
Scaling Serverless Functions in Edge Networks:
A Reinforcement Learning Approach

Mounir Bensalem∗, Erkan Ipek∗ and Admela Jukan∗
∗Technische Universität Braunschweig, Germany; {mounir.bensalem, e.ipek, a.jukan}@tu-bs.de

Abstract—With rapid advances in containerization techniques,
the serverless computing model is becoming a valid candidate
execution model in edge networking, similar to the widely used
cloud model for applications that are stateless, single purpose and
event-driven, and in particular for delay-sensitive applications.
One of the cloud serverless processes, i.e., the auto-scaling
mechanism, cannot be however directly applied at the edge, due
to the distributed nature of edge nodes, the difficulty of optimal
resource allocation, and the delay sensitivity of workloads. We
propose a solution to the auto-scaling problem by applying
reinforcement learning (RL) approach to solving problem of
efficient scaling and resource allocation of serverless functions
in edge networks. We compare RL and Deep RL algorithms
with empirical, monitoring-based heuristics, considering delay-
sensitive applications. The simulation results shows that RL al-
gorithm outperforms the standard, monitoring-based algorithms
in terms of total delay of function requests, while achieving an
improvement in delay performance by up to 50%.

Index Terms—RL, DQL, scaling, edge computing, serverless.

I. INTRODUCTION

In serverless computing, function scaling is a key process to
manage resource allocation by creating and removing function
instances/replicas when functions are requested or idle for a
certain duration. In the cloud, function scaling is managed in a
centralized fashion as implemented in a few well known com-
mercial serverless platforms, such as Amazon AWS Lambda or
Google Cloud Functions, as well as in the related open source
tools, like OpenFaaS or Apache OpenWhisk. As recognized
by a few recent studies, the serverless platforms can be applied
also in the context of edge networks, such as in works [1]–
[4]. Furthermore, recent work investigated problems related to
execution model [5], resource provisioning [6], placement of
resources [7], and resource scaling [4], [8], [9]. The state of the
art work adopts scaling methods based on monitoring of the
function arrivals, while the resource allocation uses periodic
collection of telemetry data and various optimizations.

What is currently missing in the edge networking context
are the novel auto-scaling mechanisms, due to the distributed
nature of edge nodes, the difficulty of optimal resource al-
location, and the delay sensitivity of workloads typical for
the edge context. The current function scaling methods are
based on monitoring of the function arrivals only, and do not
consider the network states, which is critical. On the other
hand, resource allocation methods that depend on periodic
collection of telemetry and optimal linear programming mod-
els are not practical for real time scenarios. In our previous
work [9], we studied the optimality of serverless function

scaling using Semi-Markov Decision Process-based (SMDP)
theoretical models, but also these are rather computationally
demanding, and do not consider delay-sensitive applications.
Delay constrained functions and applications, such as image
recognition and anomaly detection, require a guaranteed re-
sponse time. Since most serverless platforms were developed
for the cloud, delay sensitive workloads are out of scope, and
hence not application in the edge context.

We propose a novel and practical solution to the auto-
scaling problem by applying reinforcement learning (RL) and
its extension to deep RL in edge networks. We compare
our algorithms with empirical , monitoring-based heuristics,
while considering delay-sensitive applications. It should be
noted that recent work [8] used RL algorithm to characterize
the service profile when making the scaling decision in the
cloud. Furthermore, [10] uses deep reinforcement learning
(DRL), to achieving distributed function allocation at the edge.
Our focus is the consideration of delay constraints, which is
novel. In our approach, we prioritize the delay constraints
after computing all the available allocation possibilities, thus
reaching the best possible scaling solution. Furthermore, we
consider capacity constraints and queuing and transmission
delays. We also uniquely consider concurrency of service
requests over resources. We compare simulation results to stan-
dard, monitoring-based algorithms in terms of total delay of
function requests. RL outperforms monitoring-based methods
used by default in today’s serverless platforms by decreasing
the average delay of function requests, and enhancing the
satisfaction rate of delay constraints for all request loads,
and up to 50% for certain request loads. Our method is
practically relevant as it can be easily implemented in open
source serverless platforms to scale functions, as it only need
to collect data about the delay of each function request, which
the container orchestrator can easily provide.

