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Zero-shot Multi-level Feature Transmission Policy
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Abstract—Remote zero-shot object recognition, i.e., offloading
zero-shot object recognition task from one mobile device to
remote mobile edge computing (MEC) server or another mobile
device, has become a common and important task to solve for
6G. In order to tackle this problem, this paper first establishes a
zero-shot multi-level feature extractor, which projects the image
into visual, semantic, as well as intermediate feature space in
a lightweight way. Then, this paper proposes a novel multi-level
feature transmission framework powered by semantic knowledge
base (SKB), and characterizes the semantic loss and required
transmission latency at each level. Under this setup, this pa-
per formulates the multi-level feature transmission optimization
problem to minimize the semantic loss under the end-to-end
latency constraint. The optimization problem, however, is a
multi-choice knapsack problem, and thus very difficult to be
optimized. To resolve this issue, this paper proposes an efficient
algorithm based on convex concave procedure to find a high-
quality solution. Numerical results show that the proposed design
outperforms the benchmarks, and illustrate the tradeoff between
the transmission latency and zero-shot classification accuracy, as
well as the effects of the SKBs at both the transmitter and receiver
on classification accuracy.

Index Terms—Multi-level transmission, semantic knowledge
base (SKB), remote zero-shot object recognition.

I. INTRODUCTION

Recent technical advancements of wireless communication

and artificial intelligence (AI) have enabled multiple emerg-

ing applications, e.g., auto-driving, mixed reality, metaverse,

industrial internet, etc. Due to the diversity and time variety

of the data distributions in such scenarios, remote zero-

shot object recognition/learning has become one of the

most common and important problems to solve. For example,

in order to support automatic navigation or avoid collision,

vehicles have to share/receive and process traffic information

in real time to/from the remote vehicles or the road side units

(RSUs) based on classifiers and wireless communication to

recognize the remote traffic situation [1]. However, there are

often new traffic categories such as emergency accidents and

new vehicles, which are not available in advance and cannot
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be seen during training of the classifier models. Such tasks for

vehicles can be named as remote zero-shot object recognition.

The challenges for solving the remote zero-shot object

recognition problem mainly lie in two aspects. The first is the

zero-shot object recognition problem, i.e., recognizing novel

image categories without any training samples. Different from

traditional supervised deep learning (DL)-based classifiers,

which generally require hundreds or thousands of training

samples and also retraining the DL models to recognize a

new category, achieving zero-shot recognition would help

significantly reduce computation, communication, caching, as

well as time consumptions, and is in line with the “intellicise”

development vision of future 6G [2].

The second is the mobile remote recognition prob-

lem, i.e., offloading the recognition task to remote mobile

edge computing (MEC) server or another mobile device,

which involves the sensing-preprocessing-communicating-

postprocessing-recognition service loop. To tackle the remote

recognition problem, existing literature mainly consists of two

approaches, i.e., edge inference and task-oriented semantic

communication. Edge inference, i.e., conducting the inference

task at the edge of wireless networks such as mobile devices

and MEC servers, can eliminate the transmission and routing

latency from the edge to the cloud, and reduce the service la-

tency and communication bandwidth requirement. In this line

of research, three different types of edge inference approaches

have been considered, namely device-only inference [3], edge-

only inference [4], as well as device-edge co-inference [5]–

[7]. However, the existing literature on edge inference has not

tackled the zero-shot object recognition problem.

Another promising approach is task-oriented semantic com-

munication, whereby transmitters are designed to efficiently

convey semantic information relevant to the tasks to re-

ceivers, rather than reliably transmit syntactic information

as in conventional wireless communication systems [8]. Via

the end-to-end (E2E) joint semantic-channel coding/decoding

design, the semantic communications are able to efficiently

compress messages while preserving the essential meaning by

filtering out the task-irrelevant information, and thus signifi-

cantly enhance the communication efficiency [9]–[11]. How-

ever, the aforementioned works [9]–[11] rely on large-scale

labled training datasets, and have not considered the zero-shot

recognition problem yet. In addition, the joint source-channel

coding framework contradicts the conventional separate coding

module, and thus cannot be directly applied for the existing

communication networks.

