
Moving Target Defense based Secured Network
Slicing System in the O-RAN Architecture

Mojdeh Karbalaee Motalleb†, Chafika Benzaïd∗, Tarik Taleb∗, Vahid Shah-Mansouri†

Email: {mojdeh.karbalaee,vmansouri}@ut.ac.ir, {chafika.benzaid, tarik.taleb}@oulu.fi
†School of ECE, University of Tehran, Tehran, Iran

∗University of Oulu, Oulu, Finland

Abstract—The open radio access network (O-RAN) architec-
ture’s native virtualization and embedded intelligence facilitate
RAN slicing and enable comprehensive end-to-end services in
post-5G networks. However, any vulnerabilities could harm se-
curity. Therefore, artificial intelligence (AI) and machine learning
(ML) security threats can even threaten O-RAN benefits. This
paper proposes a novel approach to estimating the optimal
number of predefined VNFs for each slice while addressing
secure AI/ML methods for dynamic service admission control
and power minimization in the O-RAN architecture. We solve
this problem on two-time scales using mathematical methods
for determining the predefined number of VNFs on a large
time scale and the proximal policy optimization (PPO), a Deep
Reinforcement Learning algorithm, for solving dynamic service
admission control and power minimization for different slices
on a small-time scale. To secure the ML system for O-RAN, we
implement a moving target defense (MTD) strategy to prevent
poisoning attacks by adding uncertainty to the system. Our
experimental results show that the proposed PPO-based service
admission control approach achieves an admission rate above
80% and that the MTD strategy effectively strengthens the
robustness of the PPO method against adversarial attacks.

Index Terms—Open Radio Access Network (O-RAN), Adver-
sarial Attacks, Moving Target Defense (MTD).

I. INTRODUCTION

A sixth generation (6G) wireless network will offer en-
hanced network capacity of 10Gbps/m3, lower end-to-end
latency below 1 ms, and increased data rates up to 1 Tbps. The
6G capabilities will unlock new applications and services, in-
cluding holographic communications, wireless brain-machine
interaction, autonomous driving, etc. [1].

6G networks will use network slicing to meet the varying
QoS requirements of envisioned applications/services by dy-
namically creating logically isolated, service-tailored virtual
networks (i.e., slices) on shared physical infrastructures [2]. A
network slice instance consists of chained network functions
and the required resources (e.g., compute, bandwidth, storage),
spanning multiple technology domains (e.g., radio access
network (RAN), core network (CN), and transport network).
Despite its maturity in CN, network slicing remains challeng-
ing in other domains. The native virtualization and embedded
intelligence of the open RAN (O-RAN) architecture are vital
features to promote RAN slicing, enabling the delivery of
genuinely end-to-end services to become a reality [3]–[5].
Specifically, O-RAN architecture introduces RAN Intelligent
Controller (RIC). This software-defined network controller
leverages the capabilities of Artificial Intelligence (AI) and
Machine Learning (ML) to enable intelligent and closed-loop
RAN resource management and optimization. The RIC is

divided into non-real-time (Non-RT) RIC and near-real-time
(Near-RT) RIC, which incorporate rApps and xApps, custom
micro-service-based applications, operating on Non-RT scale
(> 1s) and Near-RT scale (10− 1000ms), respectively.

In RAN slicing, efficient slice-aware resource management
through slice admission control is crucial. Recently, the poten-
tial of ML and, more particularly, Deep Reinforcement Learn-
ing (DRL) techniques have been explored for enabling optimal
slice admission control strategies in the O-RAN system. A
federated DRL is presented in paper [6] to manage multiple in-
dependent xApps in O-RAN for network slicing. Two xApps,
which are jointly communicated, are implemented for power
and physical resource block management. In [3], the problem
of obtaining the optimal number of virtual network functions
(VNFs) and baseband resource management is considered
for the RAN slicing in the O-RAN architecture, which is
solved using an optimization technique. In [7], an optimization
technique for the infrastructure resource reservation is used to
prioritize admission control for multiple slices.

