
Dynamic Encoding and Decoding of Information
for Split Learning in Mobile-Edge Computing:

Leveraging Information Bottleneck Theory
Omar Alhussein†∗, Moshi Wei‡, Arashmid Akhavain∗

†Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, UAE
∗Advanced Networking Team, Huawei Ottawa Research & Development Centre, Ottawa, Canada

‡Department of Computer Science, York University, Toronto, Canada
omar.alhussein@ku.ac.ae, arashmid.akhavain@huawei.com, moshiwei@yorku.ca

Abstract—Split learning is a privacy-preserving distributed
learning paradigm in which an ML model (e.g., a neural network)
is split into two parts (i.e., an encoder and a decoder). The
encoder shares so-called latent representation, rather than raw
data, for model training. In mobile-edge computing, network
functions (such as traffic forecasting) can be trained via split
learning where an encoder resides in a user equipment (UE)
and a decoder resides in the edge network. Based on the data
processing inequality and the information bottleneck (IB) theory,
we present a new framework and training mechanism to enable
a dynamic balancing of the transmission resource consumption
with the informativeness of the shared latent representations,
which directly impacts the predictive performance. The proposed
training mechanism offers an encoder-decoder neural network
architecture featuring multiple modes of complexity-relevance
tradeoffs, enabling tunable performance. The adaptability can
accommodate varying real-time network conditions and applica-
tion requirements, potentially reducing operational expenditure
and enhancing network agility. As a proof of concept, we apply
the training mechanism to a millimeter-wave (mmWave)-enabled
throughput prediction problem. We also offer new insights and
highlight some challenges related to recurrent neural networks
from the perspective of the IB theory. Interestingly, we find a
compression phenomenon across the temporal domain of the
sequential model, in addition to the compression phase that
occurs with the number of training epochs.

Index Terms—information bottleneck, NFV, semantic commu-
nications, split learning, wireless edge learning

I. INTRODUCTION

The dawn of the sixth-generation (6G) era is to bring
forth a new paradigm in communication networks, driven
by the increasing demand for ultra-fast, intelligent, and per-
vasive connectivity. As the digital revolution permeates ev-
ery aspect of our lives, there is an even greater need to
increase networking efficiency, enhance network automation,
and embed native intelligence. In 1949, Shannon and Weaver
categorized the problem of communications into three levels,
namely (i) the technical: transmission of symbols; (ii) the
semantic: transmission of meaning; and (iii) the effectiveness:
effect of semantic information exchange. While Shannon’s
communication model considers the technical aspect only,

§This work was conducted primarily at Huawei Ottawa Research &
Development Centre.

there is a growing interest in re-examining this fundamental
consideration and incorporate semantics to the 6G fabric.

Enabled by network softwarization and function virtualiza-
tion, mobile-edge computing rely on various network func-
tions to optimize the network’s resources. Existing network
functions, such as traffic forecasting, traffic classification,
packet scheduling, are increasingly being implemented using
experience-driven model-free machine learning (ML) tech-
niques. There is also an emergence of new functions related
to real-time sensing and analytics such as object detection and
tracking. Also, with 5G’s service-based architecture, (over-the-
top) application functions can be hosted natively by service
providers in core networks, e.g., to enable virtual reality and
close-proximity gaming. Given the increasing adoption and
diversity of network and application functions, there is a need
to optimize the communication and processing resources to
support and automate such network and application functions.

Hardware technology, as predicted by Moore’s law, has
been unable to keep up with the exponential growth of com-
putational and storage requirements for modern ML models,
resulting in a concerning widening gap [1]. New distributed
learning paradigms are needed to efficiently utilize available
resources while maintaining privacy and security. Split learn-
ing has emerged as a distributed learning approach that offers
a unique combination of benefits for the wireless edge in terms
of efficiency, privacy, and flexibility [2], [3].

In this paper, we identify and address a limitation with
existing split learning based predictive network and applica-
tion functions; the network substrate experiences time-varying
usage behaviour and traffic patterns mainly due to the time-
varying and random behavior of users. Moreover, network and
application functions need to cater towards diverse quality of
service and predictive requirements. We need to adapt the
informativeness of encoded data in a dynamic manner based
on network conditions and application requirements to ensure
that the network remains communication-efficient and flexible
under a wide range of scenarios. The information bottleneck
(IB) method, originally proposed by Tishby, Pereira, and
Bialek, can provide a new pair of lens for analyzing and
improving deep learning models [4], [5]. The IB method

ar
X

iv
:2

30
9.