Thus, solving the E2E remote zero-shot recognition problem
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is of great importance and challenges for the realization of

future 6G intellicise network. Similar to humans’ knowledge-

based recognition, i.e., humans can transfer their knowledge to

identify new classes when only textual descriptions of the new

classes are available, this paper considers multi-level feature

transmission powered by semantic knowledge base (SKB) to

support remote zero-shot recognition. The main contributions

of this paper are listed as below.

• First, to support the zero-shot learning task and get

rid of dependence on big datasets, a lightweight multi-

level feature extractor powered by SKB is proposed,

which consists of intermediate feature extractor, visual

autoencoder as well as semantic autoencoder.

• Then, based on the aforementioned multi-level feature

extractor, a multi-level feature transmission model pow-

ered by SKB is established, in which both transmitter and

receiver are enabled with SKB and multi-level feature

extractor. Then, the semantic loss minimization problem

under the transmission latency constraint is formulated,

which is a multi-choice knapsack problem and is gen-

erally NP-hard [12]. In order to reduce the computation

complexity, convex concave procedure (CCCP) method

is adopted to achieve an efficient sub-optimum.

• Finally, numerical results show the promising perfor-

mance gains of the proposed design, as compared with

conventional designs without such multi-level optimiza-

tion. The proposed multi-level transmission designs are

observed to better utilize the knowledge at both the

transmitter and receiver to achieve promising zero-shot

classification under the transmission latency constraint.

II. SKB-ENABLED MULTI-LEVEL FEATURE EXTRACTOR

Consider N training image samples N , represented with

(V ,C,S). In particular, V ∈ R
Dv×N denotes the visual

feature matrix of the N image samples, which is extracted

by pretrained deep convolutional neural networks (CNNs). For

example, the visual features can be GoogleNet features, which

are the 1024-dimensional activations of the final pooling layer

as in [13]. C , (cn)n∈N ∈ CN
Tr denotes the class label vector

of the image samples, where cn ∈ CTr denotes the class label of

sample n, and CTr denotes the class set seen within the training

samples. S ∈ R
Ds×N denotes the semantic feature matrix of

the image samples, each column of which corresponds to the

semantic feature vector of the class cn.

A. Intermediate feature extractor

First, a low-dimensional intermediate feature extractor is

designed via extending the conditional principal label space

transformation (CPLST) approach [14]. The benefits of this

novel approach lie in two aspects. On one hand, it allows

to reduce the feature space into a lower and controllable

dimension. On the other hand, it considers both visual and

semantic feature, and thus can bridge the gap between the

statistical property of the visual features and that of the

semantic features.

1) Formulation: Specifically, the visual feature V and

semantic feature S are projected into a k-dimensional latent

space with a visual projection matrix W v ∈ R
k×Dv and a

semantic projection matrix W s ∈ R
k×Ds , respectively, where

k ≤ min{Dv, Ds}. Similar to [14], the predicting error and

encoding error are minimized simultaneoursly:

(P1) min
W v ,W s

‖W vV −W sS‖
2
F + ‖S −W T

s W sS‖
2
F

s.t. W sW
T
s = I.

Compared with the traditional CPLST approach, the semantic

feature instead of binary label feature is utilized to characterize

the semantic relationship among classes.

2) Optimization: First, given W s, the closed-form optimal

W ∗
v, i.e., W ∗

v = W sSV
† is directly obtained, where V †

is the pesudo inverse of V . Then, via substituting W v with

W sSV
†, problem (P1) is equally transformed into

max
W s

tr
(

W sSHSTW T
s

)

s.t. W sW
T
s = I,

where H = V †V .

According to Eckart-Young theorem [15], the optimal solu-

tion is given by the eigenvectors that correspond to the largest

eigenvalues of SHST .

