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Abstract—The high frequency communication bands (mmWave
and sub-THz) promise tremendous data rates, however, they
also have very high power consumption which is particularly
significant for battery-power-limited user-equipment (UE). In this
context, we design an energy aware band assignment system which
reduces the power consumption while also achieving a target sum
rate of M in T time-slots. We do this by using 1) Rate forecaster(s);
2) Channel forecaster(s) which forecasts T direct multistep ahead
using a stacked (long short term memory) LSTM architecture.
We propose an iterative rate updating algorithm which updates
the target rate based on current rate and future predicted rates
in a frame. The proposed approach is validated on the publicly
available ‘DeepMIMO’ dataset. Research findings shows that the
rate forecaster based approach performs better than the channel
forecaster. Furthermore, LSTM based predictions outperforms
well celebrated Transformer predictions in terms of NRMSE and
NMAE. Research findings reveals that the power consumption
with this approach is ∼ 300 mW lower compared to a greedy
band assignment at a 1.5Gb/s target rate.

Index Terms—Rate forecaster, Band assignment, Power con-
sumption, Green communications, Multiband networks.

I. INTRODUCTION

The 3GPP has considered significant available bandwidth
at millimeter (mmWave) frequencies in its fifth generation
new radio (5G-NR) standard, and potentially also consider-
ing Sub-THz bands (>100 GHz) which would help achieve
beyond5G/6G objectives [1]. Although the mmWave and THz
bands provide significant bandwidth and promise tremendously
high data rates (ranging from multi-gigabit-per-second up to
terabit-per-second), propagation at these bands is limited by
severe path loss, and is susceptible to blockages. These factors
limit the quality of service and user experience [2].

Due to the complementary characteristics of wireless signal
propagation at Sub-6 GHz and mmWave bands, 3GPP standards
have also evolved to support multiband networks [3], leading
to the band assignment problem. There are several works in the
literature that have investigated the band assignment problem
in multiband heterogeneous systems, e.g. [4]–[6]. Recently,
few works have applied machine learning (ML) techniques in
context of band assignment. For instance, a supervised ML
based approach for band switching in dual band systems was
studied in [7]. A deep neural network (DNN) based band
switching in dual band systems was proposed in [8], while deep
reinforcement learning (DRL) for band switching in unmanned
aerial vehicle (UAV) was analyzed in [9].

Most of the aforementioned works considered the criteria
of achieving the maximum rate in band assignment. Although
the higher frequency bands promise a very high data rate, the
power consumption is significantly different in different bands,
e.g., more than an order of magnitude higher in THz than in
mmWave bands [10]. Since the battery power in user equipment
(UE) is limited, it is desirable for future green networks
that the band assignment policies not only consider the rate

criteria but also the power consumed. A heuristic approach
for dual bands (Sub-6 GHz and mmWave) was considered in
our previous work [11] wherein if the power consumed in a
recent time window exceeds a certain threshold, a band switch
would be initiated to a lower-power-consuming band, without
consideration of the rate to be achieved.

With the possibility of forecasting rate in future time slots,
enabled by advances in ML, an energy-aware base station (BS)
may choose to not utilize a high-rate, high energy consuming
band (or it may choose to not transmit at all) at a given time-
slot if it predicts that the rate will be significantly higher
in a later time slot. Such an approach can lead to improved
energy usage in systems where the highest possible rate is
not always necessary. On the other hand, such an approach
might lead to long delays if the BS waits for favorable channel
conditions before transmitting in a high frequency, high-energy-
cost band. Therefore, to make such a system practical, some
form of time limitation is necessary. To the best of the authors’
knowledge, such an approach which considers to minimize the
power consumption and still meet the target rate in a given
time constraint using rate forecast in future time slots, although
promising, has not been reported in the literature.

In this context, we consider energy aware operation of down-
link multiband networks. Given the battery power limitation of
UE, we only consider the power consumption of the UE and not
the BS. In each slot of a frame, the BS chooses which band to
transmit in to meet a target sum rate in the frame (proportional
to the number of bits transmitted in the frame), with the lowest
average UE power consumption in that frame. The choice of
which band to utilize in this work is enabled by the use of
multiple rate/channel forecasters which predict rates in future
time slots based on learned past history of a moving UE, and
other UEs with similar (but not the same) trajectory. The key
contributions can be summarized as:

• A novel framework for energy aware band assignment in
multiband networks which minimizes power consumption
while attempting to achieve a target average rate per frame.