02
78

7v
1

 [
cs

.L
G

]
 6

 S
ep

 2
02

3

attempts to find the best tradeoff between the compression
with regard to input data and the preservation of relevant
information needed for a specific task based on the input. See
Sections II and III for a continued discussion.

Building on this foundation, this paper introduces an adap-
tive neural network encoding and decoding framework that ad-
justs the complexity-relevance tradeoff in response to network
conditions and application requirements. We offer a training
procedure that trains the neural network in a cascaded (or
tandem) fashion while connecting intermediate layers from the
encoder to the decoder to enable multiple modes of commu-
nication with varying complexity-relevance modes. We apply
the training procedure to a mmWave 5G throughput prediction
problem by utilizing the Lumos5G dataset [6]. The dataset
captures throughput as perceived by applications running on
a user equipment (UE) along with correlated features such as
the longitude, latitude, and received signal strength.

Furthermore, this work is among the first to apply and
investigate the IB theory in the context of sequential (time-
series) problems and models. We provide new insights and
identify important challenges while partially addressing them.
First, we find that incorporating the temporal dimension of
sequential models into the IB analysis is essential for a
comprehensive understanding of the training process. Second,
we find that estimating the mutual information (MI) can
be challenging due to the large hidden temporal states and
sampling limitations. Therefore, visualizing a 3-dimensional
information plane that incorporates the hidden temporal states
and employing metrics such as the conditional MI become
vital to assess the redundancy of the temporal states, upon
which the number of states to be estimated can be reduced. A
key finding is that compression not only occurs as the training
progresses (as has been reported in the seminal IB works [4],
[5]), but it also occurs across the temporal dimension of the
sequential model (i.e., across the hidden temporal states).

The rest of the paper is organized as follows. Section II
provides a brief background on IB. Section III provides an
overview of relevant literature. Section IV presents the pro-
posed dynamic framework and training mechanism. Section
V discusses the use case of mmWave-enabled throughput
prediction under a split learning setup. In Section VI, we
conduct experiments to confirm the viability of the proposed
mechanism on the Lumos5G dataset, along with a highlight
of aforementioned challenges and new insights. Section VII
provides concluding remarks.

II. THE INFORMATION BOTTLENECK FRAMEWORK

Tishby and Zaslavsky suggested viewing each individual
layer in a neural network as a random variable [5]. Therefore,
a neural network can be considered as a Markov chain of
successive representations. Using MI to gauge the flow of
information can be advantageous for two reasons. First, com-
pared to statistical correlation, MI is a more general measure
of statistical dependence with a common scale (e.g., bits or
nats). Second, it is an invariant measure, i.e.,

I(X;Y) = I
(
ϕ(X), φ(Y)

)
, (1)

Fig. 1. Information plane showing the evolution of two layers as the training
progresses. Both layers exhibit a fitting phase followed by a compression
phase.

where I(·; ·) denotes the MI between two random variables,
and ϕ(·) and φ(·) are deterministic functions. The invariance
property implies that MI can provide a unifying pair of
lens to probe and compare neural networks regardless of
the architecture. IB provides a computational framework for
finding the optimal tradeoff between the compression of input
data X and the preservation of information about target label
Y by minimizing the Lagrangian,

min
p(H|X),p(H|T),p(H)

I(X;H)− βI(H;Y) (2)

where β determines the level of relevant information captured
by neural network layer H .

A useful graphical tool is the information plane which
exhibits the MI of a hidden layer with respect to target Y
versus the MI of the hidden layer with respect to input X .
An example of the information plane is shown in Fig. 1
(obtained from our simulations). Each curve in the information
plane corresponds to a layer. In the beginning, all layers gain
information with respect to both X and Y as the training
progresses, which is called the fitting phase. At some point
in the training, I(X;H) starts to reduce, exhibiting a com-
pression phase. Saxe et al. provided arguments and set of
experiments that shows that compression occurs only when
the layers contain a double-saturating activation function (such
as tanh and sigmoid) [7]. Chelombiev et al. showed that, by
using adaptive and robust estimation techniques, compression
can occur without necessarily having double-edge saturation
in activation functions [8]. This speaks to the importance of
deploying sensitive and robust estimation techniques.

