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Abstract—In this paper, we investigate the use of index-
modulated (IM) transmissions within the framework of fluid
antenna (FA) systems, where an FA port is activated during each
transmission interval. The adoption of this approach is motivated
by the common physical characteristic exhibited by both FAs
and IM transmissions, which entails the use of a single radio-
frequency (RF) chain. From this perspective, we derive a closed-
form expression for the bit error rate (BER) of IM-FA systems
in the presence of spatial correlation. Our results demonstrate
that IM-FAs outperform conventional IM systems. Since the FA
ports are relatively close to each other, we focus on correlation
mitigation techniques to improve performance. Specifically, we
first investigate two port selection strategies, namely the maximum
norm-based and the Euclidean distance-based selection schemes,
assuming full channel knowledge. Then, we introduce the concept
of spatial set partition coding for IM-FAs to spatially separate the
FA ports. Numerical results demonstrate that the performance
of IM-FAs is further improved in the case of high correlation
whenever we apply the proposed correlation mitigation strategies.

Index Terms—Fluid antenna systems, index modulation, spatial
correlation, transmit port selection, set partition coding.

I. INTRODUCTION

Over the past decades, the use of multiple antenna tech-
nologies has attracted considerable research interest. In fact,
multiple-input multiple-output (MIMO) systems are considered
one of the most important wireless communication technologies
for the achievement of remarkable diversity and multiplexing
gains [1]. Nonetheless, current MIMO technologies are prone
to some physical deployment constraints, including the inter-
antenna separation by at least half a wavelength. To overcome
this limitation, the novel idea of fluid antenna (FA) systems
was presented in [2]. This technology represents any software-
controllable radiating fluidic structure that is able to alter its
shape and position to reconfigure several parameters such as
the operating frequency, polarization, and radiation patterns [3].

Recently, researchers have focused on studying the perfor-
mance of FAs for single and multi-user environments from
a communication theory perspective. Specifically, the authors
in [2] show that the outage probability of FA systems de-
creases as the number of ports increases, and can outperform
maximal ratio combining for a large number of ports. This
work is extended in [4] to a multi-user scenario in which the
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performance of FAs is studied in the presence of multi-user
interference. The aforementioned works adopt a generalized
correlation model by treating the first FA port as a reference to
capture the strong spatial correlation over the different FA ports.
Although this model constitutes a fundamental initial measure
towards acquiring knowledge of the FA technology, it may not
accurately capture the correlation between the FA ports. In light
of this, the authors in [5] demonstrate that the performance
improvements achieved by FAs are restricted when a more
detailed spatial correlation model is employed. Additionally, the
constraints imposed by these limitations are examined in [6],
and the results obtained illustrate that the performance of FA
systems is primarily governed by the available physical space.

Moreover, due to the evolution of wireless communications,
there is a need to further enhance the systems’ spectral and
energy efficiencies. To address these challenges, the novel
concept of index-modulated (IM) transmissions has emerged
as a viable solution [7]. In IM systems, only a fraction of
indexed resource entities, e.g., subcarriers, antennas, or time
slots are activated for data transmission, while the others are
kept unused, hence additional information bits are implicitly
conveyed by the index usage. This makes IM-aided systems
less complex while consuming substantially less energy [8].
More recently, transmit antenna selection has been extensively
studied for IM systems, where several algorithms were proposed
to enhance the system outage probability, bit error rate (BER),
or capacity [9]. In an effort to reduce the spatial correlation
among antennas, the authors in [10] proposed a trellis-coded
spatial modulation scheme for spatially correlated MIMO IM
systems in which the antenna index bits were processed by a
convolutional encoder. Nonetheless, this method was confined
to a predetermined code structure for a limited number of
transmitting antennas.

