the right-hand side of Eq. (9)

indicates that only when the output of task f is reactively
computed at the mobile device, i.e., cR,f (t) > 0, and has not
been cached before, can it be cached into the mobile device.
Eq. (10) indicates that the updated cache state should satisfy
the cache size constraint.

In summary, denote with ∆s ≜
(
∆sIf ,∆sOf

)
f∈F

∈

Π∆s(X) the system cache update action, where Π∆s(X) ≜{(
∆sIf ,∆sOf

)
f∈F
∈{−1, 0, 1}F×{−1, 0, 1}F : (8),(9),(10)

}
denotes the system cache update action space under system
state X.

4) System Action: At each time slot, the system action con-
sists of the reactive computation action, proactive computation
action, pushing action, and cache update action, denoted as
(cR,b,∆s) ∈ Π(X), where Π(X) ≜ ΠR

C(X) × {0, 1}F ×
Π∆s(X) denotes the system action space under system state
X.

D. System Cost

At time slot t, the system cost consists of the transmission
bandwidth cost and the computation energy cost. In particular,
the transmission bandwidth cost consists of both the reactive
and proactive transmission costs, given by

B(t) = BR(t) +BP (t), (11)

where BR(t) is given in Eq. (3) and BP (t) is given in Eq. (5).
The computation energy cost is the reactive computation cost
only, i.e.,

E(t) = ER(t), (12)

where ER(t) is given in Eq. (4). To balance the communi-
cation and computation cost, we choose the weighted sum
B(t) + λE(t) as the system cost at time slot t.

III. PROBLEM FORMULATION

Given an observed system state X, the joint reactive comput-
ing, transmission, and caching action, denoted as (cR,b,∆s),
is determined according to a policy defined as below.

Definition 1 (Stationary Joint Computing, Pushing and
Caching Policy). A stationary joint computing, pushing, and
caching policy π is a mapping from system state X to system
action (cR, b,∆s), i.e., (cR, b,∆s) = π(X) ∈ Π(X).

From properties of {A(t)} and {S(t)}, the induced system
state process {X(t)} under policy π is a controlled Markov
chain. The expected total discounted cost is given as

ϕ(π) ≜ lim sup
T→∞

T−1∑
t=0

γtE [B(t) + λE(t)] , (13)

where the expectation is taken over the task request process.
In this paper, we aim to obtain optimal joint computing,

pushing, and caching policy to minimize the sum of infinite
horizon discounted system cost, i.e., minimize both the trans-
mission and computation cost.



Problem 1 (Joint Computing, Pushing and Caching Policy
Optimization).

ϕ∗ ≜min
π

ϕ(π)

s.t. π(X) ∈ Π(X), ∀X ∈ F × S.

IV. SOFT ACTOR-CRITIC LEARNING

A. SAC System State and Action

The system state x of SAC is designed to match the system
state X in the formulated problem, such that x = X =
(A(t),S(t)), with a vector size of 2F + 1.

The SAC algorithm is designed to solve continuous-action
problems, whereas the required system action (cR,b,∆s) in
the formulated problem is discrete. To address this issue, we
define the system action of the SAC as the continuous version
of the formulated system action space. This continuous version
is denoted as a =

(
c̄R, b̄,∆s̄

)
∈ Π̄(X) ≜ Π̄R

C(X) × [0, 1]F ×
Π̄∆s(X).

As c̄R ≜ {(c̄R,f )f∈F} must always equal zero for f ∈
F\A(t), the action space of SAC can be simplified by disre-
garding the computing cores for non-requested tasks. We can
obtain the simplified form of action a as a =

(
c̄A(t), b̄,∆s̄

)
,

with a vector size of 3F + 1.

B. SAC Learning

SAC is an off-policy deep reinforcement learning method
that maintains the advantages of entropy maximization and sta-
bility while offering sample-efficient learning [11]. It operates
on an actor-critic framework where the actor is responsible for
maximizing expected reward while simultaneously maximiz-
ing entropy. The critic evaluates the effectiveness of the policy
being followed.

