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Abstract—With sub-threshold quantum error correction on
quantum hardware still out of reach, quantum error mitiga-
tion methods are currently deemed an attractive option for
implementing certain applications on near-term noisy quantum
devices. One such application is quantum routing - the ability
to map an incoming quantum signal into a superposition of
paths. In this work, we use a 7-qubit IBM quantum device
to experimentally deploy two promising quantum error mitiga-
tion methods, Zero-Noise Extrapolation (ZNE) and Probabilistic
Error Cancellation (PEC), in the context of quantum routing.
Importantly, beyond investigating the improved performance of
quantum routing via ZNE and PEC separately, we also investi-
gate the routing performance provided by the concatenation of
these two error-mitigation methods. Our experimental results
demonstrate that such concatenation leads a very significant
performance improvement relative to implementation with no
error mitigation. Indeed, an almost perfect performance in terms
of fidelity of the output entangled paths is found. These new
results reveal that with concatenated quantum error-mitigation
embedded, useful quantum routing becomes feasible on current
devices without the need for quantum error correction - opening
up a potential implementation pathway to other applications that
utilize a superposition of communication links.

I. INTRODUCTION

Quantum routers1 are devices that can route quantum sig-
nals in superposition over multiple paths and are considered
important elements for increasing functionality in quantum
networks [2], [3], for the implementation of quantum-enabled
memory access [4], for the delivery of superposed quantum
error mitigation [5], and in assisting quantum machine learn-
ing [6]. A quantum router has to satisfy six key require-
ments [7], [8]: (i) Both signal and control information are
stored in qubits. (ii) The signal information is preserved after
the routing process. (iii) The signal should be routed to a
coherent superposition of both output paths. (iv) No post-
selection for signal qubits. (v) Only one control qubit is
utilized for routing one signal qubit. (vi) Entanglement be-
tween control and signal qubits is generated after the quantum
routing.

The work of [9] provided the first proof-of-principle exper-
imental demonstration of a probabilistic quantum router using
entangled photons. However, this quantum router collapsed the
signal information, therefore not meeting the requirement (ii).
A proposal for an all-linear-optical quantum router with 1/4
success probability was given in [10], and an implementation
of this proposal was demonstrated in [11]. Nevertheless, two
control qubits were required for routing one signal qubit in

1The concept of the quantum router in this work should not be confused
with classical-routing decisions for entanglement distribution [1], but rather
a quantum-only phenomenon where an input signal is routed into a coherent
superposition of multiple-output communication paths.

this demonstration, therefore not meeting the requirement (v).
In [7], an all-linear-optical quantum router meeting the require-
ments (i)-(v) was experimentally demonstrated, although the
success probability was only 1/8. The work of [8] proposed
an optical quantum router meeting all six requirements. This
router was deterministic but challenging for experimental
implementation - only a probabilistic version of the router
was illustrated. In [12], a deterministic quantum router us-
ing superconducting qubits was designed and experimentally
demonstrated.

Near-term quantum devices, the so called Noisy
Intermediate-Scale Quantum (NISQ) devices are now
widely available [13]. The high error rates of these current
quantum devices usually prevent the realization of quantum
applications, and straightforward implementation of quantum
error correction is generally not possible on them. As such,
quantum error mitigation provides a potential alternate
pathway to application deployment - a possibility that
has recently attracted widespread attention. Quantum error
mitigation methods aim to reduce the effects (e.g. magnitude)
of system errors rather than completely eliminate them [14].
Two well-known quantum error mitigation methods are
Zero-Noise Extrapolation (ZNE) [15]–[17] and Probabilistic
Error Cancellation (PEC) [18], [19], which utilize classical
post-processing approaches to mitigate errors [20].

In this work we focus on NISQ devices manufactured by
IBM - superconducting quantum devices made accessible to
the research community [21]. On such devices, our previous
work [22] experimentally realized the quantum router with a
quantum error-correcting code of [23]. However, the results
of [22] demonstrated that such error correction is, in general,
ineffective on the current IBM quantum devices in the context
of quantum routing. In this work, we apply, for the first
time, two quantum error mitigation techniques (ZNE and
PEC) in a concatenated form to the quantum routing problem.
We shall see that these quantum error mitigation techniques
significantly improve the entanglement fidelity of the quantum
router - to the point that quantum applications based on
quantum routing become effective on current devices.

