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Abstract—Adaptive rate control for deep joint source and
channel coding (JSCC) is considered as an effective approach
to transmit sufficient information in scenarios with limited
communication resources. We propose a deep JSCC scheme for
wireless image transmission with entropy-aware adaptive rate
control, using a single deep neural network to support multiple
rates and automatically adjust the rate based on the feature
maps of the input image and their entropy, as well as the
channel conditions. In particular, we maximize the entropy of
the feature maps to increase the average information carried by
each transmitted symbol during the training. We further decide
which feature maps should be activated based on their entropy,
which improves the efficiency of the transmitted symbols. We
also propose a pruning module to remove less important pixels
in the activated feature maps in order to further improve
transmission efficiency. The experimental results demonstrate
that our proposed scheme learns an effective rate control
strategy that reduces the required channel bandwidth while
preserving the quality of the reconstructed images.

Index Terms—Joint source and channel coding, adaptive rate
control.

I. INTRODUCTION

Conventional wireless image transmission systems typically
perform source coding and channel coding of the source
image separately. Source coding first compresses the source
image to remove redundant information. Then, channel coding
adds redundant bits to the source-coded image to ensure
reliable wireless transmission. According to Shannon’s sep-
aration theorem [1], this structure requires the transmission
of infinitely long codewords to achieve theoretical optimality.
However, in practical scenarios such as autonomous driving
and telemedicine, long code block lengths are difficult to
achieve. Therefore, separation-based coding schemes may not
be optimal for wireless transmission.

To address this issue, deep learning techniques have been
introduced to wireless image transmission systems to offer
significant performance improvements. Bourtsoulatze et al.
proposed the joint source and channel coding (JSCC) algo-
rithm for wireless image transmission based on deep learning
[2], which is referred to as the deep JSCC scheme. In this
scheme, the authors train a deep learning model to extract
a number of feature maps from the source image, with the

non-trainable communication channel incorporated into the
training process. Experimental results have shown that the
deep JSCC scheme achieves better performance than the
separation-based digital transmission scheme. Based on the
deep JSCC scheme, several studies have been conducted to
further improve its performance. Kurka et al. [3] proposed
DeepJSCC-f, which introduces the channel output feedback
to the deep JSCC scheme. This achieves variable-length
transmission and reduces the required channel bandwidth.
Zhang et al. [4] proposed MLSC-image, a multi-level seman-
tic communication system for image transmission. It extracts
both high-level and low-level image semantic features to
improve image reconstruction performance.

However, there are still some aspects of the pioneering
deep JSCC scheme that could be improved. On one hand,
deep JSCC maps the pixel values of the input image to
the complex-valued channel input symbols, treating each
symbol equally with the same channel resources. However, for
different transmission purpose, the transmitted symbols may
have different importance. On the other hand, the transmission
rate of the deep JSCC scheme is fixed, which limits the
transmission of complex image content when communication
resources are limited. To address this limitation, the deep
JSCC scheme could be made more flexible and effective
by dynamically adjusting the transmission rate to transmit
important information with limited channel bandwidth.

Regarding the first aspect, we believe that symbols from
feature maps with higher entropy are more important be-
cause they have more information on average and thus may
contribute to better image reconstruction. As for the second
aspect, several studies on multi-rate deep JSCC schemes have
been conducted. Kurka et al. [5] [6] studied the problem of
adaptive bandwidth image transmission over wireless chan-
nels. Yang et al. [7] supported multiple rates using a single
deep neural network that can dynamically adjust its rate based
on the channel signal-to-noise ratio (SNR) and the feature
maps. However, these studies only considered reducing the
number of feature maps to be transmitted, ignoring the fact
that the length of each feature map can also be reduced. In
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contrast, Zhou et al. [8] proposed a multi-bit length semantic
encoding scheme that can reasonably decrease the length
of transmitted information bits and minimize the overhead
required for the correct delivery of information. Inspired by
[8], we believe that not only some feature maps may be
unimportant, but even some of the pixels within an important
feature map are also unimportant.