Typically, IM transmission in the spatial domain requires one
RF chain per active transmit antenna. However, activating a
single antenna during transmission allows for the utilization of
only one RF chain for the entire system [7]. This approach
emulates the functioning of FAs, since the fluid element is
confined to a specific location within a dielectric holder [3].
By leveraging this shared physical property between FAs and
IM transmissions, the contribution of this paper is to exploit
the use of IM transmission techniques in the context of FAs
and study spatial correlation mitigation strategies to enhance
their performance. Initially, we provide an analytical framework



Fig. 1: Transceiver structure for the proposed IM-FA system.

to compute the average BER for IM-FA systems in arbitrar-
ily correlated channels and show an advantage for FAs over
conventional IM systems. Then, with the aim of mitigating
the impact of correlation, we implement two port selection
schemes to choose the least-correlated ports. Moreover, we
propose a generalized set partition coding (SPC) scheme for
the space domain to spatially separate the FA ports. While the
analysis presented in [10] showcases the benefits of utilizing
IM transmissions in the context of SPC, it does not delve
into the scalability of the system to handle a large number of
transmitting indices, a remarkable characteristic of FAs. Hence,
this technique facilitates the reduction of correlation between
ports, especially when the number of ports is large, and can
thus provide large performance gains. Indeed, our theoretical
and simulation results reveal that with the employment of
correlation mitigation schemes, we can further enhance the
performance of IM-FAs.

II. SYSTEM MODEL

We consider a point-to-point FA-based IM transmission sys-
tem between a single FA transmitter and a conventional single-
antenna receiver, as depicted in Fig. 1. Specifically, a conductive
fluid element is located within a uniform linear tube consist-
ing of N evenly distributed locations (also known as ports)
along a linear dimension of Wλ, where λ is the transmission
wavelength and W is a scaling constant representing the size
of the FA normalized by λ [2]. Moreover, the FA is equipped
with a single RF chain and thus a single port is activated for
transmission, based on the output of the IM system which is
explained in the following discussion. It is assumed that the
conductive fluid element can switch locations instantly among
the ports, e.g., with the assistance of a mechanical pump [3].

A. Channel Model
The signal is transmitted over a 1×N wireless channel h. We

consider a flat Rayleigh block fading communication channel,
i.e., the channel coefficients remain constant during one times-
lot, but change independently between different timeslots. Since
the ports located within the FA structure are arbitrarily close
to each other [2], the channels are considered to be correlated.
Typically, we express the correlated Rayleigh fading channel h

h = h̃ R
1
2 , (1)

where the N entries of h̃ are independent and identically
distributed (i.i.d) random variables, each following a complex

circular Gaussian random variable with zero mean and variance
σ2
h, and R is the N ×N transmitter spatial correlation matrix.

B. Index-Based Modulation for FAs
At the FA transmitter, the incoming random bits are split

into two streams; one is mapped onto the spatial constellation
diagram of size N responsible for the port selection, and the
other is mapped onto the signal constellation diagram of size M
responsible for the signal modulation. Hence η = log2(NM)
bits are sent at each transmission time. More specifically, these
log2(NM) bits are mapped onto a constellation vector x of size
N , i.e., x = [x1, x2, . . . , xN ]

T . In conventional IM systems, a
single antenna is selected during transmission. In the context of
FA-based IM systems, at each transmission time, the radiating
fluid element is positioned to the port which is selected by
the IM mapper based on the incoming bit stream1. Therefore,
only one element in x is non-zero, which is at the position of
the active port. For instance, given that the FA port is used as
an additional resource to transmit information, the active port
constitutes a mapping strategy, and the output vector is

x ≜
[
0 · · · 0 ︸︷︷︸

n-th position

sm 0 · · · 0
]T

,

(2)

where n = 1, 2, . . . , N represents the index of the activated
port, and sm is the m-th information-bearing symbol from
the M -ary constellation at the n-th position. Moreover, we
consider an M -ary quadrature amplitude modulation (QAM)
constellation design in which sm ∈ S, where S denotes the
QAM alphabet set.

C. Maximum-Likelihood Receiver
The received signal experiences additive white Gaussian

noise (AWGN) with component w following a circularly sym-
metric Gaussian distribution with zero mean and variance σ2

w.
We assume a complex baseband signal representation and
symbol-by-symbol detection in which the sampled signal at the
receiver when the signal is transmitted from then-th FA port is

y = hnsm + w, (3)

where hn, n = 1, 2, . . . , N , is the channel between the n-th
FA port and the receiver. The receiver’s objective is to jointly
detect the modulated symbol as well as the active FA port index.
Thus, the receiver follows the optimal maximum-likelihood
(ML) decision rule2, which is given by

[n̂, m̂] = arg min
n,m

|y − hnsm|2, (4)

where n̂ and m̂ represent the indices of the estimated FA port
and the symbol, respectively, and |·|2 is the absolute value
squared. In the following discussion, we develop an accurate
analytical framework to derive closed-form expressions for the
BER of the proposed IM-FA system.