III. LITERATURE SURVEY

Rate distortion theory, of Shannon and Kolmogorov, char-
acterizes the tradeoff between the signal representation and
the average distortion of the reconstructed signal [9]. In the

beginning of this century, Tishby et al. proposed IB as a
generalized distortion theory [4], [10]. In 2015 and 2017,
Tishby et al. showed how the IB framework applies to deep
neural networks [5], [11]. Since then, there has been a great
interest in the IB theory and its applications [12]–[14].

The literature can be classified into three categories. One
category attempts to further develop, analyze, and scrutinize
the fundamentals of the IB theory [7], [14]–[17]. A second
category applies IB principles to analyze and interpret the
inner workings of ML models, while a third category applies
IB principles and observations to improve deep learning-based
algorithms and applications [18]. The three categories overlap
as further development on the theory and deeper probing into
the models can lead to improving it.

To this paper’s context, IB can fit in semantic communica-
tions [19]–[22] and wireless-edge learning [23], [24]. Notably,
Beck et al. consider a semantic communication task such that a
message is transmitted while preserving the relevant meaning
[25]. They cast the problem as an IB problem that allows
messages to be compressed while preserving the relevant
information as possible. Pezone et al. propose a goal-oriented
system for edge-learning based on the IB framework [26].
They adapt β to optimize the tradeoff between the complexity
and the relevance of the encoded information in order to
minimize the energy consumption under delay constraints.
Similarly, based on IB, Binucci et al. employ convolutional
encoders at the edge to compress relevant data before being
offloaded to an edge station [22].

IV. ADAPTIVE SPLIT ENCODER-DECODER WITH
FEEDBACK SIGNALS

1 2 3

Network

654

1 2 3

Network

654

7

8

z
z'

(a) (b)

Fig. 2. Split encoder-decoder neural network where encoder produces two
latent codes; in (a) the encoder sends code z, whereas in (b) the encoder
augments one more layer and sends code z′.

Network conditions and application requirements can vary
over time and between network slices. With the information
plane in mind, the intuition is to selectively choose which
hidden layer’s output from the encoder to transmit to the
decoder. Consider an optimized neural network where the
neural network hyper-parameters (i.e., number of layers, num-
ber of nodes, learning rate) are optimized to provide the

best achievable predictive performance (e.g., through hyper-
parameter search). Denote the output of the optimized neural
network encoder by latent representation z (as shown in
Fig. 2(a)). If we add a new bottleneck layer with output
z′ to the trained encoder as shown in Fig. 2(b), follow-
ing the data processing inequality and by construction, the
new encoder-decoder neural network is less optimal where
adding an additional bottleneck layer loses crucial information
due to further imposed compression. In Figs. 2(a) and 2(b),
I(X;H3) ≥ I(X;H7), entailing that code z′ requires fewer
bits than code z for encoding. It follows that the decoder’s
predictive performance receiving code z′ is at most equal to
or worse than the decoder’s performance receiving code z.
By combining both encoders in Figs. 2(a) and 2(b), we can
get a dynamic and adaptive neural network encoder that can
vary the informativeness of latent representation depending on
which layer is selected as the transmitted bottleneck. In doing
so, one can train two decoders that receive representations
z and z′, respectively. A more compact solution that results
in one encoder and decoder is summarized in Algorithm 1.
Train a first encoder-decoder neural network (line 1). Freeze
the trained layers, add a new layer to the encoder and to
the decoder, respectively (lines 2-6), and retrain the overall
network. Create a (skip) connection between the output of
the trained encoder and the trained decoder (line 5). Finally,
ensure that the new layers results in a less optimal predictive
performance after training (line 7), where the performance gap
can be tuned by trial and error.