A general form of maximum-entropy RL is given by

J(π) =

T∑
t=0

E(xt,at)∼ρπ
[r (xt,at) + αH (π (· | xt))] , (14)

where the temperature parameter α determines the relative im-
portance of the entropy term against the reward r, and the en-
tropy term is given by H (π (· | xt)) = Eat [− log π (at | xt)].

The SAC algorithm [11] is a policy iteration approach
designed to solve the optimization problem in Eq. (14). It com-
prises two essential components: soft Q-function Qθ (xt,at),
and policy πϕ (at | xt). To deal with the large continuous
domains, neural networks approximate these components, with
the network parameters denoted by θ and ϕ. For example,
the policy is modeled as a Gaussian distribution with a
fully connected network providing the mean and covariance
value, and the Q-function is also approximated using a fully
connected neural network. Following [11], the update rules for
θ and ϕ are provided below.

The soft Q-function parameters can be trained to minimize
the soft Bellman residual

JQ(θ) = E(xt,at)∼D

[1
2

(
Qθ (xt,at)−

(
r (xt,at)+

γExt+1∼p [Vθ̄ (xt+1)]
))2]

,
(15)

where D is the distribution of previously sampled states and
actions, p is the transition probability between states, and the
value function Vθ̄(xt) is implicitly parameterized through the
soft Q-function parameters as follows:

Vθ̄ (xt) = Eat∼π [Qθ̄ (xt,at)− α log π (at | xt)] . (16)
The update makes use of a target soft Q-function Qθ̄ with

parameters θ̄ obtained as an exponentially moving average of
the soft Q-function weights θ, which helps stabilize training.
The soft Bellman residual JQ(θ) in Eq. (15) can be optimized
with stochastic gradients

∇̂θJQ(θ) =∇θQθ (at,xt)
(
Qθ (xt,at)−

(
r (xt,at)+

γ (Qθ̄ (xt+1,at+1)− α log (πϕ (at+1 | xt+1)))
))

.

(17)
The policy parameters ϕ can be learned by directly mini-

mizing the expected KL divergence in

Jπ(ϕ) = Ext∼D

[
Eat∼πϕ

[
α log (πϕ (at | xt))−

Qθ (xt,at)
]]
.

(18)

A neural network transformation is used to parameterize the
policy as at = fϕ (ϵt;xt), where ϵt is an input noise vector
sampled from a Gaussian distribution. The objective stated by
Eq. (18) can be rewritten as

Jπ(ϕ) = Ext∼D,ϵt∼N
[
α log πϕ (fϕ (ϵt;xt) | xt)

−Qθ (xt, fϕ (ϵt;xt))
]
,

(19)

where πϕ is defined implicitly in terms of fϕ. The gradient of
Eq. (19) is approximated with
∇̂ϕJπ(ϕ) =∇ϕα log (πϕ (at | xt)) +

(
∇at

α log (πϕ (at | xt))

−∇at
Q (xt,at)

)
∇ϕfϕ (ϵt;xt) ,

(20)
where at is evaluated using fϕ (ϵt;xt).
Remark: In the maximum entropy framework, the soft policy
iteration that alternates between the policy evaluation Eq. (15)
and the policy improvement Eq. (18) converges to the optimal
policy. Proof in [11].

C. Action Quantization and Correction

The SAC learning algorithm produces the SAC action at
at time t that maximizes the policy value πϕ (at | xt) given
the SAC state xt. However, to evaluate the reward and update
the cache, we need to convert the continuous SAC action at
into a discrete action

(
cA(t),b,∆s

)
. We achieve this through a

simple action quantization method that involves thresholding
and integer projection.
Action quantization: Consider an element η̄ in the SAC action
a and its corresponding quantized version η in the system
action, where η belongs to the selection set Sη . To convert η̄
to η, we employ uniform thresholding for integer projection,
which is given by

η = minSη +(η̄−minSη)mod
maxSη −minSη

maxSη −minSη + 1
(21)

As an example, consider the push action bf (t) ∈ Sbf =
{0, 1}, we can determine its quantized value bf (t) = b̄f (t)
mod 0.5 using Eq. (21).



