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Abstract—Automated medical image segmentation can assist 
doctors to diagnose faster and more accurate. Deep learning based 
models for medical image segmentation have made great progress 
in recent years. However, the existing models fail to effectively lev-
erage Transformer and MLP for improving U-shaped architec-
ture efficiently. In addition, the multi-scale features of the MLP 
have not been fully extracted in the bottleneck of U-shaped archi-
tecture. In this paper, we propose an efficient U-shaped architec-
ture based on Swin Transformer and multi-scale MLP, namely 
STM-UNet. Specifically, the Swin Transformer block is added to 
skip connection of STM-UNet in form of residual connection, 
which can enhance the modeling ability of global features and 
long-range dependency. Meanwhile, a novel PCAS-MLP with par-
allel convolution module is designed and placed into the bottleneck 
of our architecture to contribute to the improvement of segmenta-
tion performance. The experimental results on ISIC 2016 and 
ISIC 2018 demonstrate the effectiveness of our proposed method. 
Our method also outperforms several state-of-the-art methods in 
terms of IoU and Dice. Our method has achieved a better trade-
off between high segmentation accuracy and low model complexity. 

Keywords—medical image segmentation, Swin Transformer, 
multi-scale MLP, parallel convolution. 

I. INTRODUCTION  

Medical image segmentation is an important task in medical 
image analysis. Accurate segmentation of lesion size and mor-
phology is useful for determining the grade of the disease, as 
well as guiding the pre-surgical analysis and the next treatment 
plan. Automated segmentation of medical images based on deep 
learning can assist doctors to make more accurate diagnoses and 
speed up the first consultation. Given the characteristics of med-
ical images, the U-Net [1] based convolutional neural network 
model has long ruled the medical image segmentation field, be-
coming the de facto standard since the year of 2015. Since the 
vision Transformers [2, 3] were proposed, researchers have at-
tempted to combine the vision Transformer with the U-shaped 
structure. Medical image segmentation architectures based on 
CNN with Transformer as well as pure Transformer were pro-
posed to take advantage of the Transformer's priority in model-
ing global features and long-range dependency and further im-
prove segmentation performance. In addition, a few works [4] 
have also attempted to introduce MLP into U-shaped architec-
ture to improve the performance of medical image segmentation 
or realize a lightweight model. 

However, limitations and challenges remain. Firstly, the ex-
isting models fail to effectively combine the respective ad-
vantages of CNN, Transformer, and MLP, and do not place the 
above modules in the most suitable position in the U-shaped ar-
chitecture to organically improve the segmentation performance; 
Secondly, although the existing work tries to use MLP at the 
bottom of the U-shaped architecture, it fails to effectively extract 
the multi-scale features of the MLP, thus the classification abil-
ity of MLP is not fully exploited; Thirdly, the model complexity 
of most existing architecture based on CNN and Transformer is 
generally high, which is not conducive to be deployed on mobile 
devices for training or inference. In many specific tasks (e.g., 
skin lesion segmentation), increasing the model complexity does 
not lead to further improvement in segmentation accuracy. 

To address the above problems and challenges, in this paper, 
we propose a segmentation model called "STM-UNet", which 
leverages conventional CNN for encoder and decoder to extract 
and recover image features. Meanwhile, in the skip connection 
of U-shaped architecture, we add the Swin Transformer block 
[3] in form of residual connection to fuse the local features and 
global features of each layer, so that the overall features of the 
lesion region can be recovered effectively in the decoder side; 
we have proposed a model called PCAS-MLP and incorporate it 
into the bottleneck of U-shaped structure with richest classifica-
tion information. The novel module adds a parallel convolution 
module into AS-MLP [5], which effectively improves the clas-
sification ability of pixels and makes a contribution to the im-
provement of overall segmentation accuracy. Our proposed 
method not only has high segmentation accuracy but also re-
mains lightweight compared to most of state-of-the-art methods. 
STM-UNet is still suitable for deployment in mobile devices and 
scenarios. Experimental results on two public datasets show that 
our method outperforms state-of-the-art methods in terms of IoU 
and Dice, confirming the effectiveness and advancement of the 
proposed method. 