1While FAs can be perceived to bear similarities to conventional IM systems,
in which a single antenna element is activated, FAs can support a much larger
number of ports, and is not limited to a fixed physical structure [3].

2The use of the ML detector is validated due to the fact that the channel
inputs are equally likely [8].



III. ERROR RATE ANALYSIS OF IM-FA SYSTEMS

In this section, we consider the analysis of IM-FAs in terms
of BER. Due to the specific signal structure of IM systems
described in Section II, the transmit vector x is correctly
recovered if both the port and the transmitted symbol are
correctly detected. The operation of finding the active port
is equivalent to solving an N -hypothesis testing problem at
the receiver, hence the analysis involves the computation of
multidimensional integrals. Therefore, it is very common in
the index modulation literature to compute the average BER
by exploiting union-bound methods [7].

Proposition 1: The conditional pairwise error probability
(PEP) that the transmitted vector x is received as another
vector x̂ for IM-FAs is given by

P (x → x̂ | h) = Q

(√
|h(x− x̂)|2

4σ2
w

)
, (5)

where Q(·) is the Gaussian Q-function.

Proof. See Appendix A.

The next step is to obtain the average probability of error.
We can rewrite the error probability in (5) as

P (x → x̂ | h) = 1

π

∫ π
2

0

exp

(
−|h(x− x̂)|2

8σ2
w sin2 θ

)
dθ, (6)

where we used the following alternative (Craig’s) representation
of the Gaussian Q-function [11, Sec. 4.1, Eq. (4.2)]

Q(z) =
1

π

∫ π
2

0

exp

(
− z2

2 sin2 θ

)
dθ. (7)

Then, by taking the expectation of (7), we obtain

P (x → x̂) =
1

π

∫ π
2

0

MΨ

(
− γ̄

2 sin2 θ

)
dθ, (8)

where MΨ(·) is the moment-generating function (MGF) of the
random variable Ψ = |h(x − x̂)|2 and γ̄ ≜ 1/(4σ2

w). In the
special case where the channel coefficients are i.i.d, the MGF
is decomposed into a product of marginal MGFs. However, in
the presence of spatial correlation, this is not possible. In the
following proposition, we provide a closed-form expression for
the PEP in (8).

Proposition 2: The PEP of IM-FAs computed in a closed-
form expression as

P (x → x̂) =
1

2

1−
√

1

1 +
4σ2

w

µ

, (9)

where µ is the eigenvalue of the matrix δδHR, and δ ≜ (x−x̂).

Proof. See Appendix B.

As discussed at the beginning of this section, we aim to
provide a bound on the average BER. Using the result from
Proposition 2, the average BER of IM-FAs is obtained as

P e ≤
1

η2η

∑
x

∑
x̂

d(x, x̂)P (x → x̂)

=
1

2η2η

∑
x

∑
x̂

d(x, x̂)

1−
√

1

1 +
4σ2

w

µ

, (10)

where d(x, x̂) is the Hamming distance, i.e., the number of bits
in error between the vectors x and x̂ and η = log2(NM). It
is important to note that the method employed to calculate the
BER possesses a high degree of generality in the sense that any
correlation model can be adopted, since the expression in (10)
depends solely on the eigenvalue of δδHR. Hence, the entries
of R are free to follow any arbitrary model.

IV. SPATIAL CORRELATION MITIGATION SCHEMES

In this section, we aim to enhance the performance of IM-
FA systems in the presence of channel correlation. We first
investigate two transmit port selection policies to select the least
spatially-correlated ports, and then analyze the performance of
IM-FAs by employing coded modulation in the spatial domain.

A. Transmit Port Selection
The basic idea of applying transmit port selection is to over-

come the detrimental effects of spatial correlation to improve
the system’s average BER. In the context of IM-FAs, we aim
to select the k best ports according to two different selection
criteria which are explained next3. We should stress that k rep-
resents a system parameter that is decided before transmission.
Moreover, since we are selecting a subset k out of N available
ports, the system is essentially converted from an N -port to a k-
port IM system. Therefore, to keep the same spectral efficiency,
performing port selection comes at the expense of increasing
the modulation order. In other words, once k is chosen, the
modulation order becomes M ′ = 2η−log2(k).