• An iterative procedure for band assignment which utilizes
rate/channel predictions for varying number of future
slots is introduced. This approach can be applied to any
rate/channel forecasting algorithm.

• We design rate and channel forecasters which forecast
direct multistep ahead for future time slots. We pro-
pose a stacked long short term memory (LSTM) as a
forecaster(s). We tailor the publicly available ray-tracing
based ‘DeepMIMO’ dataset [12] for motion and apply this
approach to it. The proposed approach outperforms sev-
eral other approaches considered. Furthermore, simulation
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results reveals the LSTM forecaster also outperforms the
Transformer model, which has received a lot of attention
recently.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network and System Model

In this work, we consider a multiband network in which
both the BS and mobile UEs can operate in the Sub-6 GHz,
mmWave or THz bands. We assume that the BS is equipped
with multiple antennas (3D array). As per the UE design
in [10] and references therein, for UEs, we assume a single
antenna at Sub6 (3.5 GHz), an array with NRx = 8 antennas
at mmWave (28 GHz), and an array with NRx = 64 antenna
elements at THz band (140 GHz). For ease of notation, we use
i ∈ (NoTx, Sub-6, mmWave, THz) to denote no-transmission
case and the three bands, and at any time slot, the BS can
only utilize one of the bands or not transmit at all. In slot
t, the baseband equivalent of the received signal at the UE,
transmitted by the BS in band i can be written as [8]:

yi[t] =
√

PTXi
h∗i [t] fi[t] xi[t]+wi[t], (1)

where, PTXi
is the transmitted power by BS in ith band, hi[t]

∈ CNT x is the channel vector, fi[t] is the beam forming vector
at t time slot, xi[t] is the transmitted signal, and wi[t] is the
additive white Gaussian noise with zero mean and variance σ2

i
in the i-th band. The evolution of hi[t] over time is based on
the motion of the UE and is described in more detail in Section
III-B.

We assume that the BS performs maximal ratio transmission
where fi[t] = 1

|hi[t]|hi[t]. Accordingly, the received SNR on the
ith frequency band with NRx receive antennas is

γi[t] =
PTXi

σ2
i

NRx |hi[t]|2, (2)

Note that we have made the assumption that the SNR with
multiple receive antennas is equal to the SNR with one receive
antenna multiplied by the number of antennas. This assumption
enables us to easily use datasets generated for UEs with
isotropic antennas. The achievable rate in slot t can be written
as:

Ri[t] = Bi log2{1+ γi[t]}, (3)

where Bi is the bandwidth of the ith frequency band, with
BNoTx = 0. We assume that the BS is equipped with a forecaster
and learns from past history of other UEs to make energy aware
band assignments1.

B. Power Consumption in Sub-6, mmWave, and THz band

Since the UEs can operate in Sub-6, mmWave, or the
THz bands, the power consumed by the RF chains will be
significantly different. The estimates of power consumed by the
major components in the RF chains is summarized in Table I,
and can be expressed as:

Pi = Ni−Rx(Pi−BPF+Pi−LNA+Pi−PS)+Pi−Combiner+Pi−LO+

2(Pi−Mixer+Pi−LPF+Pi−BBA+Pi−ADC).
(4)

1Proposed scheme is generic, but is consistent with, and can also easily
be extended to next generation of RAN architectures wherein intelligent
controllers use analytics and drive the network actions.