The rest of the paper is organized as follows. Section II
introduces the system model. Section III presents the RL and
DRL auto-scaling approaches, and Section IV evaluates the
performance. Section V concludes the paper.

II. SYSTEM MODEL

Fig. 1 illustrates the system model which includes an
example physical infrastructure, here consisting of 4 edge
computing nodes (W1, W2, W3 and W4), a container orches-
trator, generally Kubernetes, a serverless platform, and several
applications. The serverless platform (such as OpenFaaS)

ar
X

iv
:2

30
5.

13
13

0v
1

 [
cs

.N
I]

 2
2

M
ay

 2
02

3

Serverless PlatformApplications

L2
N1

L1 N4

L4

N3

W1

event queue

Rf2

f1

f2

Rf1

Rf2

f1

Telemetry

AP
I

ga
te

w
ay

di
sp

at
ch

er

f2

Rf2Rf2

Rf1

f2

W4

f2

H
TT

P
re

qu
es

ts
Rf3

f3

Rf2
f2Rf2

Rf1Rf1

Rf4

f1

Rf3

f4

N2 L5

L3

W2

f1

W3

Container Orchestrator

f2

f3

f4

Figure 1: Serverless system at the edge

typically consists of an application programming interface
(API) gateway, event queue, dispatcher and telemetry mod-
ules; the latter has access to all resources in the network.
Applications/Users can request functions via HTTP requests
through the API gateway. Functions can be of different types,
depending on the application, and for each function type the
serverless platform creates an event queue where the said
function need to wait (queue) to be processed.

The dispatcher is the module that controls the scaling
mechanism, which is the main focus of our paper. The
implementation of the dispatcher typically considers the type
of function, number of requests per function, and the resource
utilization policy. The default dispatcher scheme used in
openFaaS checks periodically the arrival rate (or load) of
each function; as a consequence, it scales-up the number of
replicas whenever it exceeds a certain threshold, or scales-
down the number of replicas whenever the queue is emptied.
The telemetry component collects information about the arrival
event and the queue status. After making the scaling decision
by the serverless platform, this decision is handled by the con-
tainer orchestrator to place functions accordingly in the edge
computing network. Joint scheme of scaling and placement can
also be used to suggest an allocation decision to the container
orchestrator, which allows us to propose a combined approach
in our paper. Our model additionally assumes that functions
can be requested with a specific delay constraint, such that
delay sensitive applications can be considered.

A. Problem Formulation

We consider a single master multi-worker deployment,
including a set of edge nodes E = {E1, .., En, ..., EN}, where
En represents the nth edge node. We assume that each edge
node is constrained by a certain amount of capacity modeled
as a number of CPU units Cn. We consider a set of function
classes denoted as K = {1, ...k, ...,K}, where each function
with class k requires the same amount of resources bk CPU
units. Let Ξ = {ξ1, ..., ξk, ..., ξK} be a set of function delay

constraints, where each function request fk of a function class
k is assumed to have a certain delay requirement ξk. The
arrival and service processes of function requests of class
k are modeled as a Poisson process with rates λk, and µk,
respectively. We assume that all function requests are queued
in a buffer with infinite capacity.

B. Allocation model

Each function of class k requires an amount of resource that
can be served by at least one available edge node, such that:

bk ≤ max∀n:n∈[1,N]{Cn},∀k ∈ [1,K] (1)

We denote by δk(n) the number of replicas from function of
class k allocated in edge node En. The resource allocation has
the capacity constraints, which can be given as:

K∑
k=1

bkδk(n) ≤ Cn,∀n ∈ [1, N] (2)

C. Delay Model

Unique to our work is the delay model, whereby we consid-
ers three types of delays: processing delay, transmission delay,
and queuing delay. The processing delay Dk,n

p of a function
f(k) of class k deployed through a pod in node En is constant.
This is due to the fact that serverless functions are commonly
used for single purpose processing, where the input and output
data are always the same in terms of size and the processing
operations are the same. Transmission and propagation times,
can also be defined as a constant parameter since they depend
on the distance between worker (edge) nodes and the so-
called master node (e.g., in Kubernetes). In a single master
multi-worker deployment, the routing and path computation
is assumed to be managed by the container orchestrator (e.g.
Kubernetes). We denote by Dk,n

t the transmission delay of a
function request f(k) between master node and worker node
En. Let us hence focus on the total total queuing delay.