3) Common intermediate feature: After getting W s, the

semantic feature S is linearly mapped to the intermediate

feature vector F by F = W sS, which is used in the sequel.

B. Visual autoencoder

1) Formulation: Different from the conventional autoen-

coder which is unsupervised, the latent space is forced to

be the low-dimensional intermediate feature F . The learning

objective is transformed into

(P2) min
P v

‖V − P T
v P vV ‖2F

s.t. P vV = F ,

where P v ∈ R
k×Dv denotes the visual projection matrix

which maps the visual feature V into the intermediate feature

F .

2) Optimization: Similar to [16], to optimize problem (P2),

the strict equal constraint is firstly relaxed into its objective,

i.e.,

(P3) min
P v

‖V − P T
v P vV ‖2F + λ‖P vV − F ‖2F ,

where λ is a weight factor which controls the tradeoff between

the loss of the encoder, i.e., the first item, and that of the

decoder, i.e., the second item.

Then, the optimal solution to problem (P3) is obtained via

setting the first-order derivative of its objective to zero, i.e.,

FF TP v + λP vV V T = (1 + λ)FV T , (1)

which is the well-known Sylvester equation, and can be

optimally solved via the Bartels-Stewart algorithm [16].



Fig. 1: SKB-enabled E2E communication system.

C. Semantic autoencoder

1) Formulation: Similar to the visual autoencoder, a seman-

tic autoencoder is also designed which forces the semantic

feature to be projected into the intermediate feature F . In

particular, the learning objective is

(P4) min
P s

‖S − P T
s P sS‖

2
F

s.t. P sS = F ,

where P s ∈ R
k×Ds denotes the semantic projection matrix

which maps the semantic feature S into the intermediate

feature F .
2) Optimization: The optimal solution to (P4) can be

obtained via the same way of solving (P2). First, the strict

equal constraint is relaxed into its objective, i.e.,

(P5) min
P s

‖S − P T
s P sS‖

2
F + λ‖P sS − F ‖2F ,

where λ is a weight factor which controls the tradeoff between

the loss of the encoder, i.e., the first item, and that of the

decoder, i.e., the second item.

Then, the optimal solution to problem (P5) is obtained via

setting the first-order derivative of its objective to zero, i.e.,

FF TP s + λP sSS
T = (1 + λ)FST , (2)

which is the well-known Sylvester equation, and can be

optimally solved via the Bartels-Stewart algorithm [16].

D. Multi-level feature extractor

Based on the above-mentioned visual and semantic autoen-

coder, given any image sample l, we design the following

multi-level feature extractor:

• 1st-level visual feature, i.e., v = f(l) ∈ R
Dv , which is

obtained via projecting the image sample l with the pre-

trained large scale CNNs f(·).
• 2nd-level intermediate feature, i.e., f = P vv ∈ R

k,

which is obtained via projecting the visual feature v with

the visual encoder P v.

• 3rd-level semantic feature, i.e., s = P T
s f ∈ R

Ds , which

is obtained via projecting the intermediate feature f with

the semantic decoder P T
s .

• 4th-level estimated class label, i.e., ĉ = argminc∈C ‖sc−
s‖2F , where C denotes the available class set, and sc
denotes the semantic vector of class c.

III. SYSTEM MODEL

As illustrated in Fig. 1, a novel E2E communication system

is considered, where both transmitter and receiver are enabled

with a specific semantic knowledge base (SKB) and multi-

level feature extractor.

A. Semantic knowledge base (SKB)

We define SKB of each mobile device as a set of semantic

vectors of some classes stored at it. Based on local SKB,

the mobile device is able to recognize the attributes of cor-

responding classes and the semantic relationship among the

classes. Specifically, denote with C , {1, 2, · · · , C} the set

of all classes, and S , {s1, s2, · · · , sC} the set of semantic

vectors of all the classes, named as semantic prototype. The

SKBs at both transmitter and receiver are modeled as follows:

• SKB at the transmitter: let tc ∈ {0, 1} denote the seman-

tic knowledge indicator of class c at the transmitter, where

tc = 1 indicates that the transmitter has the knowledge of

semantic information of class c, i.e., the semantic vector

sc of class c is stored at the transmitter, and tc = 0,

otherwise. Denote with BT , {c ∈ C : tc = 1} the set of

class labels, the semantic vectors of which are stored at

the transmitter, i.e., the SKB at the transmitter.