In this paper, we propose an entropy-aware deep JSCC
scheme that can automatically adjust its rate based on the
feature maps and their entropy, as well as the channel con-
ditions. Specifically, we define the feature maps that need to
be transmitted as the activated feature maps. We select the
activated feature maps from all feature maps of the image and
then prune them to increase the flexibility of the transmission
rate. The main contributions of this paper are as follows:

• Entropy-Aware: We maximize the entropy of the feature
maps during training to increase the average amount of infor-
mation carried by each transmitted symbol and determine the
activated feature maps based on their entropy. This benefits
the image reconstruction performance of the model.

• Sparse Feature Maps: We prune the activated feature
maps while maintaining their structural information. This
reduces the transmission of unimportant symbols, resulting
in reduced channel bandwidth usage.

• Automatic Rate Adaption: The selection and pruning of
feature maps are fully automatic. We use two policy networks
to determine the activated feature maps and the pruning ratio
for these activated feature maps, respectively.

Our experimental results demonstrate that the proposed
method is effective in selecting the activated feature maps and
pruning them under different channel conditions. Compared
to existing methods, our proposed method achieves a notable
improvement in image reconstruction performance, with a
PSNR increase of approximately 0.11-0.57dB.

II. OUR PROPOSED DEEP JSCC SCHEME WITH
ENTROPY-AWARE ADAPTIVE RATE CONTROL

A. Overall Structure

In this section, we propose a deep JSCC scheme that can
automatically adjust its rate based on the feature maps and
their entropy, as well as the channel SNR, while maintaining
high image reconstruction performance. The proposed scheme
consists of several components, namely a semantic encoder, a
feature map selection and pruning module, a channel encoder,
a communication channel, a channel decoder, and a semantic
decoder.

To transmit an image x, we feed it into the semantic
encoder for extracting feature map z = fse(x). Then in the
feature map selection and pruning module, both z and its
entropy Hz are provided as inputs to a policy network P1 in
order to generate a mask M , based on which the activated
feature map z1 is selected. z1 is then input to another policy
network P2 to obtain its pruning ratio, which is applied by
the feature map pruning module to prune z1, resulting in the
pruned feature map z2 and the pruning index matrix Mp. After

obtaining z2 and Mp, they are fed into the channel encoder to
yield a complex-valued transmitted signal, represented as z3.
z3 is passed through the communication channel and becomes
ẑ3. ẑ3 contains two components: the received signal ẑ2 and the
received modulated pruning index matrix M̂ ′

p. At the receiver,
the channel decoder maps ẑ2 back to ẑ according to M̂ ′

p,
from which the semantic decoder then reconstructs the image
x̂. A comprehensive illustration of our proposed deep JSCC
scheme is presented in Fig. 1. Next, we will introduce each
module in detail.

B. Semantic Encoder and Decoder

The semantic encoder takes x as input and outputs the
feature map z, while the semantic decoder reconstructs the
image from ẑ. The semantic encoder consists of two compo-
nents, S1 and S2. The semantic encoder S1 consists of three
convolutional layers, while semantic encoder S2 includes two
ResNet blocks, two SNR adaptive modules, and one convo-
lutional layer. The structure of the SNR adaptive module is
identical to that in [7]. The structure of the semantic decoder
is in reverse order to that of the semantic encoder. We also
note that some convolutional layers in the semantic encoder
become transpose convolutional layers for upsampling in the
semantic decoder.

C. Feature Map Selection and Pruning Module

The feature map selection and pruning module selects the
activated feature maps and prunes them. Firstly, we define the
dimension of z as 2C × L

2 , where 2C represents the number
of feature maps and L

2 is the length of each feature map. We
calculate the entropy of each feature map zi as H(zi), where
i is the order index. Then, in order to increase the difference
between the entropy values of the feature maps, we apply the
softmax function H ′ (zi) = eH(zi)

2C∑
i=1

eH(zi)

to normalize H(zi).