The total queuing delay D
f(k),k
q of a function f(k) of

class k is restricted to the delay caused by the scaler when
it decides to put a function request in the queue. The queuing
delay is measured as the difference between the arrival request
time plus the transmission and the processing time and the
departure request time. Finally, the total delay Dkfor each
function request f(k) is given as:

Df(k),k = Dk
p +Dk

t +Df(k),k
q ,∀k ∈ [1,K] (3)

Time sensitive applications impose delay constraints, i.e.,

Df(k),k ≤ ξk,∀k ∈ [1,K] (4)

III. RL AND DNN-BASED SCALING MODEL

In this section, we first propose a basic RL-based algorithm
to provide the best possible scaling decision of serverless
functions, with actions of scaling the functions up or down by
creating and removing replicas considering the processing and
queueing costs while satisfying delay requirements. After that,
we extend this model using Deep Reinforcement Learning.

A. Reinforcement Learning Scaling Model

The basic RL model is defined by an agent (the scaler),
a state space S, an action space A, a system reward R,
and an environment. The agent (scaler) selects an action
that changes the resource allocation of functions through the
function provider, which results a change of the network state
into a new state. The RL agent evaluates the total delays of
function requests, i.e. round trip time, and assigns a reward to
the decision. RL model uses a Q-table to store at each step
the agent’s needed knowledge for the decision making process,
including the state, action, reward and the next state.

The system state s at time t for the RL model is represented
by the node allocation decision, the queue length, the event
type that can happen in the system, and the type of the
requested function:

S = {s|s =(∆, Q, e, fk)}, (5)

where a set ∆ = δ1, ..., δk, ..., δK encodes the nodes availabil-
ity for each class of functions, where the variable δk is a binary
variable equal to 1 if there is enough capacity to replicate
a function of class k in the edge computing system and 0
otherwise. Q = {Q1, ..., QK} denotes the function request
queue length vector. A binary variable e indicating the type
of the event that occurs in the system, is set to 0 for arrival
events and 1 for departure events. A function identification fk
is an integer variable that defines the class k of a function.

The RL agent has a set of actions a(s) to take at every new
event in the system (arrival or departure): to allocate a function
replicas in a specific node, to place a function request in the
queue, or to remove a function replicas. In our RL model, the
action variable is defined as:

A(s) =

{
{0, 1, ..., n, ..., N}, e ∈ Ar
{−1, 0}, e ∈ D

(6)

where a(s) = n, ∀k ∈ {1, ...,K} when a function of class
k is replicated in edge node En, a(s) = −1,∀k ∈ {1, ...,K}
when a function of class k is removed from the system, a(s) =
0 denotes the action of queuing a function request of any class
k for function arrival events, and the queue update for function
request departure.

At every system state s and after taking an action a(s),
the scaling agent obtains a reward in order to gain knowl-
edge and adapt its decision making process accordingly. The
reward function R(s, a) used in our RL model considers the
transmission delay value and the delay constraint to encourage
the agent to select actions that satisfy delay constraints and
achieving a lower average delay while maximizing the time
satisfaction rate. The reward is defined as following:

R(s, a) =

r1, if ξk is satisfied and ψ = 0,
r1 · w1

ψ , if ξk is satisfied and ψ 6= 0,

r2, if ξk is not satisfied and ψ = 0,
r2 · w2

ψ , if ξk is not satisfied and ψ 6= 0.
(7)

Node Allocation

Queues State

Event Type

Input Hidden Output

Actions

NxK cell

K cell

A cell

Figure 2: DNN architecture for mapping network state to actions

where a is action, ξk is function delay constraints, ψ is
transmission delay between master node and worker node
allocated through action a, and wr1 and wr2 are weights.

The detailed reinforcement learning process is given by
Algorithm 1. The goal of the algorithm is to select an action,
as defined in eq. (6). In the case of warm-up, where previous
actions were taken or the RL model still did not learn yet how
to accuratly choose actions, an exploration phase is needed. We
consider an ε-greedy approach to explore the search space and
try new actions. We denote by ε the exploration probability,
where at each step the RL agent chooses randomly an action
with probability ε and uses the accumulated knowledge with
probability 1−ε. The learning process is repeated several times
in form of episodes where the exploration-exploitation factor
is decaying linearly. At every episode, the agent checks the
state of the environment defined in eq. (5) to take an action
a using the SelectAvailableAction(s) function, which chooses
an available action with the highest q-value, considering the ε-
greedy approach. After that, The RL agent updates the Q-table
using the following equation:

Qt(s, a) = (1−α) ·Qt(s, a)+α ·(R(s, a)+γ ·max
a′
Qt(s′, a′))

(8)
where α and γ denote the learning rate and discount factor,
respectively. We set α = 0.01, γ = 0.95, the initial exploration
probability ε = 1, and the decay= 0.98.