Table I: Power consumption of RF components (in mW)

Component Sub-6
(3.5GHz)

mmWave
(28GHz)

THz band
(140GHz)

Bandpass filter (BPF) 5 5 5
Low Noise Amplifier (LNA) 10 11.13 50.89

Local Oscillator (LO) 5 5 5
Phase Shifter (PS) - 1.5 1.5

Combiner - 19.5 19.5
Mixer 15 16.8 49

Low Pass Filter (LPF) 10 14 11.36
Baseband Amplifier (BBA) 5 5 5

Analog to Digital Converter (ADC) 7.8 8.2 32.7

The factor-2 in (4) is due to the inphase and quadrature phase
components. On substituting the values of each component
in (4) based on [10], [13]–[15] and references therein, the
approximate power consumed by the RF chain of the UE in
Sub-6 GHz, mmWave and THz bands are PSub-6 = 85.60 mW,
PmmWave = 254.90 mW and PTHz = 3893.58 mW, respectively.
Note that the power consumption is more than an order of
magnitude higher in the THz than in the mmWave and Sub-6
GHz bands. Thus, our aim is to design an energy aware band
assignment approach which minimizes the power consumption
subject to a target sum/average rate per frame, which is math-
ematically formulated in the next subsection.

C. Problem Formulation

To minimize the energy usage, one option is to never transmit
and thus power consumption would be minimal, which is
unrealistic. Thus, we introduce a target rate that the BS will try
to achieve at the UE. Further, in trying to achieve a sum target
rate in a manner that is energy efficient, the BS may wait for a
long time for favorable channel conditions before transmitting
at all, or before transmitting in a high frequency, high energy-
cost band. Such an approach could lead to extremely long
delays. Thus, we introduce a delay constraint T . We assume
a time slotted communication, with a frame comprising of T
time slots. The aim of the BS is to achieve a target sum-rate
M in every frame, while utilizing the lowest average power
during that frame at the UE. Further, we assume that the BS
can choose which band to transmit in for each slot, or choose
not to transmit at all in a given slot.

With the aid of eq. (3), for a given frame with T slots and
it representing the band in the t-th slot during the frame, we
wish to find it ’s to

min. Pconsumed =
T

∑
t=1

Pit ,

s.t. M ≤
T

∑
t=1

(
1−ν1{it ̸=it−1}

)
Bit log2

(
1+

PTxit
|hit [t]|2

σ2
it

)
(5)

where PTXi
is the BS transmit power in the ith band, ν ∈ [0,1)

is a switching cost which models the overhead time required to
switch bands, and 1 is an indicator function. We are showing
the equations just for a single frame, to simplify notation. Our
objective is to minimize the average consumed power in each
frame subject to the target average rate2 in that frame. In other
words, we attempt to minimize ∑

T
t=1 Pit subject to (5). If (5) is

not achievable, then we aim to maximize the RHS of (5).

2We interchangeably use the terms target rate and rate threshold.
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Legends:

Figure 1: Framework of the proposed scheme.

Note that if channel coefficients/rates of future time slots
were known, the optimal channel assignment can be done by
exhaustive search. Since future channels cannot be known at a
prior time slot, the BS predicts the rate/channel conditions in
future time slots to make its decision on which band to use in
the current time slot. In this work, the choice of which band
to transmit in is enabled by the use of multiple rate forecasters
which predict rates in future time slots based on learned past
history, which is discussed in the next section. We would like
to highlight that the rate in eq. (5) can be forecasted by: 1)
Forecasting the log2 (1+ γ) term, which we refer to as rate
forecaster3, or 2) By forecasting the |hi[t]|2, which we refer to
as channel forecaster.

III. PROPOSED SCHEME & METHODOLOGY

A. Proposed scheme

The framework of the proposed scheme is as shown in
Fig. 1 and complemented with algorithm-1 & 2. Assume that
each frame is comprised of T = 5 slots for illustration (any
number T > 1 could work). At each time, the BS can either
not transmit or utilize one of the Sub6, mmWave, or THz bands.
Thus, there are total four options i.e., Sub6/mmWave/THz/no
transmit, of which one is to be selected in each time slot. For
better understanding, a grid structure is shown wherein the rows
are the time indices, and columns are the slots. We propose to
use ‘T ’ forecasters, each predicting ‘T ’ direct multistep ahead
i.e., 4 step forecaster predicts 4 direct step ahead continuous
values. Thus, in the first slot, the 4 step forecaster would be
used to predict the rate/channel values for all the future time
slots in the frame, where we assume that the rate/channel in the
current slot is known. The forecasted values are highlighted by
the green boxes in the first row of the grid. Since rate/channel
predictions for future slots become less reliable (particularly for
THz), we reduce the channel predictions further into the future
to account for this fact. We do so by multiplying rates/channels
for the THz forecast by factors of 0.85, 0.8, 0.75, and 0.7 for the
predictions 1 - 4 steps into the future respectively (algorithm-1,
upto line 13). Next, the optimal band assignment is done for
all the five slots, using an exhaustive search. This is shown
in algorithm-2. For each frame, it iterates over all the possible
combinations i.e., 4T options of band assignments (plus the no-
transmit option), to obtain the set of 5 band assignments which
consumes the minimum energy, and is predicted to meet the
target rate. The resulting band assignment for the first slot is

