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Abstract—Semantic communications, aiming at ensuring the
successful delivery of the meaning of information, are expected
to be one of the potential techniques for the next generation
communications. However, the knowledge forming and synchro-
nizing mechanism that enables semantic communication systems
to extract and interpret the semantics of information according
to the communication intents is still immature. In this paper,
we propose a semantic image transmission framework with
explicit semantic base (Seb), where Sebs are generated and
employed as the knowledge shared between the transmitter and
the receiver with flexible granularity. To represent images with
Sebs, a novel Seb-based reference image generator is proposed
to generate Sebs and then decompose the transmitted images.
To further encode/decode the residual information for precise
image reconstruction, a Seb-based image encoder/decoder is
proposed. The key components of the proposed framework are
optimized jointly by end-to-end (E2E) training, where the loss
function is dedicatedly designed to tackle the problem of non-
differentiable operation in Seb-based reference image generator
by introducing a gradient approximation mechanism. Extensive
experiments show that the proposed framework outperforms
state-of-art works by 0.5 − 1.5 dB in peak signal-to-noise ratio
(PSNR) w.r.t. different signal-to-noise ratios (SNR).

Index Terms—semantic communication system, semantic base,
image transmission

I. INTRODUCTION

Over the past decades, wireless communications have devel-
oped rapidly, where the global mobile traffic is expected to ex-
plode up to thousands of exabytes (EB) per month by 2030 [1].
However, the conventional communication systems based on
the classic information theory focus on the bit-level precise
transmission while ignoring the meaning of information. With
channel capacity and source coding efficiency approaching
the Shannon’s limit [2], [3], the conventional communications
cannot meet the upsurging communication demands brought
by the intelligent services such as Industrial Internet of Things
(IIoT), Internet of Vehicles (IoV), and Extended Reality (XR).

Recently, benefiting from the great success of deep learning
(DL), semantic communications, aiming to successfully con-
vey the meaning of information between transceivers, have
experienced vigorous development. Most existing works de-
velop a synchronized knowledge base between the transmitter
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and the receiver to support the extraction and interpretation
of semantics according to the communication intents [4]–
[7], in which knowledge sharing is indispensable. However,
most of the current works [8]–[11] take the parameters of
the proposed neural network as background knowledge, where
the knowledge sharing is implicitly applied in the process
of encoding and decoding. Note that the implicit knowledge
sharing scheme lacks the awareness of basic features of
semantic representation (e.g. the granularity and efficiency),
which can significantly affect the performance of the entire
system. To overcome the problem, the concept of semantic
base (Seb) is proposed [12], which can be delicately designed
with different levels of granularity and similarity to represent
semantics w.r.t. intents of communications. The potential of
semantic communications is expected to be further unleashed
by properly generating Sebs to form the shared knowledge
base between transceivers. However, effective Seb generating
schemes have not been developed yet.

To fill the gap, in this paper, a Seb-based semantic com-
munication framework for image transmission is proposed.
Taking the complex correlated image sets as input, the pro-
posed framework first splits the image sets according to the
correlation level, constructs subsets containing more stably
related images for further processing, and generates Sebs to
represent the shared semantics as synchronized knowledge.
During the transmission, each image is represented by the
generated Sebs, and the residual information is further encoded
for precise recovery of the image. The contributions of this
paper are summarized as follows.

• A novel semantic communication framework with explicit
Sebs for image transmission is proposed, where explicit
procedures of Seb generation, transmission, and image
semantics representation based on Sebs are included. To
the best of our knowledge, this is the first work that
utilizes explicit Sebs for image transmission.

• For Seb generation and Seb-based image representation,
the Seb-based reference image generator is dedicatedly
designed. The Seb-based image encoder/decoder is
further proposed to encode/decode the residual informa-
tion for precise image reconstruction. A specialized loss
function with a gradient approximation mechanism is in-
troduced to enable the E2E training for the entire network
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Fig. 1. The Seb-based image transmission framework.

that contains a non-derivable clustering algorithm in the
Seb-based reference image generator.

• Extensive experiments validate the effectiveness and the
generality of the proposed framework, which outperforms
traditional methods and state-of-the-art DL-based meth-
ods by more than 0.5−1.5 dB w.r.t. peak signal-to-noise
ratio (PSNR) under the same signal-to-noise ratio (SNR)
and channel bandwidth ratio (CBR).