ML techniques, including DRL, face vulnerabilities to ad-
versarial attacks that manipulate data during (re)training or
serving [8]–[10]. For example, resource manipulation could
mislead a DRL-based slice admission model, wrongly reject-
ing RAN slice requests. Ensuring ML security is crucial for O-
RAN integration, building trust in their decisions Addressing
O-RAN’s security from an ML perspective involves multiple
methods: Zero Trust (ZT), blockchain, and Moving Target
Defense (MTD). ZT adopts a proactive ’never trust, always
verify’ stance to fortify O-RAN infrastructure against ML
threats. Blockchain ensures data integrity and transparent
model history, enhancing trust and accountability in ML
processes.An effective defense strategy discussed in [8] is
the Moving Target Defense (MTD) paradigm. MTD enhances
security by continually changing the attack surface, making it
harder for attackers to predict and exploit vulnerabilities. This
approach has gained in safeguarding ML models, particularly
in computer vision and malware domains(e.g. [11], [12] ).

The MTD technique provides a dynamic and proactive secu-
rity approach, distinguishing it from ZT and blockchain, which
primarily concentrate on access control and data integrity.
MTD’s continuous alteration of the attack surface poses a
formidable challenge for adversaries, enhancing resilience
against evolving threats. Consequently, our paper centers on
employing MTD to secure the O-RAN system.In [13], the
authors consider a Trojaning attack defense framework based
on an MTD on the Deep neural network (DNN), which
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randomly selected dimensions in multidimensional training
models. According to the results, they guarantee DNN’s avail-
ability and protect it from Trojan attacks.

Currently, previous works focus on traditional RAN slicing
with classic methods such as optimization and game theory
or artificial intelligent/Machine learning (AI/ML) techniques.
Although some of them highlight O-RAN slicing, they do
not mention the softwarization of the O-RAN architecture in
RAN slicing technology. Moreover, the lifecycle of slicing
is not assumed in previous works. In contrast, our paper
differs from current papers by focusing on the planning and
creation phase of RAN slicing to estimate the optimal number
of predefined VNFs in the O-RAN distributed unit (O-DU)
and the central unit (O-CU) for different slices based on
the processing delay threshold of the system, which is done
on a large time scale. Afterward, we consider the managing
phase of the RAN slicing lifecycle by analyzing the dynamic
service admission control and power minimization on a small
time scale for different services with different QoS in the
processing layer of the O-RAN technology using the DRL
technique. Due to the dynamic nature of the problem, the
sequential decision-making, and the large state space, DRL
is the most appropriate approach. Moreover, to the best of our
knowledge, none of the existing contributions has considered
the security issues stemming from using DRL techniques in the
RAN slicing. The adversarial defense strategy employs MTD
to bolster the proactive resilience of our DRL model against
attacks. Implementing MTD entails training various models
with similar performance for different xApps. The xApps will
be randomly selected after learning. The main contributions
of this paper are as follows:

• We study the problem of estimating the optimal number
of VNFs in each slice and solving the secure dynamic
service admission control and power consumption in the
O-RAN using the RAN slicing.

• The problem of estimating the optimal pre-defined VNFs
are solved mathematically on a large time scale to obtain
how many VNF chains can be deployed for each slice.
In contrast, the problem of service admission control and
minimizing total power is solved dynamically on a small
time scale using the PPO algorithm, an actor-critical DRL
technique.

• We introduce a novel defense strategy that relies on the
MTD paradigm to make the proposed DRL approach re-
silient to adversarial attacks to prevent degrading system
utilization. Rather than shuffling the network as done in
prior MTD studies, we shuffle the AI models for frequent
system changes. The developed MTD strategy consists
in dynamically picking a model from a set of PPO
models trained with different configurations, increasing
the adversary’s uncertainty.

• The numerical results demonstrate the improvement in the
PPO method against the baseline method and the negative
impact of adversarial attacks on a PPO-based service
admission control system without appropriate defenses.
They also show the effectiveness of the novel MTD-based
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Fig. 1: The secured intelligent O-RAN architecture.

defense strategy in enhancing the solution’s robustness
against those attacks.