The overall entropy matrix Hz is obtained by concatenating
all H ′(zi). Then every two feature maps in z are concatenated
to form a concatenated feature map z′ ∈ RC×L, since the
feature maps are input to the communication channel with
one half as the real part and the other half as the imaginary
part. After concatenation, all C feature maps can be selected
as activated feature maps since this can further increase the
flexibility of our transmission strategy. However, only some
of the feature maps were selective in the previous method [7].

Next, we feed z and Hz into a policy network P1. This
network outputs a binary mask M ∈ {0, 1}C×1 that indicates
which feature maps should be activated. P1 learns to select
the activated feature maps based on all the feature maps and
their entropy, as well as the channel SNR, whose structure is
shown in Fig. 2. As shown in Fig. 2, we first concatenate z and
Hz to construct an information matrix for the feature maps.
We then average each row of this matrix and concatenate
the resulting matrix with the channel SNR. This generates
a (2C + 1) × 1 matrix. The probabilities for each possible
selection are generated by passing this matrix into a two-
layer multi-layer perceptron (MLP). To overcome the non-



Fig. 1: The overall structure of our proposed deep JSCC scheme.

Fig. 2: The structure of policy network P1.

differentiability problem caused by the discrete nature of the
sampling process, we utilize Gumbel-Softmax to sample the
selection as a one-hot vector. This vector is then transformed
into the mask M . The adaptive transmission mask has a length
of C, where each “1” in the mask means that the feature
map at the corresponding position in z′ will be activated, and
vice versa. We then multiply the concatenated feature map z′

by M to obtain the activated feature map z1. Note that the
inputs of P1 are z and Hz , while the activated feature maps
are selected from z′. At the receiver, feature maps that are
not activated are zero-padded. We denote the total number of

Fig. 3: The structure of policy network P2.

activated feature maps as Ĉ =
C∑
i=1

Mi.

In the next step, we use another policy network P2 to
determine the pruning ratio for the activated feature maps. P2

takes z1 as its input and outputs a one-hot vector V of length
T , where the T denotes the number of possible pruning ratios.
Its structure is shown in Fig. 3. As shown in Fig. 3, we first
average each row of z1 and concatenate the resulting matrix
with the channel SNR. The concatenated matrix is then fed
into the MLP, which consists of two fully connected layers
and a softmax function at the end. By utilizing the maximum



probability value, we generate the one-hot vector of length T .
In this paper, we set T to 5 and define the possible pruning
ratios as a ∈ {0, 0.2, 0.25, 0.3, 0.35}. Once we obtain the one-
hot vector V , we apply pruning to z1 based on V to obtain
the pruned feature map z2. The dimension of z2 is Ĉ × L̂.
Specifically, inspired by the commonly used l1-norm based
pruning rule in model pruning [9], for each activated feature
map, we regard its pixel with smaller l1-norm (i.e., pixels with
smaller absolute numerical values) as being less important.
During the pruning process, we remove a portion of pixels
with relatively small l1-norm in each activated feature map
according to the pruning ratio obtained from V . However, the
positions of these removed pixels in the activated feature maps
contain important structural information of the input image.
Therefore, we record the position indices of the pruned pixels
in a pruning index matrix Mp ∈ {0, 1}Ĉ×L, where the “1”
indicates that the pixel at that position has been pruned. It is
essential to transmit Mp to the receiver so that the receiver
can zero-pad the pruned pixels according to Mp, thus recover
the structure of the activated feature maps.