II. SEB-BASED IMAGE TRANSMISSION FRAMEWORK

The Seb-based semantic communication framework is
shown in Fig. 1. The transmitter includes an image set
splitting module, a Seb-Based reference image generator,
and a Seb-based image encoder. The corresponding Sebs and
residual of raw images are extracted and then encoded by a
channel encoder for transmission. At the receiver side, the
Seb-based image decoder reconstructs raw images according
to Sebs and their corresponding residual information. The
detailed design of each module will be introduced in the
following.

A. Image Set Splitting Module

The image set splitting module is employed to split the
original image set into several subsets, in which the images
are expected to possess higher and more stable correlations
that can be better captured by subsequent modules. Denoting
I = {I1, I2, ..., In}, I ∈ RC×H×W as the original image set,
which is composed of n images I1, I2, ..., In, where channels,
height, and width of each image are denoted as C, H , and W ,
respectively. We follow the architecture of contrastive learning
[13] to build the image set splitting module, where

{I1, I2, ..., IJ} = fcluster(fα(I, α), J). (1)

fα(·, α) denotes the projector with its parameters as α that
projects each image into latent space, where similar images are
projected into the same cluster. The projector is achieved by
a Resnet-50 backbone and a projection multilayer perceptron

(MLP) in this paper. fcluster(·, J) denotes the standard k-
means clustering algorithm with J as the number of clusters,
which is determined by the clustering inertia. The module
outputs J image subsets Ij = {Ij(1), ..., Ij(nj)}, j = 1, ..., J
with each subset Ij consisting of nj images individually. The
projector is initialized with the weights in [13], and is frozen
as an invariant image classifier during training.

B. Seb-based Reference Image Generator

To achieve Seb generation and representation of images,
the Seb-based reference image generator is employed mainly
including a Seb generator and a reference patch generator, as
shown in Fig. 2.

In specific, the image subset Ij is first divided into the
patch set Pj = {Pj(1)(1), ..., Pj(1)(np), ..., Pj(nj)(np)}, where
P ∈ RC×h×w. Each image is divided into np patches (e.g.,
Ij(1) corresponds to {Pj(1)(1), ..., Pj(1)(np)}). Parameters h
and w denote the patch height and patch width, respectively.
The operation brings about the reduction of size, and as a
result, the patches will be mapped into a latent space with
lower dimensions so that the semantics will be more precisely
represented by Sebs. The granularity of Seb is thus controlled
by the patch number and the patch size.

The Seb generator and the reference patch generator are
designed based on the autoencoder structure, which are com-
posed of convolutions and generalized divisive normalization
(GDN)/inverse generalized divisive normalization (IGDN) [14]
activation functions. The Seb generator is first used to extract
semantic features Fj = {Fj(1)(1), ..., Fj(1)(np), ..., Fj(nj)(np)}
from the patches Pj , where F ∈ Rc′×h′×w′

, with c′, h′= h
16 ,

and w′=w
16 denoting the dimensions of latent.

Next, the set of Sebs Sj = {Sj(1), ..., Sj(K)}, where
S ∈ Rc′×h′×w′

, and the corresponding usage information
Aj = {Aj(1)(1), ..., Aj(1)(np), ..., Aj(nj)(np)}, where A ∈
{1, ...,K} are generated by a standard clustering algorithm
(e.g. K-means) on the semantic features Fj . Each Seb S ∈ Sj

corresponds to the center of each cluster, where the usage
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Fig. 2. The Seb-based reference image generator. Conv/Deconv5-192-2 represents the convolution/deconvolution operation with 5× 5 kernel size, 192 output
channels, and a stride of 2. GDN/IGDN [14] denotes the nonlinear transform function. The number of Seb Sj is much smaller than the number of the latent
feature of image patches Fj (K ≪ nj ∗ np), which supports efficient semantic representation. The whole structure is deployed at the transmitter.

information A ∈ Aj records the index of the cluster to
which the corresponding semantic feature F ∈ Fj belongs.
Parameter K ∈ Z+ denotes the number of clustering centers,
which controls the representation efficiency of Sebs with
K ≪ nj ∗ np.