B. Deep Reinforcement Learning Scaling Model

We now propose an extension to the basic Q-learning
scheme previously proposed, using Deep Reinforcement
Learning, which employ Deep Neural Network (DNN) to
estimate the q-values, i.e. Q-table Qt. After investigation of
various possible input representation, we adopt the following
state definition:

s = {s|s =(∆∗, Q, e)}, (9)

where ∆∗ represents an R2 vector encoding the number of
replicas of each function of class k in each node En, Q and
e have the same definition from eq. (5).
The state definition is used to define the input of DNN
architecture illustrated in Fig. 2, while the output is defined
by the actions defined in eq. (6).

Algorithm 1 RL based scaling algorithm
1: Input: events, bk , µk , ξk , network state (∆, Q, C)
2: Initialization: Qt, ε, α, γ, episodes, decay
3: for each episode do
4: if episode > 0.1· episodes then

ε ← decay ·ε . update exploration-exploitation rates
5: end if
6: for each event do

s ← (∆, Q, e, f), a = SelectAvailableAction(s)
∆′, Q′, e′, f ′ ← Find next state parameters
s′ ← (∆′, Q′, e′, f ′)
Qt ← UpdateQTable(s, a, s′)
s ← s′

7: end for
8: end for
9: function SELECTAVAILABLEACTION(s)

10: actions = CheckAvailableActions(s)
11: if event is an arrival then
12: if s in Qt then
13: if random < ε then . ε-greedy approach
14: Select randomly from actions
15: else
16: Select action with highest Q value from Qt that exists in

actions
17: end if
18: else
19: Select randomly from actions
20: end if
21: end if
22: end function
23: function UPDATEQTABLE(s, a, s′)
24: if s not in Qt then
25: Qt(s, a)← 0
26: end if

r ← Calculate reward using (7)
27: Qt(s, a)← (1− α) · Qt(s, a) + α · (r + γ ·maxa′ Qt(s′, a′))
28: end function

Similar to RL algorithm, DRL uses ε-greedy approach to
explore random actions with probability ε, where the explo-
ration factor is decaying from an episode to another. The DNN
model is initially created based on the size of the network and
the number of functions to be used to predict the best scaling
and placement action. At every step, the DNN model is used
to estimate q-values of every possible action instead of using
the Q-learning equation eq. (8). The knowledge learnt from
previous experiences is stored in a replay memory M with a
size |M|, and update the DNN parameters using a mini-batch
B of experiences from M every U events.

IV. PERFORMANCE EVALUATION

We study the performance of our RL and DRL methods
through simulations. We evaluate the best settings leading to
convergence, and compare ours to the algorithms used in an
open source serverless platform by default, e.g., in OpenFaaS.

A. Simulation Setup

We used an event based simulator running up to 100000
events with severals seeds to simulate the network behavior
and validate our results. We evaluate a network that consists
of N = 10 edge nodes. The transmission time between master
node and worker nodes is generated using a uniform distri-
bution of interval [0, 30]. We assume that users can request
K = 5 types of functions. We generate all arrival requests

Algorithm 2 DRL based scaling algorithm
1: Input: events, bk , µk , ξk , network state (∆∗, Q, C)
2: Initialization: ε, α, γ, episodes, replay memoryM, batch size B, model

update frequency U
3: model ← Create neural network model using |∆∗| and |Q|
4: for each episode do
5: if episode > 0.1· episodes then