Algorithm 1 Cascaded training procedure to achieve two
modes of complexity-relevance tradeoff

1: Encoder1, Decoder1 ← Train([Encoder1, Decoder1])
2: Freeze(Encoder1, Decoder2)
3: NN2Encoder ← [Encoder1 + new layer A]
4: NN2Decoder ← [new layer B + Decoder1]

Ensure: Layer A output = layer B input
5: Connect Encoder1 and Decoder1
6: Encoder2, Decoder2 ← Train([Encoder2,Decoder2])

Ensure: I(Y ; Decoder1Output) ≤ I(Y ; Decoder2Output)

Figure 3 depicts the general framework. Here, an orches-
trator can obtain key-performance indicators for each network
function from an oracle, and monitors the neural network’s
performance. Based on the performance of the decoder and
network conditions, the orchestrator can instruct the network
element containing the neural network encoder to transmit
either z and z′.

V. USE CASE: MMWAVE THROUGHPUT PREDICTION

Consider a dual-connectivity setup where a UE is connected
to a macro base station (BS) and a mmWave-based micro BS,
as shown in Fig. 4(a). The user can get user-plane connections
with high throughput via a mmWave channel while having
reliable control-plane (and user-plane) connection to the macro
BS. Since mmWave based beams are highly directed, mobile
users experience highly- and widely-varying throughput that

1 2 3

Network

7 z’

z

Orchestrator

feedback on

performance

feedback on

network

conditions

6548

z'

Fig. 3. Dynamic split neural network where the encoder can send either
intermediate latent code z or less informative latent code z′. An orchestrator
monitors for network conditions and receives feedback about the decoder’s
performance, and instructs the encoder to select which latent code to transmit.

(a)

Micro mmWave tower

LTE tower

Fig. 4. (a) UE in dual-connectivity mode to a micro-mmWave based tower
and a macro-base station; (b) 1300 meter loop area in Minneapolis downtown
area based on the Lumos5G dataset [6].

correlates with spatio-temporal features in the scene [6]. Many
factors, such as position of the user, proximity of contending
users to each other, static and dynamic obstacles, user’s move-
ment patterns and direction, have an effect on the perceived
throughput. The authors of [6] captured some of these features
in the Lumos5G dataset which consists of 70,000 samples.
Each sample includes 11 features and an associated perceived
throughput by the UE. The features are longitude, latitude,
moving speed, compass direction, and six LTE and new-radio
signal strength measurements, c.f. [6, Table 1]. The samples
are collected along a 1300 meter loop area in Minneapolis
downtown area as shown in Fig. 4(b). Throughput prediction
is useful for over-the-top applications or network slices, such
as video streaming, real-time gaming, and virtual reality.
For example, augmented reality can cache/request information
ahead of time depending on the predicted throughput. Some
slices/applications would require more accurate throughput

Send z or z'

Type of slice

or application

Feedback

signals

Input

features

Predicted

throughput

Fig. 5. Adaptive encoder-decoder network distributed between the UE and
the edge network. The encoder is trained/configured (using Algorithm 1) to
send intermediate latent representations based on feedback signals.

prediction performance compared to others.
In general, some of the useful spatio-temporal features can

be observed by the user equipment while others are can be
obtained by the access network through sensing or network
measurements, e.g., distance of the user to mm-wave BS,
and dynamic/static obstacles in the vicinity. Therefore, a split
encoder-decoder model with encoders residing in the UEs and
a decoder residing in the access network is suitable to learn
experiences from the different users while minimizing feature
exchange and maintaining some level of privacy.

The proposed dynamic split encoder-decoder framework
can be utilized for the mmWave throughput prediction prob-
lem. In Fig. 5, a neural network encoder prompts the input
features collected by the UE (or received by the UE from
other sources). Additionally, the encoder can get performance
requirements from the current application being used. The
access network can send back a feedback to the user of
network conditions, such as whether there is congestion on the
allocated control-plane band or whether computing hardware
is congested in the mobile edge. Depending on the feedback
received and the type of slice/application being used, the UE
can decide whether to send the less-informative output of the
encoder (which in Fig. 5 is the output of the 4th layer) or the
more-informative output from the intermediate layer.