The main contributions of this paper are as follows: 

 The Swin Transformer block is added to skip connec-
tion of the U-shaped architecture in form of residual connec-
tion, which can effectively fuse the global features and local 
features of each layer and enhance the modeling ability of 
global features and long-range dependency.  

 A parallel convolution module is added to AS-MLP in 
the proposed architecture, which can effectively extract the 
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multi-scale features of MLP, and then improve the segmen-
tation performance; 

 The segmentation performance of the proposed archi-
tecture outperforms several CNN, Transformer, and MLP 
based baselines on two publicly available datasets, demon-
strating the effectiveness of our proposed method. 

II. RELATED WORK 

Before the advent of vision Transformers, U-shaped 
architectures based on convolutional neural networks dominated 
the deep learning-based medical image segmentation methods. 
For example, Unet++[6] leverages a nested and dense design for 
the skip connection based on U-Net to better capture features at 
each level and fuse them efficiently. Unet3+[7] further improves 
Unet++ with a full-scale skip connection, which includes not 
only encoder-decoder inter-connections but also decoder-
decoder inner connections. However, due to the intrinsic 
inductive bias, CNN can only focus on local features of images 
and it cannot model long-range dependency and global features, 
which restricts the further improvement of medical image 
segmentation accuracy. 

Recently, inspired by the success of vision Transformer in 
natural images [2] [3], some work attempted to apply vision 
Transformer to medical image segmentation tasks and 
incorporate it into U-shaped architecture. TransUNet [8] is the 
first public work combining Transformer with medical image 
segmentation. It designs a hybrid structure of CNN and 
Transformer as an encoder: CNN is used for feature extraction 
and the extracted feature map is fed into a standard Transformer. 
Hu Cao et al. [9] proposed a pure Transformer architecture 
called Swin-Unet, which mainly consists of an encoder, 
bottleneck, and decoder. The Swin Transformer block is the 
main component in all above three parts. The input image is 
sliced into patches and linear embedded, and then fed into the 
encoder of full Transformer. The Swin Transformer block in the 
decoder is symmetrical to the counterpart of encoder and is skip-
connected in the horizontal direction, thus enabling features 
from different levels to incorporate in final prediction map. 
UCTransNet [10] mainly pays attention to improving the skip 
connection of U-Net by embedding a channel Transformer 

module. The channel Transformer module consists of two sub-
modules: the multi-scale Channel Cross fusion with 
Transformer (CCT) and the Channelwise Cross-Attention 
(CCA). 

In recent years, the improved MLPs [5] [11] [12] have been 
back to computer vision classification tasks and achieved 
comparable performance to CNN and Transformer. Inspired by 
this, UNeXt [4] placed the MLP in the bottleneck of U-shaped 
architecture for the first time to implement a lightweight 
segmentation model. 

However, the existing architectures fail to combine the 
respective advantages of CNN, Transformer, and MLP. They 
have not fully exploited the potential of using MLP in U-Net as 
well. The model proposed in this paper effectively incorporates 
CNN, Swin Transformer, and MLP in one architecture, while 
proposing a novel PCAS-MLP module. This design enables the 
model to focus on both local and global features of lesions, while 
enhancing the classification ability of MLP, thus effectively 
improving medical image segmentation performance in general. 

III. PROPOSED METHOD 

A. The architecture design 

The proposed architecture of this paper is shown in Fig.1. 
Similar to the vanilla U-Net, the architecture consists of encoder, 
decoder, bottleneck, and skip connection. The encoder part 
adopts the traditional convolutional module, which consists of 
3*3 convolution, maxpooling, and activation function. The role 
of the encoder is to implement downsampling in a convolutional 
manner and focus on extracting local features of the original im-
age layer by layer. The decoder part leverages convolution and 
bilinear interpolation to enlarge both width and height of the in-
put feature. The role of decoder is to restore the feature map of 
the bottleneck to the same size as the input image layer by layer. 
In the bottleneck, we add the newly designed PCAS-MLP mod-
ule. It is an improvement of AS-MLP by adding the parallel con-
volution module to extract the multi-scale features of the MLP. 
In the skip connection, we add Swin Transformer blocks to en-
hance the modeling ability of global features and long-range de-
pendency for the proposed architecture. 