D. Channel Encoder and Decoder

In the channel encoder, we use 64-quadrature amplitude
modulation (64-QAM) to modulate Mp, resulting in a length
of each vector of L′ =

⌈
L
6

⌉
. Then, we obtain the modulated

pruning index matrix M ′
p for the activated feature maps. It has

a dimension of Ĉ × L′ pixels. We input the pruned feature
map z2 and the modulated pruning index matrix M ′

p into
the power normalization module, which generates a complex-
valued transmitted signal z3 ∈ CĈ×( L̂+L′

2 ) with unit average
power. After that, we input z3 into the noisy wireless channel
and output ẑ3. ẑ3 contains the received signal ẑ2 and the
received modulated pruning index matrix M̂ ′

p. Finally, we
feed ẑ2 and M̂ ′

p into the channel decoder.
In the channel decoder, we demodulate M̂ ′

p and zero-pad
the pruned pixels according to M̂p to recover the structure
of the activated feature maps. Subsequently, we zero-pad the
feature maps that are not activated. The output of the channel
decoder is ẑ.

E. Communication Channel

The communication channel is modeled as a non-trainable
layer that adds random perturbation to the transmitted sym-
bols. In this paper, we consider AWGN wireless channel. The
output of the channel can be expressed as ẑ3 = z3+n, where
n represents the additive Gaussian noise. The channel SNR,
which determines the level of noise in the channel, is known
by both the transmitter and receiver, allowing the semantic
encoder, semantic decoder, P1, and P2 to adapt to different
channel conditions.

F. Transmission Rate

Our objective is to maintain the quality of reconstructed im-
age while reducing the channel bandwidth usage. We measure
the transmission rate based on the wireless channel usage per

pixel (CPP). If the input image has a dimension of 3×H×W

pixels, then CPP =
Ĉ(L̂+L′)

2HW . Recall that Ĉ represents the
number of activated feature maps, L̂ represents the length
of the pruned activated feature maps, and L′ represents the
number of columns of the modulated pruning index matrix
M ′

p. When no feature maps are pruned, L
′
= 0. Hence, the

value of CPP mainly depends on the number and length of
the activated feature maps, as well as the number of pixels
removed from the activated feature maps.

G. Loss Function and Training Strategy

To train the proposed deep JSCC scheme, we incorporate
three terms into our loss function L, which is defined as :

L = E

[
∥x− x̂∥22 + α

L̂

L

C∑
i=1

Mi − βE
(
eH(zi)

)]
. (1)

Here, our loss function takes the expected value over
the entire training set. The first term is the mean square
error between the input image and the reconstructed image,
ensuring image reconstruction performance. The second term
is the product of the length ratio and the number of the
activated feature maps. This term represents wireless channel
usage and helps reduce the required channel bandwidth. The
third term indicates the average processed entropy of z, which
increases the average amount of information carried by each
transmitted symbol. It is calculated by taking the expected
value of the processed entropy of all the feature maps. Note
that here we do not normalize these entropy values. We use
two hyperparameters α and β to balance these three terms.

To train our model, we use the Adam optimizer [10].
Specifically, we first train the entire model for 200 epochs
with a learning rate of 5× 10−4. Afterward, we decrease the
learning rate to 5 × 10−5 and continue training for another
200 epochs. Afterwards, we proceed to the fine-tuning phase,
where the learning rate becomes 1×10−5. During this phase,
we first freeze the semantic encoder S1 and train the model
for 100 epochs. Then, we freeze the semantic encoder S2 and
the policy networks, and train the model for 100 epochs.

III. EXPERIMENTS

A. Experimental Setup

We evaluate our proposed scheme using the CIFAR-10
dataset, which consists of 50,000 training images and 10,000
testing images. All images are 32×32 pixel RGB images. The
batch size is set to 512, and the channel SNR is uniformly
sampled between 0dB and 15dB for each image in every
epoch during the training process. The hyperparameter αours

has two distinct values: 2× 10−4 and 1.3× 10−3. β is set to
1×10−5. The number of filters in the last layer of the semantic
encoder is 2C = 16, and the length of the corresponding
feature maps is L

2 = 64. The feature maps in z are then
concatenated in pairs to create selective feature map z′ with
dimension C×L = 8×128. If the feature maps are pruned, the
binary vectors used to represent the pruning indices comprise
128 bits. Thus, L

′
=

⌈
128
6

⌉
= 22.