• SKB at the receiver: let rc ∈ {0, 1} denote the semantic

knowledge indicator of class c at the receiver, where

rc = 1 indicates that the receiver has the knowledge

of semantic information of class c, i.e., the semantic

vector sc of class c is stored at the receiver, and rc = 0,

otherwise. Denote with BR , {c ∈ C : rc = 1} the set

of class labels, the semantic vectors of which are stored

at the receiver, i.e., the SKB at the receiver.

B. Multi-level feature transmission policy

Suppose that both transmitter and receiver are enabled

with its own multi-level feature extractor, which is trained

from its own training dataset, denoted as (V t,Ct,St) and

(V r,Cr,Sr), respectively. Let P t,v and P t,s (P T
t,v and

P T
t,s) denote the visual and semantic encoder (decoder) at the

transmitter, respectively. And let P r,v and P r,s (P T
r,v and

P T
r,s) denote the visual and semantic encoder (decoder) at the

receiver, respectively.

Consider that there are M testing samples, denoted as

M , {1, 2, · · · ,M}, which have not been seen during the

training process at both the transmitter and receiver, and

require to be classified. Based on the above-mentioned multi-

level feature extractor, there are the following four kinds of

transmission choice at the transmitter for each testing sample

to complete the zero-shot classification task. Let xm,l ∈ {0, 1}
denote the transmission choice of sample m, where xm,l = 1
indicates that the l-th level feature vector of sample m is

transmitted, and xm,l = 0, otherwise. In order to guarantee

that the semantic information of each sample is delivered to

the receiver, we have
∑4

l=1 xm,l = 1, ∀m ∈ M.

• 1st-level visual feature transmission: when xm,1 = 1, the

visual feature vector of sample m, denoted as vm ∈ R
Dv ,

is directly transmitted to the receiver. Then, the receiver

estimates the class based on its multi-level feature ex-

tractor and its SKB, i.e., ĉr,m = argminc∈BR
‖sc −

P T
r,sP r,vvm‖2F . And the corresponding semantic loss is

given by Lm,1 = minc∈BR
‖sc − P T

r,sP r,vvm‖2F . The

required transmission latency is given by Tm,1 = DvQ

R
,



where Q denotes the quantization level [5] and R denotes

the achievable data rate from the transmitter to the

receiver.1

• 2nd-level intermediate feature transmission: when xm,2 =
1, the intermediate feature vector of sample m, i.e.,

fm = P t,vvm ∈ R
k, is transmitted to the receiver. Then,

the receiver estimates the class based on its semantic

decoder, i.e., ĉr,m = argminc∈BR
‖sc−P T

r,sfm‖2F . And

the corresponding semantic loss is given by Lm,2 =
minc∈BR

‖sc − P T
r,sP t,vvm‖2F . The required transmis-

sion latency is given by Tm,2 =
kQ

R
.

• 3rd-level semantic feature transmission: when xm,3 = 1,

the semantic feature vector of sample m, i.e., sm =
P T

t,sP t,vvm ∈ R
Ds , is transmitted to the receiver. Then,

the receiver estimates the class based on its SKB, i.e.,

ĉr,m = argminc∈BR
‖sc − sm‖2F . And the correspond-

ing semantic loss is given by Lm,3 = minc∈BR
‖sc −

P T
t,sP t,vvm‖2F . The required transmission latency is

given by Tm,3 = DsQ

R
.