The rest of the paper is organized as follows. Section II
introduces the system model. Section III formulates the target
service admission control problem and presents the proposed
DRL approach. Section IV describes the adversarial attack
model and the devised MTD-based defense strategy. Section V
and VI discuss the numerical results and conclusion.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider the dynamic slice
admission control and power optimization in the O-RAN
system. Assume there are S pre-defined RAN slices serving
S services. Each instantiated RAN slice comprises several
VNFs providing the services of the different virtualized O-
RAN units, such as the O-DU and O-CU. Note that O-DU runs
the high Physical (PHY), Medium Access Control (MAC),
and Radio Link Control (RLC) layers. To deliver different
services, MAC and RLC are deployed on isolated VNFs. The
O-DU provides services to users through the radio unit (O-
RU), which contains low PHY and radio frequency. The O-
CU contains the O-CU control plane (O-CU-CP) and the O-
CU user plane (O-CU-UP), which handle the control and
data messages, respectively. The O-CU-CP includes packet
data convergence protocol (PDCP) and radio resource control
(RRC), and the O-CU-UP contains PDCP and service data
adaptation protocol (SDAP) which are deployed on isolated
VNFs for different services. As shown in Fig. 1, the virtualized
O-RAN functions can be dedicated to each slice (e.g., O-DU,
O-CU-UP) or shared between slices (e.g., O-CU-CP).

The O-RAN system uses Near-RT RIC and Non-RT RIC to
control the O-DU and O-CU for resource management. The
Near-RT RIC hosts third-party applications xApps to provide
management and optimization services. Here, we consider the
deployment of xApps providing DRL-based resource manage-
ment services. The Non-RT RIC offers offline ML models to
support Near-RT RIC functions.

We assume different services that use isolated pre-defined
slices in this system model. The pre-defined slices contain
reserved VNFs for two logical nodes of MAC/RLC functions
in the O-DU and PDCP/SDAP functions in the O-CU-UP. We
consider a simple service function chain in the O-DU and O-



CU. Suppose we have Md
s and M c

s VNFs in the O-DU and
O-CU-UP processing layer for the service s.

A. Mean Delay

Consider the mean arrival rate of the service s is Poisson
with rate ᾱc

s in the O-CU-UP layer. The mean arrival data
rate of the sth service in the O-DU is approximately equal to
the mean arrival data rate of the sth service in the O-CU-UP
(ᾱ = ᾱd

s ≈ ᾱc
s). This is because the amount of data transmitted

through the route (despite frame changes ) is constant.
Incoming traffic to VNFs is divided equally by load bal-

ancers at each layer for each service. Assume that each VNF’s
baseband processing is represented by an M/M/1 queue. In
each slice, one VNF processes each packet. Accordingly, the
mean delay for slice slarge time scale in the O-DU and O-
CU can be calculated as M/M/1 queue [3] as follows as
T̄DU
s = 1

µ̄d
s−ᾱs/Md

s
, and T̄CU

s = 1
µ̄c
s−ᾱs/Mc

s
. In addition, 1

µ̄d
s

and 1
µ̄c
s

are the mean service time of the system in the O-DU
and the O-CU-UP layer in the lrge time scale, respectively.
For the simplicity, we assume that the O-CU and the O-DU
have the same processing system. Hence 1

µ̄c
s
≈ 1

µ̄d
s

. Therefore,
we can consider that the Ms =Md

s =M c
s , for the simplicity.

As a result, T̄s = T̄DU
s = T̄CU

s . Consequently, the mean total
delay of the system in the slice s is T̄ tot

s = 2× T̄s.

B. Physical Data Center Resources

The VNF instances are also hosted on VMs that use data
center resources. Each VNF in each layer requires specific
physical rescurces including CPU, storage, and memory based
on the service requirements. Consider a set of a tuple that
expresses the instant required resources for VNF m in the
service function chain of the z ∈ {c, d} (VNFs of O-DU or O-
CU) in slice s as ψ̄mz

s = {ψmz

C,s , ψ
mz

S,s , ψ
mz

M,s}. where, ψm
C,s, ψm

S,s,
and ψm

M,s, provide the amount of CPU, storage, and memory
that are required for the VNFs of the O-DU or O-CU (z ∈
{c, d}) . Moreover, ψ̄m

s ∈ C3. Accordingly, we indicate the
total amount of CPU, storage, and memory, respectively (h ∈
{C, S,M}), for the O-DU and O-CU layers (z ∈ {c, d}) as
ψ̄z,tot
h,s =

∑Mz
s

m=1 ψ
mz

h,s , z ∈ {c, d}, h ∈ {C, S,M}.
Suppose we have N data centers for the VNFs of the O-DU

and the O-CU. Each data center n, has a set of a tuple that
expresses the amount of CPU, storage, and memory resources
as χn

s = {χn
C,s, χ

n
S,s, χ

n
M,s},. Assume, xmz

s,n ∈ {0, 1}, is a
binary variable describing whether the VNF mz

s in layer z ∈
{c, d} in slice s is utilizing the data center n or not [14].