ε ← decay ·ε . update exploration-exploitation rates
6: end if
7: for each event do

s ← (∆∗, Q, e),
Qt(s) ← model(s) . predict all q-values for state s using the

model
a = SelectAvailableAction(s, Qt(s))
∆∗

′
, Q′, e′, ← Find next state parameters

s′ ← (∆∗
′
, Q′, e′, f ′)

model ← UpdateDRL(s, a, s′)
s ← s′

8: end for
9: end for

10: function SELECTAVAILABLEACTION(s, Qt(s))
11: actions = CheckAvailableActions(s)
12: if event is an arrival then
13: if random < ε then . ε-greedy approach
14: Select randomly from actions
15: else
16: Select action with highest q-value from Qt(s) that exists in

actions
17: end if
18: else
19: Select randomly from actions
20: end if
21: end function
22: function UPDATEDRL(s, a, s′)
23: Add experience (s, a, r, s′) to the replay memory M
24: if every U event then
25: data ← Get random B experience from M
26: Train model with sampled data
27: end if
28: end function

using exponential distribution with a mean value λk = 2.5−4.
The service time of each function request follows an exponen-
tial distribution with a mean values µk = 5, 6, 7.5, 10, 13. We
assume the function requirements bk = k cpu units and delay
constraints ξk = 20, 23, 26, 29, 32 (ms).

B. RL and DRL Settings

We first evaluate the learning performance of RL and DRL
algorithms in order to choose the best hyperparameter setups.

1) RL: We set α= 0.01, γ = 0.95, nb. of episodes = 100,
Initial ε = 1, and Decay = 0.98.

2) DRL: Number of episodes = 10, B = 1280, U = 2500,
size of DNN hidden layer 1 = 32, hidden layer 2 = 16.

In Figures 3 and 4, we show the performance results in terms
of average delay, average number of replicas, and average
rewards, for RL and DRL algorithms, respectively. The results
shows that the average delay starts to decrease linearly after
few episodes until it converges at a certain value, which is
90 for RL and 10 for DRL. This proves that the algorithm
is learning, from an episode to another, how to efficiently
scale functions and place them in the edge nodes. The average
delay goes from 23 ms to 16 ms after convergence. The
number of replicas remains the same for all episodes, which is

expected as the scaling and allocation scheme is satisfying all
function requests. The average reward in this case describes
the satisfaction rate. i.e. the percentage of satisfied requests in
terms of delay constraint (number of delay satisfied requests
/ total requests). The reward increases with the number of
episodes until it converges at the same point of convergence
for average delay, to reach a value 90% and 85% satisfaction
for RL and DRL, respectively.

C. Results Discussions

We now analyze the performance of both RL and DRL
scaling methods, by comparing it to a monitoring-based
heuristics and a delay-aware monitoring approach, in order
to verify their efficiency, where the placement is managed
by random-fit and first-fit models. We adopt the monitoring-
based methods for comparison, as they are used by default in
Serverless Platforms, such as OpenFaaS. The scaling mech-
anism in OpenFaaS considers the arrival rate by collecting
telemetry about the load. When the load exceeds a predefined
threshold, the monitoring triggers the container orchestrator to
create new replicas. When the queue is empty, the monitoring
starts to remove replicas, e.g., Kubernetes pods, otherwise the
system state remains unchanged. Our delay-aware monitoring
approach is an updated version of the same that considers
delay constraints of each function, whereby new replicas can
be created when the delay constraints are satisfied at least by
using one of the existing nodes. The delay aware monitoring
algorithm is detailed in Algorithm 3.

Algorithm 3 Monitoring-based scaling algorithm
1: Input: event, queue, capacity, load, threshold
2: if event is an arrival then
3: if capacity is available then
4: if for any node En, ξk is satisfied then
5: if load > threshold then return 1
6: else return 0
7: end if
8: else return 0
9: end if

10: end if
11: end if
12: if event is a departure then
13: if the queue is empty then return -1
14: else return 0
15: end if
16: end if

We analyze 4 scaling methods: i) monitoring-based (MNT)
and ii) delay-aware monitoring-based (MNT_constraint) iii) re-
inforcement learning (RL) and iv) deep reinforcement learning
(DRL). For i) and ii), the algorithms do not determine function
allocations, thus we adopt two simple resource allocation ap-
proaches: First-Fit allocation (FFa) and Random-Fit allocation
(RFa). In FFa, we allocate functions in the closest available
node. In RFa, we allocate functions randomly in any available
node with enough available resources. For iii) and iv), the
algorithms decide the allocation as well as the scaling.