Unlike some benchmark datasets used in the IB literature
[4], [5], [7], here we have a time-series prediction problem.
The input and output time series can be modeled as random
processes Xt, Yt ∈ RD, where t = 1, . . . , T and D correspond
to the number of input features. At each timestep t, Xt has
a corresponding latent state for each layer l, H(l)

t . We utilize
a long-short term memory (LSTM) network for the encoder
and a time-distributed dense neural network for the decoder,
as shown in Fig. 6. For the first phase of training, we train two
LSTM layers for the encoder followed by a time-distributed
Dense neural network for the decoder. Hyper-parameter search
shows that two to three neural network layers provide a good
performance for the Lumos5G dataset. Following Algorithm
1, we add a third LSTM layer at the encoder’s output and a
time-distributed Dense layer at the decoder’s input. Then, we

create an intermediate connection between the second layer of
the encoder and the second layer of the decoder. For each
inference query, the decoder receives either H

(2)
T or H

(3)
T

but not both. Here, note that latent codes transmitted from
H(3) goes through an extra layer of processing at the decoder
compared to latent codes transmitted from H(2).

E
n

c
o

d
e

r v
e

c
to

r

Time-distributed Dense

RNN RNN RNN...

E
n

c
o

d
e

r v
e

c
to

r

...

Phase 1 of training

Phase 2 of training

Fig. 6. Encoder-decoder LSTM-Dense model architecture trained in a
cascaded fashion.

VI. NEW INSIGHTS AND ANALYSIS

In this section, we test the main proposal on the Lu-
mos5G dartaset where we construct the adaptive LSTM-Dense
encoder-decoder neural network following Algorithm 1 as
shown in Fig. 6. The first two LSTM layers have 128 cells,
while the added layer after training has 32 cells. A common
approach to estimate the mutual information using the binning
method which was employed in the original IB papers [4], [5].
The binning method quantizes the data into a number of bins,
followed by estimating the mutual information. Binning is
sensitive on the choice of the bin size and resultant boundaries,
which affects the accuracy and consistency of the mutual
information estimate. We utilize the kernel density estimator
by Kolchinsky and others [7], [27], [28] and the Gaussian-
copula MI (GCMI) estimator by Ince and others [29] for
I(Y ;T) and I(X;T), respectively. The GCMI estimator is
robust to multidimensional variables and different marginal
distributions. Moreover, it can be extended to higher order
quantities such as conditional mutual information, which we
strategize that it will be needed with sequential or recurrent
neural network models. In sequential models, we not only care
about the relation of a hidden layer with respect to the input
and the output, but we may need to quantify the effect of a
hidden state on a hidden state from a previous timestep, e.g.,
I(X;Hj |Hj−1, Hj−2).

Similar to [6], the input consists of T = 20 timesteps,
and the output of the decoder provides a classification for
20 timesteps. The size of the testing set is set to 10% of the
dataset, the learning rate is 10−2, and the batch size is 256.

From the perspective of the decoder, the first layer of the en-
coder’s LSTM network has a temporal state for each timestep,
i.e., H(1) = [H

(1)
1 , H

(2)
2 , . . . ,H

(2)
T], while the second layer

conveys only the final temporal state, i.e., H(2) = [H
(2)
T].

To view the information plane for the first phase of training,
we need to measure I(·;H(1)) and I(·;H(2)). However, H(1)

consists of 20 hidden temporal states, making the estimation
of the MI very difficult. To reduce the size of the hidden
state, we perform the following steps. First, Fig. 7 shows a
3-dimensional plot of I(H

(1)
t ; yτ) versus timestep t and the

number of epochs for τ = 5. We observe that the last temporal

Fig. 7. 3D Information curve: I(Ht;Y) with respect to timestep t and number
of training epochs.

Fig. 8. 3D Information curve: I(Ht;X) with respect to timestep t and num-
ber of training epochs. The information curve shows compression behavior
with the training epochs and the hidden temporal states.

state (H(1)
T) contains the largest amount of information, where

I(H
(1)
t ; yτ) increases monotonically with t. Second, Fig. 8

shows a 3-dimensional plot of I(X1, . . . Xt;H1, . . . ,Ht) ver-
sus timestep t and the number of epochs. Interestingly, we find
that compression not only occurs as the training progresses
(i.e., with the number of epochs), but it also occurs across
the hidden temporal states, which to our knowledge has not
been reported before in the open literature. The observed
trends in Figs. 7 and 8 were found to be consistent for
other values of τ . The trends imply that there can be strong
redundancy across the hidden temporal states and that the

last few temporal states can be sufficient to represent all the
hidden states. Thanks to the flexibility of the GCMI estimation
technique [29], we can also measure the conditional MI to
gauge the amount of redundancy contained in the temporal
hidden states. We find that I(x1, . . . , xT ;H

(1)
T |H

(1)
T−1) =

14.24 bits, I(x1, . . . , xT ;H
(1)
T |H

(1)
T−1, H

(1)
T−2) = 3.23 bits,

and I(x1, . . . , xT ;H
(1)
T |H

(1)
T−1, H

(1)
T−2, H

(1)
T−3) = 2.37 bits.