1) Maximum Norm-Based Selection: In this scheme, the
ports corresponding to the elements in the channel vector with a
larger Euclidean norm are favored [12]. Let Sk represent the set
of enumerations of all possible

(
N
k

)
combinations of selecting

k out of N FA ports. More specifically, the selection of the k
transmit ports is associated with the largest channel norms out
of the N ports. Evidently, k must be chosen in a manner to
preserve the port selection for IM systems since the number of
ports is confined to a power of two. Hence, the selection is

hk̂ = arg max
k∈Sk

∥hk∥2, (11)

where hk̂ is the selected vector of size k, and ∥ · ∥2F is the
Frobenius norm. Subsequently, the receiver performs the ML
detection on the reduced-size symbol vector x.

3We assume that the transmitter obtains channel information at each coher-
ence time by sequentially sending training symbols and getting feedback from
the receiver. The channel estimation for IM-FAs is left for future consideration.



2) Euclidean Distance-Based Selection: To further improve
the average BER, we notice from (5) that the PEP is a monotone
decreasing function of dmin ≜ min

x̸=x̂
|h(x − x̂)|2. Therefore,

we need to maximize dmin to minimize the PEP. Out of the(
N
k

)
possibilities, the optimal port subset that maximizes the

minimum Euclidean distance among all transmit vectors is [9]

s∗ = arg max
k∈Sk

{
min
x ̸=x̂

|hk(x− x̂)|2
}
, (12)

where hk is the channel vector of size k. The optimal solution
is obtained by searching over all possible channel vectors. We
show in Section V that compared to the norm-based selection,
this scheme achieves lower error rates at the expense of higher
search complexity, especially when the number of FA ports is
large, i.e. for high data rates.

B. Spatial Set Partition Coding

In this subsection, we investigate the use of coded modulation
to enhance the system’s performance. Since the aim is to
minimize the spatial correlation between FA ports, we apply
the concept of SPC first introduced in [13], on the spatial
domain. In other words, we partition the set of transmitting
ports into subsets such that the spacing between ports within
a specific subset is maximized. For instance, if we consider a
16-port FA in which each port index is represented by 4 bits,
the set partition that maximizes the spacing between ports is
translated into separating consecutive bit sequences by a large
Euclidean distance. In other words, port indices 0000 (first port)
and 1000 (ninth port) have a large Euclidean distance, i.e., two
port indices that differ only at the most significant bit indicates
that the ports are least correlated.

In this paper, we design a rate 3/4 encoder for a 16-port FA,
as shown in Fig. 2. For the sake of brevity, the case of having a
general SPC scheme for an arbitrary number of FA ports is left
for future consideration. The working principle of IM-FAs with
spatial SPC is as follows. The incoming bit stream is split into
two parts similar to the uncoded case in Section II. To ensure
that the FA ports are selected with maximum spatial separation,
the port index bits need to be processed by a convolutional
encoder with spectral efficiency log2(N/2). Then, the new
spectral efficiency becomes ηc = log2(MN/2) = log2(MN)−
1 = η − 1. Therefore, the coded FA system requires a higher
modulation order to achieve the same spectral efficiency as the
uncoded system. More specifically, we have log2(16/2) = 3
bits that enter the encoder at each transmission time.

From Fig. 2, we notice that the uncoded bits a(1)u and a
(2)
u go

through a finite state machine (FSM) consisting of three delay
blocks. The output of the FSM selects a subset rather than a port
index, and the uncoded bit a(3)u is used to select the actual port
index within the subset. This means that the encoder is designed
to maximize the minimum interset distance. By following this
procedure, we ensure that at each transmission time, the FA
ports are separated in a way to minimize correlation. The
encoder design is based on tabulated parameters taken from [14,
Table 3.3, Sec. 3.4]. Note that other designs that provide a better

Fig. 2: Set partition coding for IM-FAs for N = 16 FA ports.

performance exist. However, the analysis becomes intractable
as the number of states in the FSM increases.