In the following, we will introduce an AI/ML method
to optimize this system model. In addition, in this study,
we consider a potential adversarial attack on our AI/ML
approach which is a black-box attack (i.e., no knowledge).
Attackers lack knowledge of our model and employ a weak
adversary method to manipulate state and reward during agent
interactions. Therefore, we require a secured technique to
defend our system from these threats and vulnerabilities.

III. DRL-BASED ENERGY-EFFICIENT SERVICE ADMISSION
CONTROL

In this section, firstly the problem formulation is obtained.
The proposed method is examined on two different time scales.
An estimation of a pre-defined number of VNFs is achieved
on a large time scale. Next, the dynamic admission control
and power minimization are solved on a small time frame.

A. Problem Statement

Assume the priority of the service s is indicated with ps.
Moreover, for each data center n that is hosting the VNF
mz

s in layer z ∈ {c, d} in slice s, the power consumption
of the baseband processing can be represented as ϕmz

s,n.
Therefore, the total power consumption of all running data
centers that are hosting the VNFs can be expressed as ϕtot =∑N

n=1

∑S
s=1

∑Mz
s

mz
s=1

xmz
s,nϕmz

s,n, z ∈ {c, d}. As a result, the
cost function for the placement of VNFs on the data centers
is formulated as follows:

φtot = ϕtot − κ
∑N

n=1

∑Ms

ms=1 psxms,n (1)

Where κ is a design factor between the first term of (1),
representing the whole power of the resources, and the second
term, is the total number of slices admitted with resources. We
aim to minimize the power and maximize the admitted rate
with the presence of constraints as follows:

min
X,M

φtot (2a)

subject to
∑S

s=1

∑Ms

ms=1 xms,nψ̄
z,tot
C,s ≤ χn

C,s ∀n, (2b)∑S
s=1

∑Ms

ms=1 xms,nψ̄
z,tot
S,s ≤ χn

S,s ∀n, (2c)∑S
s=1

∑Ms

ms=1 xms,nψ̄
z,tot
M,s ≤ χn

M,s ∀n, (2d)

xms,n ∈ {0, 1} ∀n,∀s,∀ms (2e)

T̄s
tot ≤ T s

max. (2f)

where, z ∈ {c, d}, and the constraints (2b), (2c), and (2d)
specify that VNFs hosted by data center n cannot exceed the
data center’s total resources of CPU, memory, and the storage.
Moreover, (2e), represents that the xms,n is a binary variable.
In addition, (2f), indicates that the mean total delay of the
system is less than the threshold. Moreover, X is the matrix
of the xmz

s,n,∀n, ∀m
z
s which defines the allocation of VNFs

of slices to the resources of data centers. Furthermore, M is
the vector of Ms, ∀s that defines the number of pre-defined
VNFs for each slice in the system.

B. Proposed Method

In the following, we present our approach for addressing the
problem outlined in (2), which necessitates solving it across
two distinct time scales. In the large time scale, we find the
optimal number of pre-defined VNFs based on the mean arrival
delay and the mean service time of the system at different
times of network traffic. In the small time scale, we consider
the problem of the dynamic service admission control based
on the resource management of the VNFs in the system. Due
to the dynamic nature of the small time-scale problem, we
are able to solve it using deep reinforcement learning (DRL).



Therefore, firstly, we can simplify the constraint (2f) and find
the sub-optimal value for the number of the VNFs in each
slice s. Afterward, we use the DRL technique to solve the
problem of the admission control system.

1) Estimation of The VNF Number: In this section, we want
to find the optimal number of VNFs in the system for each
slice in the large time scale based on the mean service time
and mean arrival service rate.