Although our work focuses on the IBM devices, we believe
that superconducting-based quantum routers can be general-
ized for use in future large-scale quantum communication
networks via interface techniques which convert photons to
superconducting qubits and vice versa [24], [25]. As such,
we believe the new results reported here will have wider
implications beyond routing within the computer hardware
itself - important as that is. The rest of this paper is organized
as follows. Section II introduces the working principles of
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Fig. 1. Three methods of local folding gates in ZNE. The value of λ decides how many gates should be inserted to extend the strength of the noise. The
total number of gates after the insertion should be approximately λ times the number of gates in the unmitigated circuit.

Fig. 2. Working principle of PEC. Suppose that a quantum circuit includes four noiseless unitary gates, namely G′
1, G′

2, G′
3, and G′

4. Each unitary gate can
be represented by a group of implementable but noisy gates. Therefore, the quantum circuit can be represented by a linear combination of noisy quantum
circuits with implementable gates only.

ZNE and PEC. Section III presents the quantum routing
protocol as well as the experimental results. A brief discussion
on the use of quantum routing in a related application is also
given there. Section IV concludes this work.

II. QUANTUM ERROR MITIGATION

A. Overview of ZNE

Suppose that E is a Hermitian operator that has dis-
crete eigenvalues {a1, a2, · · · , ab} with associated eigenstates
{|al⟩, l = 1, 2, · · · , b}, where b represents the number of
eigenvalues. These eigenstates form a complete and orthonor-
mal set such that any state |χ⟩ can be written as |χ⟩ =∑

l |al⟩⟨al|χ⟩. The probability P of measuring |χ⟩ to be in
the state |al⟩ via a measurement of E is P = |⟨al|χ⟩|2 = Al

A .
Here, A is the number of copies of |χ⟩ and Al represents the
number of these that become |al⟩ upon measurement of E. In
most calculations presented here, the eigenstates will be the
three-qubit states |φ⟩⊗3, where |φ⟩ ∈ {|0⟩, |1⟩}.

As one of the main quantum error mitigation techniques,
ZNE extrapolates to the zero-noise limit of a quantum device
by scaling the strength of noise [15], [17]. ZNE estimates an
ideal (noiseless) expectation value ⟨E⟩ideal ≡ Tr [E|χ⟩⟨χ|]
from a group of noisy measurements by extrapolating to the
zero-noise case. The ⟨E⟩ideal denotes the expected result in a
measurement, i.e., ⟨E⟩ideal =

∑
l al|⟨al|χ⟩|2. The strength of

the noise is represented by a noise scale factor, λ ≥ 1, and the
expectation value of E for that λ is represented as ⟨E⟩λnoisy .

Generally, three noise-scaling methods can be utilized:
(i) pulse stretching, (ii) local folding, and (iii) global folding.

(i) Pulse stretching is an analog method that amplifies the noise
of the quantum device by stretching microwave gate pulses to
longer time intervals. (ii) Local folding maps unitary gates in
a quantum circuit with a mapping logic of G → G

(
G†G

)k
,

where G represents an implementable gate and k is a positive
integer influenced by λ. With a given λ, one could fold some or
all gates in a quantum circuit with k ≥ 1. The total number of
quantum gates of a folded circuit is approximately λ times of
the number of gates of the unmitigated circuit (λ = 1 circuit).
Three methods can be utilized for inserting the folding gates
locally, namely, from the left, from the right, or at random
(see Fig. 1). (iii) Global folding utilizes the same mapping
logic but folds a collection of unitary gates together, i.e.,
U → U

(
U†U

)k
, where U is used to represent a circuit [26].

If one chooses λ = [λ1, λ2, · · · , λj ], then j ancillary quan-
tum circuits would be constructed accordingly. After executing
these ancillary circuits on the quantum device, j values of
⟨E⟩λnoisy can be collected. Extrapolation is implemented as
a post-processing method acting on the collected ⟨E⟩λnoisy .
Multiple extrapolation methods, such as linear extrapolation,
polynomial extrapolation, and exponential extrapolation, can
be considered. These methods fit the curve plotted by ⟨E⟩λnoisy
as a function of λ. Based on the fitted curve, ⟨E⟩ideal can be
found via extrapolation to λ = 0.