To represent images with Sebs, the set of reference patches
Pref
j = {P ref

j(1), ..., P
ref
j(K)}, where P ref ∈ RC×h×w are gener-

ated based on Sebs Sj by mapping the latent into the original
space through the reference image generator. The reference
image Iref

j ={Irefj(1), ..., I
ref
j(nj)

}, Iref ∈ RC×H×W is generated
through a concatenating operation under the guidance of Seb
usage information Aj and the corresponding patches Pref

j .
The mechanism of the Seb-based reference image generator
is described as follows:

Pj = fdivide(Ij),
(Sj ,Aj) = fcluster(fϕ(Pj ;ϕ),K),

Iref
j = fconcat(fθ(Sj ; θ),Aj),

(2)

where fdivide(·), fcluster(·), and fconcat(·) denote the fore-
mentioned dividing, clustering, and concatenating operations,
respectively, fϕ(·;ϕ) and fθ(·, θ) denote the corresponding Seb
generator and reference patch generator with ϕ and θ standing
for their trainable parameters.

Note that Sebs Sj and the usage information Aj need to
be synchronized between the transmitter and the receiver. The
wireless channel is modeled as

y = hx+ z,

x̂ = h−1y = x+ ẑ,
(3)

where x ∈ C and y ∈ C denote the complex symbols of
channel input and output, z ∼ CN (0, σ2) denotes the additive
white Gaussian noise (AWGN) with σ2 as the average noise
power, and h ∈ C denotes the channel gain. At the receiver, by
estimating the channel state information (CSI), the recovery of
the channel input x̂ ∈ C can be obtained, where ẑ = h−1z.
Sj and Aj are transmitted after mapping into complex sym-

bols with channel coding and modulation, and are recovered
as Ŝj and Âj at the receiver. The concatenation operation is
carried out at the receiver as well to obtain Îref

j , where

Îref
j = fconcat(fθ(Ŝj ; θ), Âj). (4)
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Fig. 3. The Seb-based image encoder/decoder.

C. Seb-based Image Encoder/Decoder

To achieve precise image reconstruction, the Seb-based
image encoder/decoder is proposed to extract residual in-
formation based on the reference images Iref

j . It includes a
pair of compensation feature extraction/synthesis module and
a pair of residual encoder/decoder, as shown in Fig. 3. 1

In the encoding process, the compensation feature extraction
module takes the raw images Ij and the generated reference
images Iref

j as inputs, and uses a CNN-based optical flow net
[17] and a corresponding encoder to extract the compensation
features Zm

j that corresponds to the predictions to the raw
images. The residual encoder further compresses the residual
parts between the raw images and their predictions into the
residual features Zr

j . The features Zm
j and Zr

j need to be
transmitted through the wireless channel as depicted in (3),
and be recovered as Ẑm

j and Ẑr
j at the receiver. In the

decoding process, the residual parts and the predictions of
the images are obtained from the recovered Ẑm and Ẑr by
the residual decoder and the compensation feature synthesis
module, respectively. Then the reconstructed image set Îj is
obtained through a summation operation.

III. PROBLEM FORMULATION AND TRAINING STRATEGY

The key components of the proposed framework are trained
in an E2E manner, and are jointly optimized based on rate-

1We follow the structure of E2E deep video compression scheme [16]
to build the proposed Seb-based image encoder/decoder in this paper. The
structure of the Seb-based image encoder/decoder will be further optimized
in the future journal manuscript.



distortion trade-off through a specialized loss function.

A. Rate-Distortion Optimization

The goal of the proposed Seb-based image transmission
framework is to minimize the number of transmitted bits, while
making the distortion between the raw image set I and the
reconstructed image set Î as small as possible. This is a typical
rate-distortion optimization problem that is modeled as

LRD = λD(I, Î)+(R(S)+R(A)+R(Zm)+R(Zr)). (5)

D(I, Î) denotes the distortion between the raw and recon-
structed image set, which is represented by the mean square
error (MSE) in training. R(S), R(A), R(Zm), R(Zr) denote
the bitrate corresponding to the Seb, the Seb usage informa-
tion, as well as the compensation and the residual features,
respectively. λ is a hyper-parameter that controls the trade-
off between rate and distortion. Higher λ frameworks tend to
consume more resources for less distortion.