In the lifecycle of the network slicing technique, we have
four phases: Preparation, Commissioning, Operation and De-
commissioning. The VNF numbers are estimated in the Prepa-
ration and Commissioning phase. However, in the Operation
phase, it can be modified based on any change in the traffic
of the system. However, with correct estimation, the power
consumption of the system is reduced.

We can simplify and relax the constraint (2f). This constraint
can be converted as Ms ≥ ᾱs

µ̄s−2/T̄max
. Since we want to

minimize the power consumption in the first term of the cost
function of the problem (2), we consider the minimum value
for the Ms, ∀s. As a result, since the number of VNFs is the
integer, we have Ms = ⌈ ᾱs

µ̄s−2/T̄max
⌉.

2) Resource Management: This section introduces a DRL-
based network slicing resource management for dynamic ser-
vice admission control and power minimization in the small
time scale after solving the sub-optimal number of VNFs. This
process is done in the Commissioning and Operation phase of
network slice life cycle.

In the O-RAN architecture, the DRL method is carried
out in the xApp in the near RT RIC. The DRL approach
combines deep neural networks (DNN) with reinforcement
learning (RL). We use a DRL method to solve this problem
since we have a dynamic system.

All RL techniques represent a Markov decision-making
process with (S, A,R, P, γ). Firstly, A represents the action
vector. S represents the state space matrix. Moreover, Rt

is the accumulated reward function and rt is a reward for
taking action at time slot t. A probability of transfer is given
by P (.|S, a). Furthermore, The discount factor is defined as
γ ∈ (0, 1]. Moreover, the Π(.|S) is the policy that maps
the state to the distribution of actions. In addition, the value-
state function for state ∫ under the policy Π(.|S) with V Π(∫)
denotes the expected return value in state ∫ under policy
Π(.|S)). Finally, The value of performing operation a in state
∫ under the Π(.|S) policy is shown as QΠ(∫ , a).

In the RL method, the aim is to maximize the total reward
specified as Rt =

∑∞
k=0 γ

krt+k.
3) Enviroment: This section introduces the Markov deci-

sion process (MDP) to describe an agent and environment
based on the system model in Section II.

• State: The state is the position of the agents at a specific
time. Assume in time step t, we have rst request from
slice s. In this problem, the state in time step t is
St = {χt,Rt}. Where χt ∈ CN×3 is the 2D vector of
remaining CPU, storage and memory for all data centers
in time step t. Furthermore, Rt ∈ CS is the 1D vector
of service requests in time step t.

• Action: The action in each time step t is represented
by At = {Xt}, where Xt ∈ CS×N is the 2D vector
indicating whether the VNF of slice s is assigned to the
data center n or not.

• Reward: The aim is to maximize the admission rate and
to minimize the number of activated data centers. The
reward in each time step t is defined by Rt,

Rt =

{
φtot,t, χn

i,s ≥ 0 ∀n, i ∈ {C, S,M}
−M otherwise

(3)

where φtot,t is the cost function of the system in each
time step t. Moreover, M is a large integer number.

As mentioned in Section III-A, in the problem 2, the action is
a discrete binary vector, and the state is continuous. Hence, we
use the proximal policy optimization (PPO) method to solve
this problem.

4) PPO method: A Temporal Difference (TD) represen-
tation of the Policy gradient can be seen in the Actor-Critic
model. In the actor-critic model, the system has two networks:
the actor and the critic. Based on the actor’s decision, the ac-
tion is taken. The actor learns by applying the policy gradient
method. The actor receives feedback on the correctness of the
action from the critic network. The critic analyzes the actor
using the value function. A PPO is a method based on actor-
critic analysis [15].