Figure 5 shows the avg. service delay, the avg. nb. of
replicas, and the avg. reward of all functions for arrival rates
of functions for each scaling algorithm. The avg. delay results

show that RL and DRL outperforms MNT and delay-aware
MNT using both first-fit and randon-fit allocation. When the
arrival rate increases the load decreases, which decreases the
chances of MNT algorithms to create new replicas. Thus the
avg. delay increases with λ. Meanwhile for RL and DRL,
the reward function allows the learning approach to allocate
functions in nodes that satisfy delay constraints and decrease
the avg. delay, which explains the decrease of the delay with
the decrease of the load (increase of λ). The delay-aware MNT
performs worse than MNT in terms of delay as it may take
conservative decision of scaling when the delay constraint is
not satisfied. In terms of nb. of replicas, RL and DRL are less
conservative than MNT, in order to load balance servers and
decrease delays. In terms of reward/ delay satisfaction rate,
RL and DRL improves the satisfaction by 50% comparing
to MNT when λ = 5. MNT algorithm performs worst when
λ increases, as explained for the delay, while RL and DRL
performs better as the load decreases. Results given by both
RL and DRL are very close, which proves that basic RL is
learning efficiently without the need for complex NN models.

Figure 6 shows the avg. service delay, the avg. nb. of repli-
cas, and the avg. reward of all functions for time constraints of
functions for each scaling algorithm. RL and DRL outperforms
MNT approaches in terms of avg. delay for all values of delay
constraints. The results obtained remains the same for all the
constraint values, which means that the allocation decision is
not affected by constraints, and by incorporating a delay term
in the reward function, RL and DRL give the lowest possible
avg. delay, while for MNT, the constraint is not considered. For
delay-aware MNT, the algorithm becomes very conservative
in terms of scaling when the delay constraint increases. In
terms of nb. of replicas, RL and DRL use a higher nb. of
replicas and for all algorithms, this value is not affected by
the delay constraint. For the reward, RL and DRL give higher
satisfaction rate for all values, and the rate increase with the
decreasing of delay constraint.

V. CONCLUSION

In this paper, we addressed the problem of efficient scal-
ing and resource allocation of serverless functions in edge
networks, considering delay-sensitive applications by applying
reinforcement learning (RL) approach. We compared RL and
Deep RL algorithms with monitoring-based heuristics, used for
practical solutions. The simulation results shows that RL al-
gorithm outperforms the default, monitoring-based algorithms,
regarding the total delay of function requests, and achieves an
improvement in terms of delay performance by up to 50%.
Results showed that RL is as good as DRL, which allows
us to use the basic RL as a fast and efficient solution. As a
future work, we will evaluate our solution for more complex
scenarios, and consider the reliability of edge nodes.

ACKNOWLEDGMENT

This work was partially supported by EU HORIZON
research and innovation program, project ICOS, Grant Nr.
101070177, and by European Commission for project FISHY
under the H2020, Grant Nr.952644.

0 20 40 60 80 100
number of episodes

16
17
18
19
20
21
22
23

av
g.

 d
el

ay
 (m

s) RL

0 20 40 60 80 100
number of episodes

22.0
22.5
23.0
23.5
24.0

av
g.

 n
b.

 re
pl

ica
s RL

0 20 40 60 80 100
number of episodes

0.60
0.65
0.70
0.75
0.80

av
g.

 re
wa

rd

RL

Figure 3: Reinforcement Learning performance per episodes

2 4 6 8 10
number of episodes

16

18

20

22

av
g.

 d
el

ay
 (m

s)

DRL

2 4 6 8 10
number of episodes

22.0
22.5
23.0
23.5
24.0

av
g.

 n
b.

 re
pl

ica
s DRL

2 4 6 8 10
number of episodes

0.60
0.65
0.70
0.75
0.80
0.85

av
g.

 re
wa

rd

DRL

Figure 4: Deep Reinforcement Learning performance per episodes

2.5 3.0 3.5 4.0 4.5 5.0
arrival rate

15
20
25
30
35
40
45
50

av
g.

 d
el

ay
 (m

s)

MNT(th=0.1)_RFa
MNT(th=0.1)_FFa
MNT(th=0.1)_Constraint
RL
DRL

2.5 3.0 3.5 4.0 4.5 5.0
arrival rate

15
20
25
30
35

av
g.

 n
b.

 re
pl

ica
s

MNT(th=0.1)_RFa
MNT(th=0.1)_FFa
MNT(th=0.1)_Constraint
RL
DRL

2.5 3.0 3.5 4.0 4.5 5.0
arrival rate

0.3
0.4
0.5
0.6
0.7
0.8
0.9

av
g.

 re
wa

rd

MNT(th=0.1)_RFa
MNT(th=0.1)_FFa
MNT(th=0.1)_Constraint
RL
DRL

Figure 5: Performance results of scaling models per arrival rate.