TABLE I: The strategy comparison between the baseline [7] with αbase = 5× 10−4 and our method with αours = 2× 10−4.

SNR(dB) Average number
of feature maps

Average feature map
length ratio(%) Rate(CPP) Baseline

Rate(CPP) PSNR(dB) Basline
PSNR(dB)

15 7.90 74.04 0.450 0.447 33.37 (↑0.57) 32.80
10 7.97 100.00 0.498 0.488 31.79 (↑0.59) 31.20
5 8.00 100.00 0.500 0.499 28.60 (↑0.28) 28.32
0 8.00 100.00 0.500 0.500 24.74 (↑0.21) 24.53

TABLE II: The strategy comparison between the baseline [7] with αbase = 1.5×10−3 and our method with αours = 1.3×10−3.

SNR(dB) Average number
of feature maps

Average feature map
length ratio(%) Rate(CPP) Baseline

Rate(CPP) PSNR(dB) Basline
PSNR(dB)

15 4.60 73.20 0.260 0.255 30.06(↑0.11) 29.95
10 5.54 100.00 0.346 0.310 29.54(↑0.65) 28.89
5 7.29 100.00 0.455 0.430 27.88(↑0.40) 27.48
0 7.90 100.00 0.493 0.493 24.56(↑0.11) 24.45

(a) αours = 2× 10−4 (b) αours = 1.3× 10−3

Fig. 4: The comparison of image reconstruction performance between our method, the method proposed in [7], and the
BPG+capacity method.

For comparison, we use two baseline methods: the adaptive
rate control scheme proposed by Yang et al. [7] and the BPG
image codec combined with idealistic error-free transmission
based on Shannon capacity. We use peak signal-to-noise ratio
(PSNR) as the performance metric.

B. Experimental Results

First, we analyze the number of feature maps and the
pruning ratios selected by our proposed method under dif-
ferent SNRs. For comparison, we use data obtained from
the baseline [7], which is shown in Table. I and Table. II.
To ensure a fair performance comparison, we set αours in
multiple attempts to maintain CPP levels similar. When the
SNR is low (0-10dB), our method selects a larger number of
feature maps and we do not prune them in this case. This is
because poor channel conditions require more feature maps
to be transmitted to provide enough information for image
reconstruction. Pruning is not worthwhile in this case because
64-QAM has a high bit error rate (BER) at low SNRs. Our
method achieves approximately 0.11-0.28dB higher PSNR
compared to the baseline without pruning the feature maps.
This indicates that our designed entropy-aware feature map
selection module can help improve image reconstruction
performance. As the SNR increases to 15dB, we prune about
26%-27% of the pixels in the activated feature maps.

Next, we compare our proposed method with the method
proposed by Yang et al. [7] and the BPG+capacity method.

We compare the performance of these models and plot the
SNR-PSNR curves, as shown in Fig. 4. Our model outper-
forms the method proposed in [7] for both αours = 2× 10−4

and αours = 1.3 × 10−3. At similar CPPs, our method im-
proves PSNR by about 0.21-0.57dB when αours is relatively
small. However, the PSNR improvement drops to around
0.11dB when we increase the value of αours. This is because
that as αours increases, the policy networks focus more on
channel bandwidth usage rather than PSNR performance,
thereby reducing the effectiveness of our scheme. At low
SNRs (0-10dB), our method outperforms both baseline meth-
ods. At high SNR (15dB), our method performs equivalently
to the BPG+capacity method when αours is small, while
completely outperforming it when αours increases. Note that
the BPG+capacity method is rate-fixed. Therefore, even if the
PSNR performances are similar, our method has the advantage
of rate adaptivity. Compared to the method proposed in
[7], our method shows a notable improvement in image
reconstruction performance, achieving approximately 0.57dB
for small αours and slightly lower, about 0.11dB, for larger
αours. This shows that our method is more advantageous when
channel resources are sufficient.