In general, the BER analysis of SPC-IM-FAs can be carried
out using the same method as that of convolutional codes,
whereby the encoder transfer function is obtained under the
assumption of a memoryless binary symmetric channel (BSC).
The BSC assumption holds whenever the bits are interleaved
under perfect or infinite interleaving depth. Hence, the average
BER of SPC-IM-FAs is upper bounded by [15, Sec. 8.2.2]

P
c

e ≤ T (D), (13)

where T (D) is the encoder transfer function, D is given by

D =

√
4P e(1− P e), (14)

and P e is the IM-FA system average BER derived in (10). The
parameter D represents the BSC model with crossover proba-
bility P e. To obtain the transfer function for the encoder under
consideration, the first step involves deriving the state diagram
from the encoder in Fig. 2, which is subsequently utilized to
obtain the state equations. The transfer function T (D) is then
determined by solving the aforementioned state equations and
is given in closed-form by (15) on top of the next page. Note
that other performance bounds can be considered which would
yield similar observations. Nonetheless, the suitability of this
approach is attributed to the expression of the transfer function,
as well as the utilization of a high code rate. Thus, by plugging
(15) into (13), we obtain a performance bound for SPC-IM-FAs.

V. NUMERICAL RESULTS

In this section, we provide extensive Monte-Carlo simula-
tions to validate our analysis and quantify the performance of
IM-FAs. Unless stated otherwise, we assume a fixed operating
frequency of 5 GHz (λ = 6 cm) and W = 1. For the sake of
presentation, the correlation matrix R is written as

R =

 R1,1 · · · R1,N

...
. . .

...
RN,1 · · · RN,N

, (16)

where the (i, j)-th entry of R, which represents the spatial
correlation between ports i and j, is given by [6]



T (D) =
D2+D3−2D5+4D7+4D8+6D9+3D10+5D11−18D12−26D13+32D15+21D16−19D17−20D18+3D19+8D20−D22

1−D2−5D3−D4+D5+2D6−4D7−5D8+3D9+7D10+12D11+2D12−11D13−9D14+5D15+7D16−2D18
.

(15)
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Fig. 3: Impact of the spatial correlation
and the number of FA ports on the BER.
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Fig. 4: Performance comparison between
IM and IM-FA systems for different η.
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Fig. 5: Performance of IM-FAs with
transmit port selection, for η = 6 bps/Hz.
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Fig. 6: Performance of SPC-IM-FAs for N=16, η = 5 bps/Hz.

Ri,j = J0

(
2π

(i− j)

N − 1
W

)
, (17)

where J0(·) is the zero-order Bessel function of the first kind.
The performance in terms of uncoded BER of the FA

system for an increasing number of ports is shown in Fig.
3. Specifically, we plot the results for two different lengths
of the FA, i.e., W = {0.12, 0.38}. We first notice that for
all signal-to-noise ratio (SNR) values, the BER performance
gets worse as the number of FA ports increases. This is an
expected result since the correlation between ports increases
as well as the likelihood of erroneous port detection increases
with an increasing number of FA ports. We then observe that
for a lower number of FA ports, i.e., N < 64, the BER
increases significantly. Beyond this value, the performance does
not degrade as much, meaning that it is sufficient to have a

moderate number of FA ports since the BER is not largely
affected. Last, we remark that the analytical results match with
the simulations at high SNR, which validates the derived bound.

In Fig. 4, we provide a comparison between the IM-FA
system and the conventional IM system with Nt transmit
antennas. To have a fair comparison, we choose a predefined
spectral efficiency η as well as the physical length of the FA.
For instance, for W = 1, the length of the FA is fixed at 6
cm. Under this limitation, the traditional IM system can have
at most Nt = 2 transmit antennas if we want to keep them
separated by at least half a wavelength. In addition, it should
be noted that conventional IM transmissions are susceptible to
antenna mutual coupling, resulting in performance degradation
when the correlation is low. This inherent effect imposes an
additional constraint when compared to FA-based IM transmis-
sions. Having this in mind, for η = 7 bps/Hz, the traditional
IM system requires a modulation order of M = 64. On the
other hand, IM-FAs can have at most 64 ports with a minimum
modulation order of 2. We observe that the FA-based IM system
outperforms the Nt-antenna IM system after a certain SNR
value (around 24 dB). More specifically, at a BER of 10−3,
we observe a gain of approximately 4 dB. This result is also
validated for the case where η = 6 bps/Hz. Finally, we observe
that the analytical results match closely with the simulation
results, which validates our theoretical framework.