B. Overview of PEC

Different from ZNE, PEC attempts to represent noiseless
gates (non-implementable) with noisy gates (implementable).
The working principle of PEC is illustrated in Fig. 2. Assume



Fig. 3. Quantum circuits of the quantum routing protocol before and after transpilation. In the circuits, H stands for the Hadamard gate, T is a phase gate
introducing a π/4 phase, X represents the NOT gate,

√
X rotates a qubit about the X-axis by π/2, and Rz rotates a qubit about the Z-axis with a given

phase. The three-qubit gate is the controlled-swap gate which realizes the quantum routing process, and the two-qubit gate is the Controlled-X (CX) gate.

that a unitary circuit U ′ is applied to m qubits initially
prepared as |0⟩⊗m, and U ′ is composed of T noiseless gates
G′

t, where t ∈ {1, 2, · · · , T}. Suppose that G′
t also indicates

the specific qubits that are to be applied. This noiseless circuit,
U ′, can be expressed as U ′ = G′

T · · ·G′
2G

′
1, which is a

noiseless version of U .
The first core step of PEC is the representation of each G′

t,
by a set of noisy, but implementable, gates {Gt,nt} in the form
of

G′
t =

∑
nt

ηt,ntGt,nt

= ηt,1tGt,1t + ηt,2tGt,2t + · · ·+ ηt,NtGt,Nt ,
(1)

where ηt,nt
are real coefficients and satisfy the trace-

preserving condition, i.e.,
∑

nt
ηt,nt = 1. The number of gates,

nt, required to represent G′
t at any time is a variable between

1 and Nt. Note that nt varies gate by gate and is dependent on
t. The method of deriving the noisy representation of a specific
noiseless gate in our experiments is detailed in Section III-B.

The second core step of PEC is the estimation of ⟨E⟩ideal
by sampling from the noisy representations via a Monte Carlo
average [15], [27]. If the noisy representation of each noiseless
gate in U ′ is known, then ⟨E⟩ideal can be estimated as a Monte
Carlo average over different noisy circuits, where each noisy
circuit is sampled according to the noisy representations. In
principle, with full tomographic knowledge of {Gt,nt

} and
sufficiently large number of samples, one could cancel all
hardware noise [28]. Replacing each G′

t in U ′ with its noisy
representation, ⟨E⟩ideal can be expressed as

⟨E⟩ideal = Tr [U ′(ρ0)E] =
∑
n⃗

ηn⃗ ⟨En⃗⟩noisy , (2)

where ρ0 is the initial state, |0⟩⊗m, of U ′,

ηn⃗ :=

T∏
t=1

ηt,nt
, Un⃗ :=

T∏
t=1

Gt,nt
, and (3)

⟨En⃗⟩noisy := Tr [Un⃗ (ρ0)E] , such that (4)

U ′ =
∑
n⃗

ηn⃗Un⃗ =

T∏
t=1

(∑
nt

ηt,ntGt,nt

)
. (5)

Again, ηn⃗ are real coefficients, satisfying
∑

n⃗ ηn⃗ = 1 [18].
Note that Un⃗ represents the unitary of a noisy quantum circuit
that is sampled from the noisy representations of the noiseless
gates and is regarded as an ancillary circuit of PEC. The
number of Un⃗ is the number of samples, and we denote this
number as s. All ⟨En⃗⟩noisy can be obtained from the NISQ

devices since the Un⃗ only require implementable gates. With
sufficient and a suitable linear combination of ⟨En⃗⟩noisy , one
can obtain an unbiased estimate of ⟨E⟩ideal.

III. EXPERIMENTS

A. Quantum Routing with Error Mitigation

We now apply the mitigation methods to quantum routing
realized on the ibmq jakarta superconducting quantum device
- a device which has seven physical qubits with a horizontal
H shape [21]. We use the quantum routing protocol utilized
in [22] as the application to benchmark the performance of
the mitigation methods. This routing protocol requires three
qubits: a signal qubit |ϕs⟩, a control qubit |ϕc⟩, and a null qubit
|ϕn⟩ = |0⟩n, which is an ancillary qubit of the quantum router.
We define |ϕs⟩ = cos(π/4)|0⟩s+eiπ/4 sin(π/4)|1⟩s represent-
ing the transmitted signal information, and note |ϕs⟩ can be
prepared by sequentially implementing the Hadamard gate and
the T phase gate (which introduces a π/4 phase). We prepare
|ϕc⟩ = (|0⟩c + |1⟩c)/