In specific, the bitrate of Seb for the image set I is
approximated as

R(S) =
∑
Sj∈S

R(Sj) =
∑
Sj∈S

∑
P ref∈Pref

j

R(P ref ), (6)

where R(P ref ) denotes the transmitting cost of P ref . The
bitrate of Seb usage information A is calculated as

R(A)=
∑

Aj∈A
R(Aj)=

∑
Aj∈A

∑
A∈Aj

R(A)=n×np×log2 K, (7)

where np ∗ log2 K denotes the constant cost of each image
I ∈ I. The bitrate R(Zm) and R(Zr) should be measured as
the entropy of the corresponding latent representation symbols.
In this paper, we use the entropy model in [15] to estimate
R(Zm) and R(Zr), respectively, which can be expressed as
follows,

R(Zm) = − log2 p(Zm|I, δm),

R(Zr) = − log2 p(Zr|δr),
(8)

where δm and δr denote the parameters of the parametric
and non-parametric entropy model, respectively, discrimi-
nated by whether they directly depend on the input images.
p(Zm|I, δm) and p(Zr|δr) denote the corresponding esti-
mated probability of Zm and Zr.

B. Gradient Approximation for Clustering Operation

Note that the Seb-based reference image generator employs
a clustering algorithm, the module before the clustering algo-
rithm (i.e., the Seb generator) cannot be updated in the back-
propagation. Inspired by [19], in this paper, we directly copy
the gradient of each of the reference patch generator’s input
Si ∈ S back to the corresponding outputs of the Seb generator
Fi = {Fi|fcluster(Fi) = Si, Fi ∈ F}. However, the direct
copy operation makes the clustering operation not constrained
by E2E loss, resulting in an arbitrarily grown latent space. To
tackle the problem, the L2 regulation is utilized to move each
Fi towards Si,

LReg = Reg(F , sg(S)) =
∑
Fi∈F

∑
Si∈S

||Fi − sg(Si)||22, (9)

where sg(·) represents the stop gradient operator that con-
straining S to not be directly moved.

As a result, the total loss function can be expressed as

L = LRD + βLReg, (10)

where β controls the weight of the regulation loss. We use
β = 1 in our experiments.

IV. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to validate
the effectiveness and generality of the proposed framework.
The validation methodology is first provided, including the
construction of training and testing datasets, the parameters
setting, the choice of baselines, and the performance metrics
for comparison. Then, the experimental results are further dis-
cussed to illustrate the performance of the proposed method.

A. Methodology

As for training, a training set consisting of 50,000 images
is sampled from the ImageNet training dataset [20], with each
image being enhanced (randomly resized and cropped) into
16 augmentations with 256 × 256 resolution as image subsets
with a certain level of correlation during training. The Adam
optimizer [21] is used by setting β1 and β2 as 0.9 and 0.999,
respectively. The framework is trained at the learning rate
of 10−4 and 10−5 each for one epoch, and continued at the
learning rate of 10−6 for three epochs until convergence.

To illustrate the advantages of the proposed framework,
during validation, we construct a Mixed dataset by mixing
samples from the Cityscapes’ test set [22] and the UVG
dataset [23]. These two datasets are composed of photos of ur-
ban street scenes and frames of video sequences, respectively,
containing samples with distinct distributions. Specifically, the
Mixed dataset consists of 500 images with 100 sampled from
an UVG sequence, others sampled from Cityscapes’ test set,
and all images are cropped into 1024 × 1920 resolution.
The Mixed dataset denotes a representative use case of the
proposed framework, where images with different levels of
correlations and characteristics need to be transmitted.

We specify the Seb representation efficiency parameter K =
⌊nj∗np

25 ⌋ to make the number of Sebs with fixed proportion
to the number of images in each subset, where ⌊·⌋ denotes
the floor operation. The patch height and width are set as
h = w = 32. We compare the proposed framework with the
following baselines,

• The wide-used engineered image compression codec
JPEG2000 [24] as the representative baseline for tradi-
tional methods.

• The DL-based compression scheme [15] (denoted as “DL
w/o corr.”). The scheme utilizes an autoencoder structure
for the compression and reconstruction of images, which
each image be processed independently. The correlations
among images are ignored.

• The DL-based compression scheme [16] (denoted as “DL
w/ corr.”). The scheme achieves compression based on
image pairs. A prediction of the target image is made



based on the reference image, and then the autoencoders
are used to compress the prediction and the residual parts,
respectively. The correlations among images are strict.

Note that the same autoencoder structure is used in [15],
[16] and the proposed framework. Therefore, the comparison
with these two baselines avoids the impact caused by the
difference in basic network structure to a certain extent, which
can reflect the effectiveness of the proposed Seb-based method
more accurately.