• 4th-level estimated class knowledge transmission: when

xm,4 = 1, the transmitter first estimates the class of

the image sample, i.e., ĉt,m = argminc∈BT
‖sc −

P T
t,sP t,vvm‖2F , and then transmits the estimated label

ĉt,m or the corresponding semantic vector sĉt,m to the

receiver, according to the SKB at the receiver. Specif-

ically, if the semantic vector of class ĉt,m is stored in

the SKB of the receiver, i.e., rĉt,m = 1, transmitting the

estimated label is sufficient, and the transmission load

is Q. Otherwise, i.e., rĉt,m = 0, the semantic vector of

the estimated class sĉt,m requires to be transmitted to

the receiver, and the transmission load is DsQ. Thus,

the required transmission latency is given by Tm,4 =
[rĉt,m+Ds(1−rĉt,m)]Q

R
. And the corresponding semantic

loss is given by Lm,4 = minc∈BT
‖sc −P T

t,sP t,vvm‖2F .

In summary, the average semantic loss deemed by the E2E

communication is given by

1

M

M
∑

m=1

4
∑

l=1

xm,lLm,l, (3)

and the average transmission latency constraint is given by

1

M

M
∑

m=1

4
∑

l=1

xm,lTm,l ≤ τ. (4)

IV. PROBLEM FORMULATION AND CONVEX CONCAVE

PROCEDURE

A. Problem formulation

Under this setup, our objective is to minimize the semantic

loss based on the knowledge of both transmitter and receiver

via optimizing the multi-level feature transmission policy

1For ease of analysis, uniform quantization of each vector is adopted for
digital transmission as in [6] such that each element of the vector is quantized
into an equal number of bits throughout this paper.

x , (xm,l)m∈M,l∈{1,2,3,4}. The optimization problem is

formulated as

(P6) min
x

M
∑

m=1

4
∑

l=1

xm,lLm,l

s.t.
1

M

M
∑

m=1

4
∑

l=1

xm,lTm,l ≤ τ, (5)

4
∑

l=1

xm,l = 1, ∀m ∈ M, (6)

xm,l ∈ {0, 1}, ∀m ∈ M, l ∈ {1, 2, 3, 4}. (7)

It can be observed that problem (P6) is a linear multi-

choice knapsack problem, which is NP-hard [12].2 Denote

with x∗ , (x∗
m,l)m∈M,l∈{1,2,3,4} the optimal multi-level

transmission policy of problem (P6). Notice that there exists

a tradeoff between the semantic loss and transmission latency,

and where to extract the feature (i.e., whether to utilize the

multi-level feature extractor at the transmitter or that at the

receiver), which level to extract, as well as where to make

the semantic information inference decision (i.e., whether to

utilize the SKB at the transmitter or that at the receiver) have

to be carefully designed to minimize the semantic information

loss, while guaranteeing the transmission latency constraint.

B. Convex concave procedure (CCCP)

In this section, problem (P6) is solved via CCCP. First,

constraint (7) is rewritten as

xm,l ∈ [0, 1] , ∀m ∈ M, l ∈ {1, 2, 3, 4}, (8)

xm,l (1− xm,l) ≤ 0, ∀m ∈ M, l ∈ {1, 2, 3, 4}, (9)

without loss of equivalence. Then, via substituting constraint

(7) with (8) and (9), problem (P6) is equivalently transformed

into problem (P7).

(P7) min
x

M
∑

m=1

4
∑

l=1

xm,lLm,l

s.t. (5)(6)(8)(9).

Notice that problem (P7) is a continuous optimization problem,

and thus the computation complexity of solving it is much

less than that of solving problem (P6) directly. However,

since constraint (9) is a concave constraint, problem (P7)

is a non-convex optimization problem and thus optimizing

problem (P7) is still very difficult.

Next, to facilitate solving problem (P7), problem (P7) is

transformed into problem (P8) by penalizing the concave

constraint (9) into the objective of problem (P7).