√
2 via the Hadamard gate, where |ϕc⟩

stands for the control information directing the path of |ϕs⟩.
The signal qubit is injected into the quantum router via path 1,
and the null qubit is initially prepared at path 2. The input of
the quantum router is thus given by |Φ⟩ = |ϕs⟩1|ϕn⟩2|ϕc⟩,
where the subscripts 1 and 2 represent the paths 1 and 2,
respectively. The quantum router routes the signal qubit to the
paths 1 and 2 simultaneously since the control qubit is in a su-
perposition state. Therefore, the output of the quantum router
is |Φ⟩f = (|ϕs⟩1|ϕn⟩2|0⟩c + |ϕn⟩1|ϕs⟩2|1⟩c) /

√
2, which is an

entanglement between the control qubit and the two paths.
We build a quantum circuit to realize the quantum routing

protocol, and then execute this quantum circuit via a transpiled
version of the circuit - see Fig. 3. The quantum gates in
the transpiled circuit can be implemented directly on the
quantum device. The construction of the quantum circuit
and the implementation of the transpilation are realized via
IBM’s open-source software development kit—the Quantum
Information Science toolKit (Qiskit) [29]. We choose three
physically connected qubits with relatively low quantum gate
error rates to act as the three qubits of the transpiled circuit.
Note that the quantum gate error rates may change over time
- the ibmq jakarta is calibrated daily.

B. Experimental Setups

The two quantum error mitigation methods, ZNE and PEC,
mainly focus on quantum gate errors, decoherence errors, and
cross-talk errors - they cannot mitigate measurement errors.
Measurement errors mistakenly read a qubit in the |0⟩ state



as the |1⟩ state, and vice versa. We choose a measurement
error mitigation protocol [30] provided by Qiskit to reduce
measurement errors. This protocol requires ancillary quantum
circuits, which we call calibration circuits. One needs 2m

calibration circuits to construct a 2m × 2m calibration matrix
M , where m is the number of qubits that are measured. Each
calibration circuit prepares the m qubits to one of 2m Z-basis
states before using the Z-basis measurements to measure them,
where the Z-basis states are |φ⟩⊗m and |φ⟩ ∈ {|0⟩, |1⟩}. The
measurement results of the calibration circuits determine M ,
and M−1 is then applied to the experimental results to elim-
inate measurement errors. Typically, fidelity improvements of
order 10% are found via elimination of measurement errors.
Henceforth by the term “unmitigated” we will mean without
any ZNE or PEC included in the results - measurement error
mitigation is by default included in all results we show here.
The term “error mitigation” will henceforth refer only to ZNE
and/or PEC.

To investigate the experimental performance of the quantum
routing protocol with quantum error mitigation, we utilize an
open-source package named Mitiq [28] to implement ZNE
and PEC. Although Qiskit recently released built-in functions
for employing quantum error mitigation methods (twirled
readout error extinction, ZNE, and PEC) [31], one cannot
implement these methods step by step and obtain detailed data.
Another reason why we choose Mitiq instead of Qiskit’s built-
in functions is that we can concatenate multiple mitigation
methods through Mitiq. For implementing ZNE, we set the
noise scale factor λ = [1, 3, 5, 7, 9, 11, 13], and we choose
local folding at random to scale the noise. Seven noise-scaled
circuits are generated based on the seven values of λ, and
each noise-scaled circuit is executed A = 100, 000 times
(this number of executions applied to all experiments). We
choose polynomial extrapolation with order 2 to extrapolate
to ⟨E⟩ideal.

In principle, we need to acquire full tomographic knowledge
of the quantum gates in the transpiled circuit to implement
PEC. However, to simplify our experiments, we make two
assumptions: (i) We assume we can neglect single-qubit gate
errors and only focus on two-qubit gate errors since the two-
qubit gate error rates are an order of magnitude higher. (ii)
We assume that the two-qubit gates are followed by a global
depolarizing noise. The transpiled circuit only has one type
of two-qubit gate, the CX gate. Based on assumption (ii), we
have

GCX
noisy = D ◦ P ◦GCX

ideal, (6)

where GCX
noisy is the implementable CX gate that we assumed,

GCX
ideal is the noiseless CX gate, and P ∈ {I,X, Y, Z}⊗2 is a

Pauli trace-preserving completely positive map. Note that

D(ρ̂) = (1− ϵ)ρ̂+ Iϵ/4, (7)

represents the two-qubit depolarizing channel, where ρ̂ stands
for the input state of this channel and ϵ is the noise level of the
CX gate [15]. For each CX gate in the transpiled circuit, we
acquire the associated CX gate error ϵ, which varies over time,