 



Fig. 1. The overall architecture of our proposed method. The network consists of a mixture of convolution, Transformer, and MLP. The convolution modules are 
mainly present in the encoder and decoder, and the PCAS-MLP is placed at the bottom of the U-shaped architecture for better extraction of the classification 
information of pixels. The Swin Transformer block is added to skip connection in form of residual connection to better extract the global feature of the feature map 
in each layer. The convolution, Transformer, and MLP are organically combined to enable the network to fully extract various beneficial features in the lesion region 
of medical images, thus effectively improving segmentation performance.

B. Residual Swin Transformer block 

Swin Transformer [3] has been extremely successful in 
natural image processing and is one of the most powerful vision 
transformer backbones in performance. The skip connection in 
this paper incorporates the Swin Transformer block and is 
deployed in a residual way. The original skip connection of U-
Net only fuses the encoder with decoder at the same layer by 
adding or concatenation. However, the inductive bias property 
of convolution prevents the original skip connection from 
focusing on the global features of each layer. To this end, we 
add Swin Transformer block to skip connection to extract global 
features of each layer and fuse them with local features extracted 
by CNN in an additive manner. Thus, the encoder information 
recovered from each layer would contain both local features and 
global features to further improve the segmentation performance. 
It is worth noting that the Swin Transformer block used in this 
paper does not require pre-training. The basic structure of two 
consecutive Swin Transformer blocks is shown in Fig.2. The 
main difference between Swin Transformer and standard 
Transformer is the replacement of multi-head self-attention 
(MSA) with regular windowing MSA (W-MSA) and shifted 
windowing MSA (SW-MSA). The design of the shifted window 
enables the interaction across windows, and thus better extracts 
global features of the image. In Fig.2, 𝑧̂௟  and 𝑧̂௟ାଵare the output 
features of W-MSA and SW-MSA, respectively. 𝑧௟ and 𝑧௟ାଵare 
the output features of MLP in each block. The successive Swin 
Transformer blocks can be computed as follows: 

𝑧̂௟ = 𝑊 − 𝑀𝑆𝐴൫𝐿𝑁(𝑧௟ିଵ)൯ + 𝑧௟ିଵ, 

𝑧௟ = 𝑀𝐿𝑃൫𝐿𝑁(𝑧̂௟)൯ + 𝑧̂௟, 

𝑧̂௟ାଵ = 𝑆𝑊 − 𝑀𝑆𝐴൫𝐿𝑁(𝑧௟)൯ + 𝑧௟ , 

𝑧௟ାଵ = 𝑀𝐿𝑃൫𝐿𝑁(𝑧̂௟ାଵ)൯ + 𝑧̂௟ାଵ                       (1) 
In this paper, the parameters of Swin Transformer blocks are 

adjusted to be suitable for the characteristics of the used datasets. 

 
Fig. 2. The basic structure of consecutive Swin Transformer blocks: (a) a 
standard Transformer block; (b) two successive Swin Transformer blocks. 

C. PCAS-MLP 

MLP is naturally suitable for image classification, especially 
since recent works [11-12] have achieved classification 
performance comparable to CNN and Transformer on ImageNet 

and other datasets. Meanwhile, the bottleneck of U-shaped 
architecture is usually rich in high-level information related to 
the class of individual pixels. Therefore, it is most appropriate to 
incorporate MLP into the bottleneck of U-shaped architecture. 
Here we adopt the core idea of AS-MLP (Axial Shifted MLP) 
[5] to extract the information from feature maps in different axis. 
axial shift mainly contains horizontal shift and vertical shift.  

Fig.3(a) shows the input feature map with the shape of 
B*C*H*W. To facilitate the analysis of horizontal shift, we ig-
nore batch size and height, and assume C=5 and W=5. Suppos-
ing shift size=5, the input feature map is first cut into 5 blocks 
along the channel direction. And then, each block is shifted 
along the horizontal direction respectively by a stride of [-2, -1, 
0, +1, +2], in which "-" denotes shifting to the left, "+" denotes 
shifting to the right, and the empty positions will be padded zero. 
Finally, the feature map in the red dashed box in Fig.3(b) will be 
taken and passed to the next fully connected layer. The principle 
of vertical shift is similar, except that the cut blocks are shifted 
along the vertical direction. 

 

Fig. 3. Horizontal shift (shift size=5). 