The conditional MI keeps decreasing as we condition on
earlier hidden states. This implies that useful information
are sufficiently represented in the last few temporal states.
Therefore, for the information plane in Fig. 9, we consider

H(1) ≈ [H
(1)
T , H

(1)
T−1, H

(1)
T−2, H

(1)
T−3]. (3)

Fig. 9 shows the information plane for both training
phases. In the first training phase, the two layers converge
to I(H; yt) = 2.3 bits approximately, and I(H;X1, . . . , XT)
of 17 bits for the first layer and 9 bits for the second layer.
Following Algorithm 1, in the second phase, we freeze the
trained neural network layers, add a new bottleneck layer to the
encoder, and re-train the neural network. In the second training

Fig. 9. The information plane showing the evolution of the neural network
layers’ MI profiles, I(H;Y) versus I(H;X), with the number of epochs.
There are two training phases where starting from phase 2, the encoder’s
neural network layers get frozen to train the added layer.

phase, the added layer converges to I(H
(3)
T ;x1, . . . , xT) = 2.5

bits and I(H
(3)
T ; yt) = 2.25 bits. Note how adding the new

bottleneck layer reduces I(H
(3)
T ; yt) and correspondingly the

prediction performance, which is intended by design. Using
the framework explained in Sections IV and V, we can
adaptively switch between the outputs of encoder layer 2 and
encoder layer 3, respectively.

The impact of a reduction in the target MI and the predictive
performance of a network function on the overall network
performance remains unclear. We suggest framing this issue
as an optimization or search problem, aiming to minimize sig-
naling overhead or feature exchange under specific conditions
without significantly compromising network’s performance.
Additionally, this study highlights the challenge of estimating
the MI in sequential models.

VII. CONCLUSIONS

Based on the IB theory and the data processing inequality,
this paper presents a dynamic framework and a training
mechanism to tune the informativeness of the shared latent
representation for split-learning based network functions. This
dynamic tunability provides flexibility to address varying
network conditions and application requirements. We apply
the training mechanism to a mmWave throughput prediction
problem using the Lumos5G dataset as a proof of concept.
This paper highlights (i) the importance of incorporating the
temporal domain into the IB analysis, and (ii) the challenge
of estimating the information plane in sequential models
which can contain a large number of hidden temporal states.
Interestingly, we also observe a compression phenomena that
occurs across the temporal domain in sequential models.

REFERENCES

[1] A. Gholami, Z. Yao, S. Kim, M. W. Mahoney, and K. Keutzer, “AI and
memory wall,” RiseLab Medium Post, 2021.

[2] M. G. Poirot, P. Vepakomma, K. Chang, J. Kalpathy-Cramer, R. Gupta,
and R. Raskar, “Split learning for collaborative deep learning in health-
care,” arXiv:1912.12115, 2019.

[3] W. Wu, M. Li, K. Qu, C. Zhou, X. Shen, W. Zhuang, X. Li, and W. Shi,
“Split learning over wireless networks: Parallel design and resource
management,” IEEE J. Selected Areas Commun., vol. 41, no. 4, pp.
1051–1066, 2023.

[4] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck
method,” arXiv:physics/0004057, 2000.

[5] N. Tishby and N. Zaslavsky, “Deep learning and the information
bottleneck principle,” in Proc. IEEE Inf. theory workshop. IEEE, 2015,
pp. 1–5.

[6] A. Narayanan, E. Ramadan, R. Mehta, X. Hu, Q. Liu, R. A. Fezeu,
U. K. Dayalan, S. Verma, P. Ji, T. Li et al., “Lumos5G: Mapping and
predicting commercial mmwave 5G throughput,” in Proc. ACM Internet
Meas. Conf., 2020, pp. 176–193.