10 15 20 25 30 35
time constraint

15

20

25

30

35

av
g.

 d
el

ay
 (m

s)

MNT(th=0.1)_RFa
MNT(th=0.1)_FFa
MNT(th=0.1)_Constraint
RL
DRL

10 15 20 25 30 35
time constraint

17
18
19
20
21
22
23

av
g.

 n
b.

 re
pl

ica
s

MNT(th=0.1)_RFa
MNT(th=0.1)_FFa
MNT(th=0.1)_Constraint
RL
DRL

10 15 20 25 30 35
time constraint

0.2

0.4

0.6

0.8

av
g.

 re
wa

rd

MNT(th=0.1)_RFa
MNT(th=0.1)_FFa
MNT(th=0.1)_Constraint
RL
DRL

Figure 6: Performance results of scaling models per time constraint.

REFERENCES

[1] A. Palade, A. Kazmi, and S. Clarke, “An evaluation of open source
serverless computing frameworks support at the edge,” in 2019 IEEE
World Congress on Services (SERVICES), vol. 2642. IEEE, 2019, pp.
206–211.

[2] L. Baresi and D. F. Mendonça, “Towards a serverless platform for edge
computing,” in 2019 IEEE International Conference on Fog Computing
(ICFC). IEEE, 2019, pp. 1–10.

[3] F. Carpio, M. Michalke, and A. Jukan, “Benchfaas: Benchmarking
serverless functions in an edge computing network testbed,” IEEE
Network, pp. 1–8, 2022.

[4] X. Li, P. Kang, J. Molone, W. Wang, and P. Lama, “Kneescale:
Efficient resource scaling for serverless computing at the edge,” in 2022
22nd IEEE International Symposium on Cluster, Cloud and Internet
Computing (CCGrid). IEEE, 2022, pp. 180–189.

[5] A. Hall and U. Ramachandran, “An execution model for serverless
functions at the edge,” in Proceedings of the International Conference
on Internet of Things Design and Implementation, 2019, pp. 225–236.

[6] O. Ascigil, A. Tasiopoulos, T. K. Phan, V. Sourlas, I. Psaras, and
G. Pavlou, “Resource provisioning and allocation in function-as-a-
service edge-clouds,” IEEE Transactions on Services Computing, 2021.

[7] M. Bensalem, J. Dizdarević, and A. Jukan, “Modeling of deep neural
network (dnn) placement and inference in edge computing,” in 2020
IEEE International Conference on Communications Workshops (ICC
Workshops), 2020, pp. 1–6.

[8] Z. Zhang, T. Wang, A. Li, and W. Zhang, “Adaptive auto-scaling of
delay-sensitive serverless services with reinforcement learning,” in 2022
IEEE 46th Annual Computers, Software, and Applications Conference
(COMPSAC). IEEE, 2022, pp. 866–871.

[9] M. Bensalem, F. Carpio, and A. Jukan, “Towards optimal serverless
function scaling in edge computing network,” in 2023 IEEE Interna-
tional Conference on Communications (ICC). IEEE, 2023, pp. 1–6.

[10] X. Yao, N. Chen, X. Yuan, and P. Ou, “Performance optimization of
serverless edge computing function offloading based on deep reinforce-
ment learning,” Future Generation Computer Systems, vol. 139, pp. 74–
86, 2023.

	I Introduction
	II System Model
	II-A Problem Formulation
	II-B Allocation model
	II-C Delay Model

	III RL and DNN-based Scaling Model
	III-A Reinforcement Learning Scaling Model
	III-B Deep Reinforcement Learning Scaling Model

	IV Performance Evaluation
	IV-A Simulation Setup
	IV-B RL and DRL Settings
	IV-B1 RL
	IV-B2 DRL

	IV-C Results Discussions

	V Conclusion
	References