The experimental results show that the AS-MLP with a serial 
type performs a better segmentation performance for the U-
shaped architecture. As a result, we use a serial type of AS-MLP 
instead of a parallel one, namely, we first shift the feature map 
in the height direction and then in the width direction.  

Adding convolution into MLP can encode position infor-
mation effectively and improve the classification performance 
of MLP [4][13]. UNext also uses AS-MLP as the bottleneck of 
the U-shaped architecture, but merely adding 3*3 convolution to 
AS-MLP is not enough to extract the multi-scale features of 
MLP. For this reason, inspired by Inception serial modules 
[14,15], we add a parallel convolution module to the AS-MLP 
to extract the multi-scale features of the module after the first 
fully connected layer. Fig.4 shows the basic structure of PCAS-
MLP (Parallel Convolution AS-MLP). A parallel convolution 
module is added between fc1 and horizontal shift. This module 
consists of three convolutions with kernel sizes of 1*1, 3*3, and 
5*5 in a parallel manner. The combination of different-sized 
convolutions can fully extract the multi-scale information of the 
input feature map, thus improving the classification perfor-
mance of MLP and eventually segmentation performance of the 
whole network. The parallel convolution module differs from 
Inception-v1 in two aspects: firstly, there is no 3*3 max-pooling 



in our module; secondly, the way of fusing different convolu-
tions takes adding rather than concatenation. The parallel con-
volution module designed is a novel and useful module that can 
be organically integrated with MLP to improve segmentation 
performance. 

 
Fig. 4. The basic structure of PCAS-MLP, where the parallel convolution 
module is added between fc1 and horizontal shift. 

IV. EXPERIMENTS AND RESULTS 

A. Datasets 

Two datasets are used in this paper to evaluate the 
performance of the proposed method and compare it with other 
SOTA methods. The ISIC 2016 dataset [16] and ISIC 2018 
dataset [17,18] were all released by ISIC Challenge, for 
evaluating different automated segmentation methods on skin 
lesion. The ISIC 2016 dataset contains 900 training images and 
379 test images. The ISIC 2018 dataset contains 2594 training 
images and 1000 test images. For ISIC 2018 dataset, previous 
works always performed 5-fold cross-validation on the training 

set or directly repartitioned the training set. Recently, The ISIC 
Challenge released the ground truths corresponding to the 1,000 
test images for ISIC 2018 Task 1. As a result, for both datasets, 
we split the train set with an 8:2 proportion to train and valid, 
and then evaluate the segmentation performance on the official 
test set. All the images and masks are resized to the resolution 
of 512*512. 

B. Implementation Details 

 In our experiments, we trained our model and other SOTA 
models for 300 epochs with an initial learning rate of 0.0001. 
Adam is adopted as the optimizer and we set the training batch 
size to 8. For testing, the batch size is set to 1 to ensure the 
uniqueness of test results. An NVIDIA A100 is used for all our 
experiments and Pytorch is used as the deep learning framework. 
For fair comparison, we basically followed UNext [4] for other 
settings that are not mentioned here. 

C. Evaluation Metrics 

To evaluate the segmentation performance of different 
methods, we adopt the dice coefficient (Dice) and intersection 
over union (IoU) to measure the difference between the pre-
dicted maps and the ground truths. We calculate the IoU and 
Dice of each image, and average the whole testset to get the 
value of mIoU and mDice. 

D. Comparison with state-of-the-art methods 

To verify the effectiveness of the proposed method in this 
paper, we compare the segmentation performance of STM-UNet 
with several state-of-the-art methods. Table 1 shows the quanti-
tative results evaluated on the test set of different datasets. We 
choose UNet [1], UNet++ [6], UNet3+ [7], UCTransNet [10] 
and UNeXt-L [4] as the baselines for comparison. UNet, 
UNet++, and UNet3+ are pure CNN architectures, [8] and [10] 
are hybrid architectures based on Transformer and CNN, and 
UNeXt-L is a hybrid architecture based on MLP and CNN. For 
fair comparison, we set the input channel of each layer for all U-
shaped architectures to [32, 64, 128, 256, 512]. Note that we do 
not use any pretraining in all our experiments. 