Fig. 4. P as a function of λ using ZNE. The circles represent P obtained from
the quantum device, and the circles plotted on the vertical dashed lines indicate
the unmitigated results of P . The solid lines are polynomial fitted curves with
order 2, and the cross markers stand for the corresponding mitigated results
of P .

from the calibration data reported in [21]. Based on Eqs. (6)
and (7), and with known ϵ, GCX

ideal can be represented by a
group of noisy gates in the form of Eq. (1). Then, using noisy
representation of the noiseless CX gate, we conduct a Monte
Carlo sampling process via Mitiq with s = 20 (20 ancillary
circuits are generated for PEC). From the many executions,
the measurement results of the ancillary circuits are collected
to calculate ⟨E⟩ideal.

To concatenate ZNE and PEC, we first fold gates (from the
left) of the transpiled circuit with λ = [1, 3, 5, 7, 9], generating
five noise-scaled circuits. We then apply PEC to each noise-
scaled circuit with s = 20, which means that we represent each
CX gate in the noise-scaled circuits by its noisy representation
that we derived before. From the many executions, the error-
mitigated data of the noise-scaled circuits are collected, the
data will be utilized for extrapolating to ⟨E⟩ideal, again by
polynomial extrapolation with order 2.

C. Experimental Results

We define that ρ = |Φ⟩f ⟨Φ| is the “theoretical” density
matrix of the quantum router’s output, i.e., the final state of the
transpiled circuit executed on a noiseless quantum device. We
define ρ′ as the “experimental” density matrix of the quantum
router’s output obtained from the quantum device. Instead
of using the expectation values, we utilize P as one of our
performance metrics. In this quantum routing experiment, P is
the probability of measuring ρ′ to be in one of the eigenstates
|η⟩ = |φ⟩⊗3 with the measurement operator Z ⊗ Z ⊗ Z.

The values of P as a function of λ using ZNE are demon-
strated in Fig. 4. In the noiseless situation, the probability
of observing one of the |000⟩, |001⟩, |011⟩, and |100⟩ states
is 0.25, and the probability of observing one of the remaining
states is 0. We see that the noise grows with increasing λ, and
the extrapolated results are closer to (or even the same as) the
noiseless results, indicating that ZNE is an effective method



Fig. 5. Results using ZNE or/and PEC obtained from the quantum device.
The green bars are noiseless results plotted for reference, and the missing
green bars indicate that the noiseless results should be 0.

to mitigate quantum errors. The unmitigated and mitigated P
using different error mitigation methods are demonstrated in
Fig. 5. One can observe that P are closer to the noiseless
results after introducing an error mitigation method. However,
some over-correction can be noticed, especially when the
concatenation of ZNE and PEC is applied.

Beyond P , we choose entanglement fidelity F as our
main performance metric, where F is expressed as F =(
Tr
√√

ρ ρ′
√
ρ
)2

. Note that ρ′ is reconstructed by quantum
state tomography, which requires at least 33 = 27 copies
of the transpiled circuits (since there are three qubits in the
circuit) to apply 27 measurements of operators {X ⊗ X ⊗
X,X ⊗X ⊗ Y, · · · , Z ⊗ Z ⊗ Z}, which are tensor products
of 3 Pauli operators. For each transpiled circuit with a distinct
measurement operator, we apply ZNE or/and PEC to improve
its corresponding values of P . One can reconstruct ρ′ with
P and the corresponding operators via the quantum state
tomography.

The values of F determined with different error mitigation
methods are plotted in the main part of Fig. 6. For comparison,
in the inset of Fig. 6 we also demonstrate the unmitigated F
values determined from other IBM’s quantum devices, namely,
the ibmq belem, ibm oslo, and ibm lagos. These inset values
show that the machine we use here, the ibm jakarta, offers the
best performance in terms of unmitigated results and therefore
forms the best starting point to apply mitigation methods to.
Reverting back to the main part of the figure, we can see
the fidelity results for singular use of ZNE and PEC are
similar, showing a minor improvement in F compared to the
unmitigated result obtained from the ibm jakarta. However,
interestingly the concatenation method demonstrates F ≈ 1,
representing an almost-perfect performance. We should note
this improvement does come at a cost - the concatenation
method has a higher resource requirement and demands a
longer execution time compared to singular use of ZNE or
PEC. The almost-unity fidelity outcome of Fig. 6 represents