Algorithm 1 SAC Learning for Our Problem

Initialize parameters θ, θ̄, ϕ for networks Qθ, Qθ̄, πϕ.
Initialize learning rate λQ, λπ , and weight ξ.
for each iteration do

for each environment step do
at ∼ πϕ (at | xt)
xt+1 ∼ p (xt+1 | xt,at)
at quantization & correction, calculate r (xt,at)
D ← D ∪ {(xt,at, r (xt,at) ,xt+1)}

end for
for each gradient step do

θi ← θi − λQ∇̂θiJQ (θi) for i ∈ {1, 2}
ϕ← ϕ− λπ∇̂ϕJπ(ϕ)
θ̄i ← ξθi + (1− ξ)θ̄i for i ∈ {1, 2}

end for
end for

Action correction: Due to the constraints outlined in Eqs. (2),
(3), (8), (9), and (10), the valid action space of the system
is very limited and sparsely spanned, with a cardinality of
(M + 1) × 2F × 32F . Consequently, even with techniques
such as penalty reward, it is difficult for the SAC algorithm
to learn which actions are valid in the huge and sparsely
spanning action space. Therefore, the post-quantization action(
cA(t),b,∆s

)
is usually not valid. To overcome this issue, we

propose to correct the output action of SAC and make it valid
using Rules 1, 5, and 7 as detailed below. These rules are
designed to satisfy the constraints presented in Section II-C.
Additionally, we suggest some general Rules 2, 3, 4, and 6 to
accelerate training and refine system action.

• Rule 1: when SO
A(t)=0, if the cA(t) is smaller than the

minimum workable value ⌈IA(t)wA(t)/(τfD)⌉, we will
correct it by cA(t) = ⌈IA(t)wA(t)/(τfD)⌉; when SO

A(t) =
0, cA(t) = 0. This is to constrain the total latency.

• Rule 2: when SI
f +SO

f ≥ 1, bf = 0. It indicates no need
for proactive pushing if any data of a task is cached.

• Rule 3: there is at most one task being proactively
transmitted for the task with largest b̄f and bf = 1.
Other tasks are corrected to bf = 0. This is to reduce the
unnecessary pushing cost given that the mobile device
has one task request at each time slot.

• Rule 4: if bf = 1, ∆sIf = 1. It indicates that the proactive
pushing data has to be cached.

• Rule 5: if the cache sum Eq. (10) exceeds the capacity, we
drop the input or output cache according to the ascending
order of the s̄ values until the capacity fits.

• Rule 6: if the cache sum Eq. (10) is inferior to capacity,
we try to add the reactive input or output cache according
to the descending order of ∆s̄IA(t) and ∆s̄OA(t) values.

• Rule 7: clip the cache action ∆s according to the
min,max limit in Eq. (8) Eq. (9).

Fig. 2: Training convergence of SAC algorithm for different
configuration cases.

D. Reward Design

The reward r(x,a) of SAC state x and action a are designed
to be a function of resulting bandwidth and computation cost

r(x,a) = −κ(B(t) + λE(t)) (22)
where κ is the normalization coefficient, and is set as 10−6.

The complete SAC learning algorithm is presented in Algo-
rithm 1, where λQ, λπ are the step sizes (or learning rate) for
stochastic gradient descent, and are chosen to be 1× 10−4. ξ
is the target smoothing coefficient chosen to be 0.005.

V. IMPLEMENTATION

We generated simulated data for training and testing by
randomly generating a Markov chain from the task set F .
The transition probability of a task i to one randomly selected
task j ∈ F\i was set to the maximum transition probability,
i.e., pi,j = pmax. The probability to other tasks k ∈ F\j was
given by pi,k = (1−pi,j)

|p′
i,k|∑

f∈F\j |p′
i,f |

, where p′i,k or p′i,f were
random samples from a uniform distribution. This designed
Markov chain represents the request popularity and transition
preference of F tasks. We sampled 106 requested tasks using
a frame-by-frame approach. In our simulation, we considered
M = 8, F = 4, a maximum transition probability of 0.7,
λ = 1, If = 16000 bits, Of = 30000 bits, w = 800 cycles/bit,
τ = 0.02 seconds, fD = 1.7 × 108 cycles/s, µ = 10−19, and
C = 40× 103 bits.