Without loss of generality, the experiments are taken over
the AWGN channel, with each scheme combined with an ideal
capacity-achieving channel code for transmission. We test the
performance of each scheme under different signal-to-noise
ratio (SNR) and channel bandwidth ratio (CBR) [25], [26]
conditions, which reflect the channel condition and the overall
coding rate, respectively. In specific, CBR is defined as the
ratio between the number of channel input symbols (e.g. the
number of transmitted symbols of S,A,Zm, and Zr for the
proposed framework) and the number of source image symbols
(e.g. 3×1024×1920 for images in R3×1024×1920). In this case,
we can derive the function of SNR and bit-per-pixel (BPP) of
the above schemes under a given CBR, which by first the
channel capacity C is obtained as

C =
BPP

3× CBR
, (11)

and then SNR is obtained according to the Shannon channel
capacity formula,

C = log2(1 + SNR). (12)

Peak signal-to-noise ratio (PSNR) and multi-scale structural
similarity (MS-SSIM) [27] are used to measure the quality of
image reconstruction.

B. Results and Analysis

Fig. 4 shows the PSNR and MS-SSIM results under dif-
ferent SNR conditions on the mixed dataset with CBR =
1/30. The proposed framework outperforms the baselines in
general, achieving about 0.5 − 1.5 dB gain when measured
in PSNR. Notably, the scheme [16] (DL w/ corr.) shows the
worst performance due to the statistical difference between the
training and testing data, which makes it unable to perform
effective correlation information extraction. For the proposed
framework, the performance gain is more significant under
low SNR conditions, whereas the other DL-based schemes
show more severe performance deterioration. This is because
of the introduction of the Seb-based image representation
mechanism, which supports an efficient recovery of the im-
ages’ semantics while using limited communication resources.
Besides, the framework also achieves similar or better perfor-
mance w.r.t. MS-SSIM, as shown in Fig. 4(b).

Fig. 5 shows the average CBR consumption of the pro-
posed framework corresponding to Sebs, usage informa-
tion, and residual information under different λ (λ =
{256, 512, 1024, 2048}) and datasets with SNR = 5. It can be
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observed that the proportion of Seb information varies signifi-
cantly under different settings. The UVG dataset consumes the
highest proportion of Seb information, followed by the Mixed
and the Cityscapes datasets, respectively, under the same λ
conditions. The result is in accordance with the correlation
level of datasets that Seb carries most of the information
for a strongly correlated dataset, leaving a small amount of
residual information. For frameworks under different λ, a
relatively fixed amount of Seb information, which depends
on the characteristics (e.g. the complexity of image textures)
of datasets, is consumed to support the recovery of images’
semantics, and more residual information is consumed by
frameworks with higher λ to satisfy the requirement of higher
quality of image recovery. In addition, the CBR consumption
of usage information is consistent with the result in (7), which



is nearly invariant under specific nh, nw, and K settings.

(a) Original (b) JPEG2000 0.0162CBR

(c) DL w/o corr. 0.0221CBR (d) DL w/ corr. 0.0113CBR

(e) Proposed 0.0075CBR (f) Seb representation

Fig. 6. Examples of reconstructions by different transmission schemes for
low CBR values with SNR = 5.

Fig. 6 shows the reconstruction samples of different
schemes. Compared to the relatively dynamic region (honey-
bee), the static region (flower) is more precisely represented by
Seb as shown in Fig. 6(f). The reason is that the static patterns
are more densely distributed when mapping into the latent
space, thus allowing for a better clustering result. Moreover,
compared to the baselines, the proposed framework presents
higher reconstruction quality (more precise color and details
as shown in the oval region) with a significantly lower amount
of transmitted data. Since the overall region of the image
is effectively reconstructed by Sebs, only a small amount of
residual is required to restore details, which is a typical use
case for the proposed framework.

V. CONCLUSION

In this paper, we propose a Seb-based image transmission
framework, where common knowledge between the transmit-
ter and the receiver is explicitly formed and shared in the
form of Sebs. The framework includes a Seb-based reference
image generator for Seb generation and Seb-based image
representation, and a Seb-based image encoder/decoder to
encode/decode the residual information for precise image
reconstruction. A specialized loss function is introduced to
solve the non-derivable problem. Experimental results show
that the proposed framework outperforms baselines under all
tested channel conditions. Future work would focus on further
refining the generation and representation mechanism of Sebs.
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[14] J. Ballé, L. Valero, and E. P. Simoncelli, “Density Modeling of Images
Using a Generalized Normalization Transformation,” 4th Int. Conf. on
Learning Representations, 2016.
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