Fig. 6. F of the quantum router with and without quantum error mitigation
techniques. The dashed horizontal line indicates the fidelity with measurement
error mitigation only. The inset figure indicates the unmitigated result of
the quantum routing protocol conducted on other quantum devices, namely
ibmq belem, ibm oslo, and ibm lagos. One can observe that these machines
obtained lower values of F compared to the one of the ibmq jakarta, such
that we take the unmitigated value F = 0.83 as the baseline for comparing
the mitigated results.

the main result of this work.

D. QRAM with Error Mitigation

It is perhaps useful to close this work with a short dis-
cussion on another application that uses quantum-routing-like
functionality. Quantum Random Access Memory (QRAM)
is an analogy of classical RAM - a critical element of
a classical computing architecture. Different from classical
RAM, however, QRAM allows one to query a superposition
of memory addresses that store either classical or quantum
information [32]. A QRAM query is given by∑

d

αd|d⟩|0⟩
QRAM−−−−→ |Ψ⟩f =

∑
d

αd|d⟩|Dd⟩, (8)

where
∑

d αd|d⟩ is a superposition of queried addresses and
|Dd⟩ stands for the quantum or classical data stored in address
|d⟩. This illustrates the similarities of QRAM with quantum
routing. One of the most efficient QRAM schemes is the
bucket brigade scheme, which employs a binary-tree-based
query architecture [33]. Based on this scheme, we construct a
bucket-brigade style QRAM circuit, as shown in Fig. 7. The
qubit |ϕ⟩c in this QRAM circuit represents an address qubit,
including the query information (addresses that one wants to
query). The qubits |T0⟩ and |T1⟩ stand for the binary tree
and |D0⟩ and |D1⟩ are data stored at the memory cells. We
define that |D0⟩ is a random qubit storing quantum information
and |D1⟩ = |1⟩ stores classical information. The last qubit in
the QRAM circuit is regarded as the output of the QRAM
and stores all of the data queried by the address qubit. For
this QRAM circuit, |Ψ⟩f = (|0⟩c|D0⟩out + |1⟩c|D1⟩out) /

√
2,

since we define the address qubit as |ϕ⟩c.
We again chose the entanglement fidelity F as our per-

formance metric but with the theoretical density matrix ρ =



Fig. 7. An example of a QRAM circuit. The purple gate indicates the
preparation of |ψ⟩.

|Ψ⟩f ⟨Ψ| and the experimental density matrix reconstructed
by applying quantum state tomography on the first (count
from the top) and the last qubits of the QRAM circuit
illustrated. However, from our QRAM experiments we find the
maximum increase in fidelity due to error mitigation is only
5% (maximum fidelity found being 0.76). This phenomenon is
caused by the complexity of the transpiled circuits, relative to
the transpiled quantum routing application discussed earlier. In
particular, one can observe that the QRAM circuit includes two
controlled-swap gates (see Fig. 7), while the quantum routing
circuit requires one such gate. The increase in the number
of controlled-swap gates leads to a longer time and a higher
complexity for the execution of QRAM. The longer execution
time amplifies the decoherence errors, and the increase of
the number of gates in the execution accumulates the gate
errors. Future work for implementing QRAM on the NISQ
devices should focus on the improvement of the quantum error
mitigation methods designed for complicated quantum circuits.

IV. CONCLUSIONS

In this work, we experimentally tested the performance
of two quantum error mitigation methods, ZNE and PEC,
implemented in the context of a quantum routing protocol. Our
results indicated that utilizing ZNE or PEC helped improve
the performance of the near-term quantum devices. More
importantly, we found concatenating ZNE and PEC impres-
sively increased the entanglement fidelity of the quantum
router to effectively one. This result reveals the capacity of
concatenating quantum error mitigation methods as applied to
NISQ devices. Although quantum error mitigation methods
require additional executions of ancillary quantum circuits,
our results show the critical role such methods can have for
applications run on current NISQ devices. More specifically,
our results provide an overview of what can be anticipated
for an error-mitigated quantum router in practice - illustrating
that full-blown quantum error correction processes need not
be implemented on current devices for this important quantum
application.
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