[7] A. M. Saxe, Y. Bansal, J. Dapello, M. Advani, A. Kolchinsky, B. D.
Tracey, and D. D. Cox, “On the information bottleneck theory of deep
learning,” J. Stat. Mech.: Theor. Exp., vol. 2019, no. 12, p. 124020,
2019.

[8] I. Chelombiev, C. Houghton, and C. O’Donnell, “Adaptive esti-
mators show information compression in deep neural networks,”
arXiv:1902.09037, 2019.

[9] T. M. Cover, Elements of information theory. John Wiley & Sons,
1999.

[10] N. Slonim, “The information bottleneck: Theory and applications,” Ph.D.
dissertation, Hebrew University of Jerusalem Jerusalem, Israel, 2002.

[11] R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural
networks via information,” arXiv:1703.00810, 2017.

[12] H. Hafez-Kolahi and S. Kasaei, “Information bottleneck and its appli-
cations in deep learning,” arXiv:1904.03743, 2019.

[13] B. C. Geiger and G. Kubin, “Information bottleneck: Theory and
applications in deep learning,” Entropy, vol. 22, no. 12, 2020.

[14] Z. Ye, “Awesome information bottleneck,” https://github.com/
ZIYU-DEEP/Awesome-Information-Bottleneck, 2022.

[15] A. Kolchinsky, B. D. Tracey, and S. Van Kuyk, “Caveats for information
bottleneck in deterministic scenarios,” arXiv:1808.07593, 2018.

[16] A. Achille and S. Soatto, “Emergence of invariance and disentanglement
in deep representations,” J. Mach. Learn. Res., vol. 19, no. 1, pp. 1947–
1980, 2018.

[17] Z. Piran, R. Shwartz-Ziv, and N. Tishby, “The dual information bottle-
neck,” arXiv:2006.04641, 2020.

[18] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman,
A. Trischler, and Y. Bengio, “Learning deep representations by mutual
information estimation and maximization,” arXiv:1808.06670, 2018.

[19] E. C. Strinati and S. Barbarossa, “6G networks: Beyond shannon towards
semantic and goal-oriented communications,” Comput. Netw., vol. 190,
p. 107930, 2021.

https://github.com/ZIYU-DEEP/Awesome-Information-Bottleneck
https://github.com/ZIYU-DEEP/Awesome-Information-Bottleneck

[20] H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled
semantic communication systems,” IEEE Trans. Signal Process., vol. 69,
pp. 2663–2675, 2021.

[21] Z. Qin, X. Tao, J. Lu, and G. Y. Li, “Semantic communications:
Principles and challenges,” arXiv:2201.01389, 2021.

[22] D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K.
Wong, and C.-B. Chae, “Beyond transmitting bits: Context, semantics,
and task-oriented communications,” IEEE J. Selected Areas Commun.,
vol. 41, no. 1, pp. 5–41, 2022.

[23] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network
intelligence at the edge,” Proc. IEEE, vol. 107, no. 11, pp. 2204–2239,
2019.

[24] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Commun. Surv. Tutor., vol. 22, no. 2, pp. 869–904, 2020.

[25] E. Beck, C. Bockelmann, and A. Dekorsy, “Semantic information
recovery in wireless networks,” 2023.

[26] F. Pezone, S. Barbarossa, and P. Di Lorenzo, “Goal-oriented communi-
cation for edge learning based on the information bottleneck,” in Proc.
IEEE ICASSP, 2022, pp. 8832–8836.

[27] A. Kolchinsky and B. D. Tracey, “Estimating mixture entropy with
pairwise distances,” Entropy, vol. 19, no. 7, p. 361, 2017.

[28] A. Kolchinsky, B. D. Tracey, and D. H. Wolpert, “Nonlinear information
bottleneck,” Entropy, vol. 21, no. 12, p. 1181, 2019.

[29] R. A. Ince, B. L. Giordano, C. Kayser, G. A. Rousselet, J. Gross, and
P. G. Schyns, “A statistical framework for neuroimaging data analysis
based on mutual information estimated via a gaussian copula,” Human
brain mapping, vol. 38, no. 3, pp. 1541–1573, 2017.

	Introduction
	The Information Bottleneck Framework
	Literature Survey
	Adaptive Split Encoder-Decoder with feedback signals
	Use Case: mmWave Throughput Prediction
	New Insights and Analysis
	Conclusions
	References