TABLE I.  QUANTITATIVE RESULTS EVALUATED ON TEST SET OF DIFFERENT DATASETS 

Methods 
ISIC2018 ISIC2016 

Params(M) 
mIoU mDice mIoU mDice 

UNet [1] 0.7507 0.8386 0.8315 0.8984 9.85 
UNet++ [6] 0.7526 0.8409 0.8212 0.8889 11.8 
UNet3+ [7] 0.7400 0.8305 0.8243 0.8909 6.75 

UCTransNet [10] 0.7891 0.8672 0.8436 0.9050 17.07 
UNeXt-L [4] 0.7843 0.8671 0.8414 0.9058 3.99 

STM-Unet (Ours) 0.7984 0.8751 0.8463 0.9094 6.12 

From Table 1, it can be seen that the segmentation perfor-
mance of our method is the highest for both ISIC2016 and 
ISIC2018. For example, our method outperforms the second 
place in mIoU and mDice by 0.93% and 0.79%, respectively for 
ISIC2018. It is worth noting that the Params (M) and FLOPs (G) 
of Our STM-UNet are only slightly higher than UNeXt-L, but 
lower than other compared methods. From Table 1, we also find 

that the complex design of architectures does not lead to im-
provement of segmentation performance for certain tasks. The 
reason may lie in the region of skin lesion always varies in the 
whole image, and it is difficult to extract all the features of the 
lesion by simply applying a more complex, especially purely 
CNN-based architecture. Therefore, the architecture proposed in 
this paper can guarantee high segmentation performance while 
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GELU+Dropout

Axial shift 
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fc2+ Dropout

1*1 conv 3*3 conv 5*5 conv



maintaining relatively low complexity, and can still be applied 
to mobile devices as a lightweight model. 

Fig.5 shows the qualitative segmentation results of several 
dermatological images using different methods. As seen in Fig.5, 
the lesion area predicted using our method is the closest to the 
ground truth. In addition, our method has the smallest predicted 

area of FP (false positive) among all methods, avoiding unnec-
essary examination treatment and psychological stress to the pa-
tients. The analysis of the qualitative results shows that our 
method can produce more accurate automatic segmentation re-
sults due to the focus on modeling long-range dependency and 
the enhanced classification capability of pixels. 

 
Fig. 5. Visualization of segmentation results with different methods 

E. Ablation study 

We perform the ablation study on each added part in the pro-
posed architecture to evaluate the impact of each part on the seg-
mentation performance. Table 2 shows the results of ablation 
experiments on the test set of ISIC2018. We use vanilla UNet 
with AS-MLP in bottleneck as the baseline. We can see from 
Table 2 that the addition of both Swin Transformer block and 
ParallelConv has a positive effect on improving the segmenta-
tion performance of the baseline, demonstrating that each added 
part contributes independently to the final segmentation results. 
This is because the Swin Transformer block enhances the ex-
traction ability of global features of the lesion, while Parallel-
Conv extracts the multi-scale features of the MLP, thus improv-
ing the classification accuracy of pixels in the prediction map. 
Ultimately, the STM-UNet with the addition of both Swin 
Transformer block and ParallelConv has the best segmentation 
results, indicating that aggregating the advantages of each mod-
ule can jointly improve the segmentation performance. 

TABLE II.  ABLATION STUDY ON ISIC2018 TEST SET 

ST block ParallelConv 
ISIC2018 

mIoU mDice 
  0.7720 0.8586 
  0.7903 0.8667 
  0.7984 0.8751 

V. CONCLUSION 

In this paper, we have proposed a novel and efficient 
architecture, namely STM-UNet, for medical image 
segmentation. We add Swin Transformer blocks into the skip 

connection of U-shaped architecture to enhance the modeling 
ability of global features and long-range dependency. In addition, 
we propose a novel module called” PCAS-MLP”, which adds a 
parallel convolution module in axial-shifted MLP to extract 
muti-scale features and enhance the ability to classify pixels for 
MLP. We conduct extensive experiments on two public datasets 
to evaluate our proposed method. Experimental results show that 
our method outperforms several state-of-the-art methods in 
terms of IoU and Dice. Our method aims to achieve a better 
trade-off between segmentation performance and model 
complexity. Our code will be available after the formal 
publication of this paper. 