For ease of training and stabilization, both the SAC action
at and system state xt are normalized to the range of [−1, 1].
The implementation of the system is done with Python and
PyTorch. The training and testing were deployed on a PC with
TITAN RTX GPU using batch size 256, discount factor γ =
0.99, automatic entropy temperature α tuning [11], network
hidden-layer size 256, one model update per step, one target
update per 1000 steps, and replay buffer size of 1× 107. We
make 10 testing epochs after every 10 training epochs and stop
the training and testing when the reward and loss converge.

VI. EVALUATION AND ANALYSIS

A. Baselines

The proposed system is built on the proactive transmission
and dynamic-computing-frequency reactive service with cache



(PTDFC). For comparison, we consider the following base-
lines:

• Most-recently-used proactive transmission and least-
recently-used cache replacement (MRU-LRU): A
heuristic algorithm [3] that serves the requested task
reactively while proactively caching the input data of the
most-recently-used task and replacing the least-recently-
used task’s cache when the cache is full. The number of
computing cores used is fixed at 0.75M .

• Most-frequently-used proactive transmission and least-
frequently-used cache replacement (MFU-LFU): Simi-
lar to MRU-LRU, this algorithm replaces the most/least
recently used task with the most/least frequently used
task.

• Dynamic-computing-frequency reactive service with no
cache (DFNC): This algorithm reactively serves the
requested task at each time slot t by downloading the
input data from the MEC server and computing the output
data.

• Dynamic-computing-frequency reactive service with
cache (DFC): Similar to DFNC, this algorithm also
reactively serves the requested task at each time slot t but
can cache the input or output data into limited capacity.

B. Convergence

We show the convergence of the SAC algorithm in Fig. 2
by plotting the reward vs. epochs curves for different system
setups. For setups with a smaller action space, such as those
with smaller τ and no proactive transmission, the SAC algo-
rithm converges quickly in around 200 epochs. However, more
complex setups with larger action spaces, such as those with
proactive transmission and more tasks F , typically take 500
epochs or longer to converge.

C. Different Cache Size C

The average transmission cost and computation cost of
three SAC-enabled algorithms, DFNC, DFC, PTDFC, and two
heuristic algorithms MRU-LRU, MFU-LFU, were compared
under different cache sizes C, as shown in Fig. 3. While the
cache size change did not affect the DFNC algorithm, the rest
of the algorithms showed decreasing transmission costs with
increasing C due to the ability to cache more input data lo-
cally. In addition, the proposed PTDFC algorithm consistently
achieved lower transmission and computation costs than the
other algorithms under different cache sizes. For very large
cache sizes, such as C = 50000 bits, the performance of
PTDFC and DFC was similar.

D. Different Tolerable Service Delays τ

Fig. 4 illustrates the performance of five algorithms at differ-
ent maximum tolerable service delays. As τ increases, the cost
of all algorithms decreases because there is more time avail-
able for the transmission and computation process, requiring
less bandwidth and lower computing frequency. Among the
three SAC-enabled algorithms, the proposed PTDFC algorithm
consistently achieves the lowest transmission and computation
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Fig. 3: Varying cache size C under default configuration.

0.012 0.016 0.02 0.024

(seconds)

0

0.5

1

1.5

2

2.5

tr
an

sm
is

si
o
n 

co
st

 (
bi

t/
s)

107

DFC
PTDFC
DFNC
MRU-LRU
MFU-LFU

0.012 0.016 0.02 0.024

(seconds)

0.5

1

1.5

2

2.5

co
m

pu
ta

ti
on

co
st

 (
J)

106

DFC
PTDFC
DFNC
MRU-LRU
MFU-LFU

Fig. 4: Varying maximum tolerable service latency τ under
default configuration.

cost under different τ values. However, as τ gets larger, the
transmission cost of all five algorithms begins to converge,
and the advantages of PTDFC become less significant. This is
because enough time is available for transmission even with
the lowest-frequency reactive computing.

VII. CONCLUSION

This paper investigates joint computing, pushing, and
caching optimization in a single-user single-server MEC net-
work to reduce the transmission data load and computa-
tion cost. A framework based on SAC learning with action
quantization and correction techniques is proposed to enable
dynamic orchestration of the three activities. Simulation results
demonstrate the effectiveness of the proposed framework in
reducing both transmission load and computing cost, outper-
forming baseline algorithms under various parameter settings.
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