3With the abuse of notation, we refer spectral efficiency term as rate.

Algorithm 1 Proposed algorithm

1: procedure PROPOSED APPROACH
2: Import O1 scenario; select UEs, BS locations
3: Run ray traces for the settings specified
4: Specify M, Power consumed in each band
5: Built and model T separate forecasters.
6: Each forecaster predicts T continuous predictions
7: Load the forecasted values
8: for m = 1 : all frames do
9: for t = 1 : T do

10: Obtain Ri[t] for i = 1,2,3
11: Get R̂i[t +1, t] · · · R̂i[T, t], i = 1,2,3
12: R̂(it , it+1, · · · iT )← Rit [t]+∑

T
k=t+1 R̂ik [k],

13: ∀(it , · · · iT )∈{NoTx,Sub6,mmWave,THz}T−t+1

14: Call Optimal Bandassignment with
15: R̂(it , it+1, · · · iT ),M,T − t +1
16: bt ← slot t assignment by Opt. Bandassignment
17: M←M−Rbt [t]
18: Compute power consumed in frame.
19: Compute sum rate in frame.
20: Compute average power consumed per frame.

Algorithm 2 Optimal Band Assignment algorithm

1: procedure OPTIMAL BANDASSIGNMENT(R̂(it , · · · iT ),M,T )
2: for k = 1 : 4T do
3: Loop over all the possible band combinations
4: Compute corresponding sum rates (R)
5: Save the band combinations where R > M
6: if Indices where R > M ̸= /0 then
7: Return band assignments where energy is min.
8: else
9: Return band assignments where rate is max.

10: The above procedure yields the best band assignments for
each frame that satisfies our objective in (5).

selected as the band to use in this slot (in algorithm-1). The rate
achieved in this slot is computed and subtracted from the sum-
rate threshold (algorithm-1, line 17) to compute a new threshold
for the next time slot. Next, at the 2nd time slot, we use the
exact channel in the second slot and 3 step ahead predictions
and so on. At each time slot, the optimal band assignment
procedure would be called with successively smaller number
of slots to reflect the declining number of slots remaining in
the current frame. The rate threshold would updated each slot
by subtracting the rate already achieved in the previous time
slot(s). This process will be repeated for all the slots. The
proposed algorithm is described in algorithm-1, where for a
given frame, R̂i[ℓ, t] is the predicted rate for the ℓ-th slot of
the i-th band, as predicted in the t-th slot. The rate forecasters
predict R̂i[ℓ, t] directly and the channel predictors use (3) and
(2) with predictions of |hi[t]|2.

The proposed design serves as an energy aware band as-
signment schemes which is motivated by systems with a finite
battery life, which takes advantage of the fact that rate/channel
forecasts for slots longer in the future will be less accurate than
forecasts for slots closer in the future.

B. Dataset Construction and Processing

The proposed algorithm was evaluated on the ‘DeepMIMO’
dataset [12]. In particular, we consider the ray-tracing out-
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Figure 2: Top view of ‘O1_outdoor scenario’ [12]. Not to scale.