(P8) min
x

M
∑

m=1

4
∑

l=1

(xm,lLm,l − γxm,l (xm,l − 1))

s.t. (5)(6)(8),

2For ease of feasibility of problem (P6), it is assumed that
Q

R
≤ τ

throughout this paper.



TABLE I: Transmission latency vs. classification accuracy

under differnet policies for AWA dataset.

Transmission Policy Transmission Latency Classification Accuracy

Level 1 transmission 1074.4 ms 67.8%

Level 2 transmission 15.7 ms 67.8%

Level 3 transmission 89.2 ms 67.8%

Level 4 transmission 35.3 ms 68.6%

CCCP method 7.9 ms 67.8%

where γ > 0 denotes the penalty parameter. Let L̄(γ) denote

the optimal objective value of problem (P8).

Note that problem (P8) is an indefinite quadratic

programming (IQP) due to its objective function being

a difference between a linear function and a quadratic

convex function, while its constraints are linear [17]. This

makes it a special case of the difference of convex problem.

By utilizing difference of convex algorithms (DCA), local

optima for problem (P8) can be obtained in a finite number

of steps. It is worth noting that DCA is exactly the same

as CCCP when the second term of the objective function

of problem (P8) is differentiable. To solve problem (P8)

using CCCP, a sequence of linear optimization problems

needs to be solved iteratively, which are obtained by

linearizing the second term of the IQP objective function.

Specifically, at each iteration t,
∑M

m=1

∑4
l=1 xm,l (xm,l − 1)

is approximated as
∑M

m=1

∑4
l=1 x

(t)
m,l

(

x
(t)
m,l − 1

)

+
∑M

m=1

∑4
l=1

(

2x
(t)
m,l − 1

)(

xm,l − x
(t)
m,l

)

.

In the end, the equivalence between problem (P7) and

problem (P8) is demonstrated in Lemma 1.

Lemma 1. For all γ > γ0 where

γ0 ,

∑M

m=1

∑4
l=1 x

0
m,lLm,l − L̄(0)

maxx

{

∑M

m=1

∑4
l=1 xm,l (xm,l − 1) : (5)(6)(8)

} ,

with any x0
m,l satisfying (5), (6), and (8), problem (P8) and

problem (P7) have the same optimal solution.

Lemma 1 demonstrates that when the penalty parameter

γ is sufficiently large, problem (P8) becomes equivalent to

problem (P7). Therefore, solving problem (P8) using CCCP

can replace solving problem (P7). However, problem (P7)

may not always have a feasible solution. To obtain the global

optimum of problem (P7), CCCP can be performed multiple

times, each time with a distinct initial feasible point of

problem (P8), and then the solution which achieves the lowest

average value across all runs is chosen [18].

V. NUMERICAL RESULTS

This section provides numerical results to validate the per-

formance of the proposed framework and transmission policy.

For comparison, the following three kinds of baselines are

considered.

• Level-j transmission, j ∈ {1, 2, 3, 4}: xm,j = 1, and

xm,j′ = 0, ∀j′ ∈ {1, 2, 3, 4} \ j, m ∈ M.
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(a) SKB at the transmitter.
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(b) SKB at the receiver.

Fig. 2: Effect of SKB on Transmission Performance.

• Linear relaxation method: the binary constraint xm,l ∈
{0, 1} is first relaxed into the real constraint xm,l ∈ [0, 1],
and then problem (P6) is transformed into a linear pro-

gram (LP), which can be optimally solved via standard

methods, e.g., CVX. Let x̂ , (x̂m,l)m∈M,l∈{1,2,3,4}

denote the optimal solution to LP. Based on x̂, the linear

relaxation-based association x is chosen as xm,l∗ = 1,

where l∗ , argmaxl∈1,2,3,4 x̂m,l, and xm,l = 0, other-

wise.

• Lagrangian relaxation method: Another suboptimal solu-

tion to problem (P6) is obtained via Lagrangian relaxation

(LR) method [19].