The PPO algorithm is a policy gradient algorithm that
balances simplicity, complexity, and tuning. By updating each
step, it maintains a moderately low deviation from the previous
policy. PPO is a reliable and efficient version of the trust
region policy optimization (TRPO) algorithm that employs
first-order optimization. Consequently, PPO combines actor-
critic and TRPO concepts. It is critical to note that the TRPO
technique ensures that the updated policy is not too different
from the old policy. Hence, the updated policy is within the
trust region of the old policy. The objective function of TRPO
can be formulated as follows.

max
θ

Êt[
πθ(at|∫t)
πθold(at|∫t)

Ât] (4a)

subject to Êt[KL[πθold(.|∫t), πθ(at|∫t)]] ≤ δ, (4b)

where πθ is a stochastic policy and πθold is the policy vector
before updating. Moreover, Êt[.] is the average of several
samples and Ât is the advantage function estimator in the time
of t. In the TRPO method, in order to enable the trust region
for optimization, KL divergence constraints must be met.
By modifying the clipped substitute objective function, PPO
applies the policy constraint. Assume rt(θ) =

πθ(at|∫t)
πθold

(at|∫t) . In
the PPO method the main objective function is LCLIP (θ) =
Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1+ ϵ)Ât)]. where 1− ϵ and
1 + ϵ are the lower and upper clipping ranges for state action
(∫ , a). Moreover, the rt(θ) is clipped to the lower and upper
bound if it is out of this range [16].

IV. SECURE MTD SERVICE ADMISSION CONTROL

This section aims to secure the proposed energy-efficient
service admission control against adversarial attacks. Firstly,



we introduce the feasible attack model considered in this
study. Then, we present the MTD strategy proposed to secure
the system. As depicted in Fig. 1, the DRL-based service
admission control service can be deployed as a xApp in
the Near-RT RIC. To apply the MTD technique, the system
requires different trained models. Each model is learned and
deployed in a specific xApp. Therefore, we have different
xApps consisting of DRL methods with similar performance.

A. Adversarial Attack Model

We describe a feasible malicious attack on the proposed
DRL method. There are three types of attacking the ML
system based on the attacker’s knowledge of the targeted
model (i.e., model’s parameters and architecture) and training
data. The adversarial attack is considered white-box, gray-
box, or black-box when the attacker obtains full, partial, or
no knowledge, respectively [8]. Here, we assume that the
adversary is targeting the PPO models under a black-box
setting, i.e., no knowledge on the targeted model. To attack
the system, we apply a weak adversary attack based on [17].
Assume that attackers want to attack the system at time t. The
attackers generate an arbitrary state ŝt and the corresponding
reward function r̂(ŝt, .). After the agent determines the altered
state ŝt, it carries out the action at and observes r̂(ŝt, at),
instead of r(st, at).

B. Moving Target Defense Strategy

MTD, an emerging security strategy, continuously alters
system configurations, making attacks challenging due to
increased uncertainty and complexity. This method lowers
attack success rates by reducing attacker knowledge and
effectiveness. MTD enhances defense by adding ambiguity and
offering multiple configurations [11].

We deploy four diverse PPO models with varied configura-
tions into different xApps in this scenario. These four methods
give us almost similar results but with different configurations
in terms of the number of neural network layers, batch size,
discount factor, learning rates, among others.It is critical to
note that attackers have a set of attacks that are designed
to attack the configurations of the defender. In the process
of training, the attacker randomly chooses one of the xApps
that contains one of these PPO models and attacks it.Hence,
once these four models have been trained, one random model
is chosen from the four to run on each input and return the
output generated by that model. As attacks are directed at one
of the models, attackers have less impact on the system since
they do not know which model the system selects at a given
time. Therefore, the probability of an adversarial attack against
our system is diminishing by randomly choosing one of these
models that can be the un-attacked model.

V. NUMERICAL RESULTS

This section presents numerical results for the main prob-
lem. Considering the similarity of packets between O-CU and
O-DU, their requirements are equivalent. Only minor headers
in O-CU packets are removed in O-DU, having negligible

impact on processing. Therefore, we assume O-CU and O-
DU share the same processors (VNFs). In these figures, we
consider two data centers, each equipped with a CPU boasting
32 cores, 50GB memory, and 5TB storage.

Assume there are two service requests. Each service is
assigned to a specific slice. Each slice contains Ms, pre-
defined similar VNFs that are obtained from the large time
scale. For the first service, each request needs 2 cores, 7GB
memory, and 30GB storage in O-CU and O-DU. The second
service requires 3 cores, 5GB memory, and 50GB storage per
request in O-CU and O-DU.