Table II: DeepMIMO dataset and wireless parameters

Parameter Value
# of BS antennas (Mx×My×Mz) (1× 8 × 4)

# of UE antennas {Sub-6; mmWave; THz} {1; 8; 64}
# of channel paths (strongest gets selected) 3

PTXi
; Cyclic prefix ratio 1W ; 64

fc {Sub-6; mmWave; THz} {3.5; 28; 140} GHz
Bandwidth {Sub-6; mmWave; THz} {10; 100; 1000} MHz

# of OFDM subcarriers; UE speed ; (vs) 64 ; 10 m/s (36 kmph)

door scenario-1 ‘O1_3p5’ for Sub-6 GHz band, ‘O1_28’ for
mmWave band, and ‘O1_140’ for THz band. The design is
consistent with our considered system model. For all the ray
traces, we consider ‘User grid-1’ of the dataset and one active
BS (i.e., BS-3) as shown in Fig. 2. The coordinates of BS-3
is (235.50, 489.50, 6) m. In the original dataset (also shown
in Fig. 2), the user grid-1 includes 2751 rows, R1 to R2751,
with each row separated by 0.2 m. In the original dataset,
there are 181 users per row. However, we sample the users
and consider three active users per each row, to mimic three
UEs moving along the way, each separated by 3m. The initial
coordinates of UE1 is (242.42, 297.17, 2) m and the final
coordinates are (242.42, 847.17, 2) m. Thus, there are total
2751 location datapoints per UE. This setting is equivalent to
a UEs driving alongside the road with sampled rows being a
time instances as indicated by the UE trajectory in Fig. 2. The
key idea for adapting this approach is that the forecaster at the
BS can learn about the rates and/or channel strengths of the
UEs which were in the close proximity (UE2 and UE3 in this
case) in the past, and leverage this information for forecasting,
the details of which are provided in the next subsection. The
list of DeepMIMO dataset parameters and wireless channel
configuration is summarized in Table II.

C. Forecasting Methodology

The UE location is usually correlated with its previous
history. This is also justifiable in real-life highway and urban
road scenarios. This motivates us to utilize the LSTM as a
forecaster. As mentioned earlier, since we generate wireless
channel data considering a setting with three UEs, there are
a total of 8253 datapoints. We concatenate these datapoints
so as to form a temporal sequence. Precisely, we first stack

Table III: Stacked LSTM Hyperparameters
Hyperparameter Value

learning rate; Batch size; Epochs 0.0001 ; 64 ; 50
Number of layers (Depth) 4 hidden layers + 1 dense layer

Number of LSTM units (Width) {100, 64, 64, 32}
Dropout 0.4 between hidden layers

Optimizer ; Loss function Adam ; Mean square error (MSE)
Activation function ReLU (for hidden layers)

Table IV: Transformer Hyperparameters
Hyperparameter Value

Batch size; Epochs 256 ; 10
# of Encoder & Decoder layers 4 layers (each)

Dimensionality of the model
and its embeddings (d_model) 32

Optimizer ; learning rate ; β1 ; β2 AdamW ; 0.0006 ; 0.9 ; 0.95

UE3 datapoints followed by UE2 and UE1. An important factor
that the LSTM has is that it learns from its history by looking
back from the current timestep. In our experiments, based on
hyperparameter tuning, we select the lookback to be 15. Thus,
LSTM lookbacks 15 time stamps and forecasts either the rate
or |hi|2 upto T -th time slots into the future. We would like to
highlight that we use direct multistep ahead forecasting instead
of iterative multistep ahead, since in the latter, the error gets
accumulated resulting in poor predictions [16]. Once the dataset
is formulated, we use first 6000 sequences each of length 15 as
a training data (in fig. 2, this is equivalent to the entire data of
UE3, UE2, and initial few data points of UE1). The associated
label for each sequence would be the next T continuous
multistep values. Following the training sequences, we skip
some of sequences to avoid data leaking and use following
500 sequences for validation. Lastly, we use 1150 sequences
for the test data. Note that this approach is also closely related
to the realistic scenario where the BS predicts future behavior
based on its recent past and also based on the channel quality
of other nearby users (UE2 and UE3 in our case). We built a
stacked LSTM forecaster(s), that essentially learns a mapping
function between past and future rates, and provides forecasts
of the rates and |hi|2 to help achieve the objective in eq. (5).
The LSTM hyperparameters are summarized in Table III.