Finally, we consider two types of images in CIFAR-10
transmitted by our proposed scheme, as shown in Fig. 5. In
Fig. 5, the blue bar represents the total entropy of the activated
feature maps, while the red curve represents the entropy of
the input images, both of which refer to the average. The



Fig. 5: The comparison of transmission schemes for two types
of images with different complexity in CIFAR-10.

TABLE III: The performance comparison of the proposed
method with and without the feature map pruning technique.

Model Rate(CPP) PSNR(dB)
αours = 2× 10−4 (with P2) 0.450 33.37(↑0.18)

αours = 4.5× 10−4 (without P2) 0.451 33.19
αours = 3.5× 10−4 (with P2) 0.433 33.10(↑0.16)

αours = 4.8× 10−4 (without P2) 0.433 32.94
αours = 4× 10−4 (with P2) 0.406 32.65(↑0.09)

αours = 5.4× 10−4 (without P2) 0.405 32.56
αours = 5.8× 10−4 (with P2) 0.356 31.77(↑0.02)

αours = 7.5× 10−4 (without P2) 0.356 31.75
αours = 1.3× 10−3 (with P2) 0.260 30.06(↑0.02)

αours = 1.9× 10−3 (without P2) 0.260 30.04

two types of images have different complexity, with higher
entropy representing higher complexity. For each type of
image, we take the average of 100 images. For the simple
images, our method selects an average of 4.11 feature maps
and prunes 28.2% pixels of them, resulting in an average CPP
of 0.229. While for the complex images, our method selects
an average of 4.83 feature maps and prunes 27.9% pixels of
them, resulting in an average CPP of 0.269. The result shows
that our method selects fewer feature maps and therefore
lower CPP when the image content is relatively simple, and
vice versa. It also proves that our method can automatically
select activated feature maps based on the entropy of the
image. In conclusion, by combining the entropy-aware feature
map selection with the feature map pruning, we achieve
notable improvement in image reconstruction performance.

C. Ablation Study

We also conduct an ablation study of the proposed scheme
to evaluate its effectiveness, as shown in Table. III. Specif-
ically, we train several models with different αours values
to compare the performance of models with and without the
feature map pruning technique. To ensure a fair performance
comparison, we set the αours values through multiple attempts
to ensure similar CPP levels.

By comparing the results, we find that pruning the activated
feature maps can improve image reconstruction performance

of the model with similar CPPs. The effect of the feature map
pruning technique is more significant at lower αours. These
experiments confirm that our feature map pruning technique
effectively improves the image reconstruction performance.

IV. CONCLUSION

In this paper, we proposed a deep JSCC scheme for wireless
image transmission with entropy-aware adaptive rate control.
During training, we maximized the entropy of the feature
maps to increase the amount of average information carried by
each transmitted symbol, and selected activated feature maps
based on their entropy. This helped the model to achieve better
image reconstruction performance. To achieve the adaptive
transmission rate, we introduced two policy networks. The
first generated a binary mask that selects activated feature
maps. Subsequently, the second policy network decided the
pruning ratio for the activated feature maps. We transmitted
the position information of the pruned pixels over the wireless
channel to recover the structure of the activated feature
maps at the receiver. Our experiments demonstrate that the
proposed method learns an effective rate control strategy that
automatically adjusts the rate according to the feature maps
and their entropy, as well as the channel conditions. Our
method, which benefits from the entropy-aware feature map
selection and the feature map pruning, provides a promising
experimental result for adaptive rate control in deep JSCC.
Moreover, it outperforms existing related studies in terms of
image reconstruction performance.
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