REFERENCES 
[1] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for 

biomedical image segmentation[C]//International Conference on Medical 
image computing and computer-assisted intervention. Springer, Cham, 
2015: 234-241. 

[2] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 
words: Transformers for image recognition at scale[J]. arXiv preprint 
arXiv:2010.11929, 2020. 

[3] Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision 
transformer using shifted windows[C]//Proceedings of the IEEE/CVF 
International Conference on Computer Vision. 2021: 10012-10022. 

[4] Valanarasu J M J, Patel V M. Unext: Mlp-based rapid medical image 
segmentation network[C]//Medical Image Computing and Computer 
Assisted Intervention–MICCAI 2022: 25th International Conference, 
Singapore, September 18–22, 2022, Proceedings, Part V. Cham: Springer 
Nature Switzerland, 2022: 23-33. 

[5] Lian D, Yu Z, Sun X, et al. As-mlp: An axial shifted mlp architecture for 
vision[J]. arXiv preprint arXiv:2107.08391, 2021. 



[6] Zhou Z, Rahman Siddiquee M M, Tajbakhsh N, et al. Unet++: A nested 
u-net architecture for medical image segmentation[M]//Deep learning in 
medical image analysis and multimodal learning for clinical decision 
support. Springer, Cham, 2018: 3-11. 

[7] Huang H, Lin L, Tong R, et al. Unet 3+: A full-scale connected unet for 
medical image segmentation[C]//ICASSP 2020-2020 IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 
2020: 1055-1059. 

[8] Chen J, Lu Y, Yu Q, et al. Transunet: Transformers make strong encoders 
for medical image segmentation[J]. arXiv preprint arXiv:2102.04306, 
2021. 

[9] Cao H, Wang Y, Chen J, et al. Swin-unet: Unet-like pure transformer for 
medical image segmentation[J]. arXiv preprint arXiv:2105.05537, 2021. 

[10] Wang H, Cao P, Wang J, et al. UCTransNet: Rethinking the skip 
connections in U-Net from a channel-wise perspective with 
transformer[J]. arXiv preprint arXiv:2109.04335, 2021. 

[11] Tolstikhin I O, Houlsby N, Kolesnikov A, et al. Mlp-mixer: An all-mlp 
architecture for vision[J]. Advances in neural information processing 
systems, 2021, 34: 24261-24272. 

[12] Yu T, Li X, Cai Y, et al. S2-mlp: Spatial-shift mlp architecture for 
vision[C]//Proceedings of the IEEE/CVF Winter Conference on 
Applications of Computer Vision. 2022: 297-306. 

[13] Xie E, Wang W, Yu Z, et al. SegFormer: Simple and efficient design for 
semantic segmentation with transformers[J]. Advances in Neural 
Information Processing Systems, 2021, 34: 12077-12090. 

[14] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception 
architecture for computer vision[C]//Proceedings of the IEEE conference 
on computer vision and pattern recognition. 2016: 2818-2826. 

[15] Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-resnet 
and the impact of residual connections on learning[C]//Proceedings of the 
AAAI conference on artificial intelligence. 2017, 31(1). 

[16] Gutman, David; Codella, Noel C. F.; Celebi, Emre; Helba, Brian; 
Marchetti, Michael; Mishra, Nabin; Halpern, Allan. "Skin Lesion 
Analysis toward Melanoma Detection: A Challenge at the International 
Symposium on Biomedical Imaging (ISBI) 2016, hosted by the 
International Skin Imaging Collaboration (ISIC)". eprint 
arXiv:1605.01397. 2016. 

[17] Noel Codella, Veronica Rotemberg, Philipp Tschandl, M. Emre Celebi, 
Stephen Dusza, David Gutman, Brian Helba, Aadi Kalloo, Konstantinos 
Liopyris, Michael Marchetti, Harald Kittler, Allan Halpern: "Skin Lesion 
Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the 
International Skin Imaging Collaboration (ISIC)", 2018; 
https://arxiv.org/abs/1902.03368. 

[18] Tschandl, P., Rosendahl, C. & Kittler, H. The HAM10000 dataset, a large 
collection of multi-source dermatoscopic images of common pigmented 
skin lesions. Sci. Data 5, 180161 doi:10.1038/sdata.2018.161 (2018). 