In addition to the LSTM based predictor (which performs the
best as shown subsequently), we considered a simpler predictor
we call current channel prediction and Transformer based
forecast. For the current channel prediction, the rate/channel in
the current slot is used as the forecast for the remaining slots in
the frame. E.g., for the rate predictor, in slot t of a given frame
R̂i[t +1, t] = · · ·= R̂i[T, t] = Ri[t], where R̂i[ℓ, t] is the predicted
rate of slot ℓ at band i with t denoting when the prediction was
made. The Transformer based predictor is based on [17], which
has recently received significant attention in the literature. The
Transformer hyperparameters are summarized in Table IV.

IV. NUMERICAL RESULTS

For experiments, we used Matlab to generate channels using
the ray-tracing scenarios ‘DeepMIMO’ dataset [12], and Keras
API [18] with TensorFlow backend to create, the stacked LSTM
as a forecaster, while Transformer was built using Pytorch.
We consider UE noise figure = 7 dB, σ2

i =K.Temp.Bi.UE
noise figure, where K is Boltzmann’s constant, and Temp. is
temperature = 300 Kelvin. Switching cost ν = 0.05. The power
consumed in each band are as per Sec. II-b. To better quantify



Table V: Summary of the forecasting errors for the test sequences. Lower the value, better is the prediction.
Metrics NRMSE NMAEApproach Bands Slots Step 4 Step 3 Step 2 Step 1 Step 4 Step 3 Step 2 Step 1
LSTM 0.0620 0.0598 0.0541 0.0494 0.0428 0.0388 0.0353 0.0309Sub6 GHz Transformer 0.0615 0.0527 0.0305 0.0181 0.0439 0.0398 0.0231 0.0145
LSTM 0.1765 0.1717 0.1698 0.1603 0.1366 0.1334 0.1332 0.1247mmWave Transformer 0.2269 0.1984 0.1872 0.1354 0.1723 0.1515 0.1462 0.1005
LSTM 0.3089 0.3035 0.3020 0.2972 0.2297 0.2225 0.2164 0.2015

I: Rate forecaster
THz Transformer 0.4263 0.3908 0.3386 0.2200 0.3417 0.3144 0.2657 0.1656

LSTM 0.4948 0.4623 0.3832 0.2483 0.4948 0.4623 0.3832 0.2483Sub6 GHz Transformer 0.6826 0.5870 0.3798 0.1757 0.3405 0.2950 0.1783 0.0805
LSTM 1.2307 1.1419 1.0802 1.0222 0.5460 0.5440 0.5420 0.5358mmWave Transformer 1.2126 1.0751 0.8754 0.6849 0.5873 0.5208 0.4264 0.3297
LSTM 0.7763 0.7702 0.7670 0.6842 0.3974 0.3843 0.3774 0.3767

II: Channel forecaster
THz Transformer 0.8242 0.8224 0.7758 0.5490 0.4625 0.4509 0.4048 0.2959

Figure 3: Average Power Consumed vs. Target Rate with rate
forecaster.

the prediction errors, we use normalized root mean square error
(NRMSE) and normalized mean absolute error (NMAE) as
forecaster metric. We compare the proposed stacked LSTM
forecaster with the celebrated Transformer model, which uses
attention mechanism to capture the context. Hyperparameters
were tuned for fair comparison, and the same lookback size
of 15 was used for each sequence. Table V summarizes the
forecasting errors for both the approaches. We can notice that
predictions using the rate forecaster is comparatively more
accurate than the channel forecaster. This is intuitive, and due
to the fact that the fluctuations in the channel are significantly
higher as compared to the rate fluctuations. Furthermore, we
can notice that LSTM predictions are much accurate than those
of the Transformer, following similar observation in [16].

Although, to the best of our knowledge, there is no existing
work with which we can fairly compare the proposed approach,
we compare with i) Greedy approach: In this scheme, at
the start of each slot, the rates/channels in all bands are
estimated. With a possible exception which we will described
subsequently, the BS picks the band with the highest rate
for that slot. Then, it subtracts the achieved rate in this slot
from the target sum rate for the frame in preparation for the
next time slot. The exception is if the target sum rate for the
frame can be achieved in the current slot by transmitting in a

Figure 4: CDF of rates for 1000Mb/s; 2000Mb/s Target Rates.

lower-power band. In this case, the BS picks the lowest UE
power consumption band which can achieve the sum rate. This
approach is named greedy in a sense that the BS always chooses
the highest rate band, except when the sum rate in the frame
can be satisfied in the current slot with a lower power band. ii)
Optimal approach: In this approach, the rates for all slots are
known non-causally, and an exhaustive search is done on every
frame to find the band assignments which minimizes power
consumption at the UE while meeting the target rate.