To assess the performance of the proposed solutions, we
illustrate five different scenarios. The first scenario is the
exhaustive search. The system works with the PPO model in
the second scenario without attack. The third scenario involves
an adversarial attack on the system without protection. In the
fourth scenario, the protected MTD system is under attack.
The fifth scenario considers the baseline method, in which
random allocation is assumed. The training process involves
learning four PPO models with different parameters (different
batch sizes, discount factor, learning rate, the number of steps
to run for each environment, etc. ). The models have similar
performance. At each time slot, one of these models is chosen
randomly to protect the system from attack.

Fig. 2 displays the mean reward over time slots for a
system without service admission control attacks. This system
features 12 service arrival rates per time slot for two distinct
services with varying QoS, demonstrating PPO convergence.
In Fig. 3, the service admission rate is depicted for different
service arrival rates for the five scenarios. In this simulation,
we assume that the design factor κ is large enough that the
cost function is affected just by the admission control system,
and the power consumption is not considered here. The figure
shows a dynamic service arrival in a system. Each time slot
has a 30% service departure rate. This figure indicates that
over 80% of admissions were recorded whenever we had the
average of six service arrival rates for each service in each
time slot in the system without any attack. As service arrival
rates rise, admission rates fall due to increased packet arrivals
and traffic, leading to reduced admission rates at the system’s
fixed capacity The system’s performance decreases by at most
93% when under attack, showing the considerable impact
adversarial attacks can have on unprotected ML models. The
MTD-protected system has significantly improved the system’s
robustness, yielding a 70% increase in service admission rate
compared to the attacked system. Moreover, the system’s
performance increases 62% compared to the baseline, which
is the random allocation. The optimality of the PPO model
decreases to 16.7% as the service arrival rate increases to 12.

In Fig. 4, we present the normalized power consump-
tion across five scenarios, varying with service arrival rates.
The parameter κ relates power consumption to admission
control, albeit power usage remains substantial relative to
admission control. Nevertheless, admission control’s impact is
non-negligible. In our simulation, baseband processing power
ϕms,n is uniformly distributed within the range [100,200]. The
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TABLE I: un-estimated VNF numbers vs. the extra power consumption

Number of VNFs Extra Power Consumption

12 27 %
10 21 %

figure highlights that higher service arrival rates correspond to
increased system power consumption. The malicious system
consumes more power due to the inverse power-reward re-
lationship. Despite denied control requests from attacks, the
attacker aims to maximize power, vital for DRL rewards. The
power of the normally trained system is decreased 19% com-
pared to the baseline system, which is the random allocation.
The power of the PPO system is increased 11% (based on the
baseline method) after the system is attacked. Whenever we
apply the MTD technique to an attacked system, the power
is reduced by 8.5%. Also, the power consumption of the
PPO system increased 16% (based on the baseline method)
compared to the optimal method. Assume the delay of the
service in the system is Ts = 1.07µsec. The mean service
rate is considered to be 2 Mbps and the mean arrival rate of
the system is 1 Mbps. The estimated number of VNFs is 8. In
Table I, the extra power consumption ratio for 10 and 12 VNFs
is obtained. If we apply 10 VNFs instead of 8 VNFs, the mean
power increases by 21%. Considering 12 VNFs instead of 8
VNFs, the mean power increased 27%. In the network slicing
life cycle (as in III-B1), optimal VNF estimation happens
during preparation and commissioning, the planning phase.
However, adjustments are possible during operation, reducing
excess power use caused by inaccurate initial estimates

VI. CONCLUSION

In this academic study, we address two pivotal challenges
within the O-RAN architecture: firstly, the determination of
the optimal number of VNFs for each slice, and secondly, the
establishment of secure AI/ML methodologies for the dynamic
management of service admission control and power reduction
within the O-RAN framework. We derive sub-optimal VNF
quantities at a larger time scale and employ an actor-critic
approach with the PPO algorithm at a smaller scale. Four PPO
models are trained in distinct xApps within the near RT RIC.
Security is bolstered using MTD, randomly selecting xApps
with trained PPO models for added unpredictability. Numerical
results demonstrate robust PPO performance in the absence
of attacks, significantly improved by the MTD strategy in
adversarial scenarios. To enhance system security with MTD,
we need to train multiple models, despite its limitations. Future
MTD techniques should aim for a balance between robustness,
performance, and cost.
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