The dataset Animals with Attributes (AwA) is adopted

[20]. The path loss g between the transmitter and receiver

is modeled as β0

(

d
d0

)−ζ

, where β0 = −30 dB denotes the

path loss at the reference distance d0 = 10 m, d = 500 m

denotes the distance between them, and ζ = 3 denotes the

path loss exponent. Furthermore, the transmission rate R is

set as B log2

(

1 + pg

BN0

)

, where B = 1 MHz, N0 = −174

dBm/H, and p = 10 dBm.

A. Tradeoff between the transmission latency and classifica-

tion accuracy

Table I shows the tradeoff between the transmission latency

and classification accuracy. The multi-level exatractor at the

transmitter is assumed to be the same as that at the receiver.

The SKB size at the transmitter is assumed to be full, i.e.,

BT = 10, and that at the receiver is assumed to be 70%
of the total size of class prototype, i.e., Br = 7. It can be



observed that Level 1, Level 2, and Level 3 transmission

achieve the same classification accuracy, while Level 2 incurs

the least transmission latency. This is because the dimension

of intermediate feature at Level 2 is the smallest, and all the

classification results are decided based on SKB at the receiver.

Level 4 achieves the highest classification accuracy, while

incurs larger latency than Level 2. This is because the SKB

at the receiver is smaller than that at the transmitter, and thus

when more decisions made at the transmitter, i.e., Level 4,

the classification accuracy would be higher. However, the di-

mension of semantic vector is higher than that of intermediate

vector, and thus the transmission latency incurred by Level 4

is larger than that incurred by Level 2. Last but not the least,

compared with the first three level transmission, CCCP can

reduce the transmission latency requirement by 99.3%, 49.7%,

91.1%, respectively, while achieving the same classification

performance. Compared with Level 4 transmission, CCCP can

reduce transmission latency requirement by 77.6%, without

loss of classification performance by 1.2%. This is because

CCCP can jointly consider both the transmission cost and the

semantic loss.

B. Effect of SKB at both the transmitter and receiver

Fig. 2 (a) and Fig. 2 (b) illustrate the classification accuracy

versus the size of SKB at the transmitter and that at the

receiver, respectively. It can be seen that the classification

accuracy increases with the size of SKB at the transmitter. This

is because as the transmitter obtains more semantic knowledge,

it can recognize the image class more accurately, and thus

can only transmit the class index to the receiver. Thus, within

a given transmission latency constraint, more images can be

accurately recognized. In addition, the proposed CCCP method

outperforms the other baselines, which indicates that CCCP

can better utilize the knowledge at the transmitter.

Also, it can be seen that the classification accuracy increases

with the size of SKB at the receiver. This is because when the

size of SKB at the receiver is relatively small, the transmitter

has to deliver the exact semantic vector to the receiver for

recognition, i.e., 3rd-level semantic feature transmission. As

the size of SKB at the receiver increases, the transmitter only

has to deliver the estimated class index to the receiver, and

the receiver searches its SKB to get the semantic feature, i.e.,

4th-level estimated class transmission. In addition, the pro-

posed CCCP method outperforms the other baselines, which

indicates that the CCCP can better utilize the knowledge at

the receiver for remote zero-shot recognition.

VI. CONCLUSION

This paper investigates a novel SKB-enabled E2E multi-

level feature transmission framework for remote zero-shot

recognition task. In particular, first, in order to serve the zero-

shot learning task, an SKB-enabled multi-level feature extrac-

tor is established, which is not only lightweight, but also can

facilitate communication overhead reduction. Then, the SKB-

enabled multi-level feature transmission framework is con-

structed, and the corresponding semantic loss and transmission

overhead are modeled. The formulated semantic minimization

problem, however, is a multi-choice knapsack problem, which

is NP-hard and very challenging to solve. The CCCP algorithm

is proposed to obtain an efficient sub-optimal solution. Finally,

numerical results are provided to verify the performance of the

proposed designs. It is our hope that this paper can provide

new insights on SKB construction for semantic communica-

tion, SKB-enabled semantic communication, etc.
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