In Fig. 5, we compare the uncoded BER performance of IM-
FAs with transmit port selection for the case where the FA has
32 ports. For the port selection, namely the norm-based and
the distance-based schemes, we select the k = 4 best ports and
increase the modulation order from M = 2 to M ′ = 16 to keep
the same spectral efficiency as the system with no selection. As
expected, we observe a significant gain for both port selection
schemes over the scheme without selection, with 6 dB and 3
dB for the distance-based and norm-based schemes at a BER of
10−3, respectively. The reason for this gain is that decreasing k
means having less but more powerful combinations of channel



coefficients despite using a higher modulation order. Evidently,
this gain in performance comes at the expense of full channel
knowledge at the transmitter.

Finally, we present the performance of the SPC for IM-
FAs in Fig. 6 for the specific case where the FA is equipped
with 16 ports. Furthermore, we consider two scenarios for
the correlation; the first one with a large physical length, i.e.,
W = 4, and the second with W = 0.33 to generate a high
correlation. We notice that for the first scenario, the use of
SPC for the FA ports has no advantage and performs worse
than IM-FAs with no SPC. The reason for this behavior is
that the uncoded FA-based system uses a lower modulation
order as compared to its coded counterpart, hence the expected
coding gain is not visible whenever the spatial correlation
is low. On the other hand, the second scenario shows the
advantage of employing SPC for the FA ports in the presence
of high correlation, as it is apparent that we have a significant
performance improvement in terms of coding gain (around
4 dB) at a BER of 10−4. The gain improvement is mainly
attributed to the encoding structure and the set partitioning of
the FA ports. In other words, as the spatial separation between
ports increases, the effect of spatial correlation is reduced. On a
final note, we observe that the derived theoretical upper bound
for SPC-IM-FAs (dashed red curves) follows the same trend as
the simulation results, thereby validating our analysis.

VI. CONCLUSION

In this work, we studied the concept of IM-FA systems,
in which an FA transmitter’s port indices are used to convey
additional information bits. Initially, we derived a closed-form
expression for the average BER of IM-FAs. Given that the
FA operates in a small physical space, we investigated various
correlation mitigation strategies. Our results demonstrated that
by using transmit port selection, we can enhance the perfor-
mance of IM-FAs and outperform IM systems with traditional
antennas. Moreover, by applying spatial set partition coding,
we observed a coding gain improvement of 4 dB compared
to the case without correlation mitigation. This work aimed to
introduce IM transmissions for FAs and highlight their influence
in next-generation communication systems.

APPENDIX A
PROOF OF PROPOSITION 1

Based on the ML detection rule in (4), the conditional PEP
is calculated as

P (x → x̂ | h) = Pr
(
|y − hx|2 > |y − hx̂|2 | h

)
= Pr

(
|w|2 > |h(x− x̂) + w|2 | h

)
= Pr

(
|w||h(x− x̂)| < −1

2
|h(x−x̂)|2

∣∣∣∣ h).
(18)

Then, by conditioning on h, we obtain a Gaussian-distributed
random variable with zero mean and variance σ2

w|h(x − x̂)|2.
Hence, P (x → x̂ | h) is reformulated as

P (x → x̂ | h) = Q

(
|h(x− x̂)|2√
4σ2

w|h(x− x̂)|2

)
, (19)

which is derived as given in (5).

APPENDIX B
PROOF OF PROPOSITION 2

By expressing the MGF of the random variable Ψ in terms
of the correlation matrix, we obtain [16]

MΨ(s) =

N∏
n=1

1

1− sµn
, (20)

where µn is the n-th eigenvalue of δδHR. Note that the
analysis, in this case, is simplified due to having a single
antenna receiver. Significantly, we notice the matrix δδHR has
always rank one due to the term δδH , which is a consequence
of employing IM transmission. Thus, we obtain a single non-
zero eigenvalue, denoted by µ, which can be calculated as

µ =

N∑
n=1

µn = tr
(
δδHR

)
, (21)

where tr(·) is the trace operator. Hence, the MGF is given by

MΨ(s) =
1

1− sµ
. (22)

Finally, by replacing the above expression for the MGF in (8),
we obtain a closed-form solution for the PEP of IM-FAs in (9).
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