Fig. 3 shows the plot of average power consumed per frame
for various target rates, using different rate forecasters, greedy
and optimal approaches. The figure also shows the fraction
of frames for which the target rate isn’t met, with the axes
labels on the right. Note that the proposed approach with LSTM
tracks the optimal approach, and outperforms other considered
approaches, except the transformer, in terms of average power
consumption. Furthermore, due to the better rate predictions,
the LSTM outperforms Transformer for almost all the target
rates in terms of the fraction of frames meeting the target rate.
Hence, even though the Transformer approach slightly outper-
forms the LSTM approach for the average power consumption
at certain target rates, the significantly higher rate of frames
not meeting target makes it less desirable than the LSTM
approach. More specifically, with a target rate of 1500 Mb/s,
our approach with the LSTM rate forecaster consumes more
than 300 mW less than the greedy band selection approach
and the current channel predictor consumes about 200 mW less



Figure 5: Avg. Power Consumed vs. Target Rate for the Channel
forecaster.

than the greedy approach. Further, the LSTM based approach is
within 120 mW of the optimal, non-causal approach. Both the
LSTM and optimal approach have the same fraction of frames
not meeting the target rate of 1500 Mb/s. Since the fraction of
frames which did not meet the target rate are approximately
equal for all schemes except the Transformer, the savings in
power from the LSTM and current-channel predictor does not
come at the expense of a significant statistical reduction in data
rates. Further, to help quantify the distribution of rates actually
achieved, we plot the CDFs of the rates with the rate forecaster
in Fig.4 with target rates as 1000 Mb/s and 2000 Mb/s. The
key observation here is that the distribution of rates below the
threshold is approximately equal for all approaches except the
version with the Transformer-based rate forecaster, which has
an appreciably worse CDF when below the target rates.

To better understand the power consumption with the channel
forecaster, we plot the average power vs target data rate using
this scheme in Fig. 5. From the graph, it is evident that with the
channel based forecaster, the gap between the average power of
the LSTM scheme and the greedy approach has reduced, and
the the current channel predictor performance is very close to
that of the LSTM-based channel forecaster. This conclusion is
not surprising given the significantly greater accuracy of the rate
based forecaster as compared to the channel based forecaster.
More generally, the gap between the greedy and optimal band
assignments is large, ∼ 500 mW for a range of rate thresholds,
which indicates that this type of optimization can be promising
as methods of channel estimation improve in accuracy in the
future.

V. CONCLUSIONS

In this work, we propose a novel energy aware band as-
signment system which reduces the power consumption while
also achieving a target rate of at least M average sum rate per
frame with T slots. We design Rate forecaster(s) and Channel

forecaster(s) which forecasts T direct multistep ahead using a
stacked LSTM architecture. Moreover, we propose an iterative
rate updating algorithm which updates the target rate based
on current rate and future predicted rates in a frame. Research
findings shows that the rate forecaster based approach performs
better than the channel forecaster. Furthermore, LSTM based
predictions outperforms the Transformer-based predictions in
terms of NRMSE and NMAE. E.g., with a target rate of
1.5Gb/s, we find that compared to the other approaches, the
average power consumption per frame with the proposed ap-
proach is ∼ 100 mW lower than a simple rate forecaster, which
uses the current rate as the forecast for future rates, and ∼ 300
mW lower than a greedy band assignment policy. All of this is
obtained while achieving the same distribution of rates below
the threshold as the optimal scheme. More generally, we find
that a significant power savings (e.g. 500 mW or more) could
possibly be obtained by similar band assignment approaches as
the ability to forecast channels and rates improves over time,
making the framework and analysis introduced in this paper
helpful in improving the energy efficient operation of future
wireless networks.
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