
Near Real-Time Data-Driven Control of Virtual
Reality Traffic in Open Radio Access Network

Andreas Casparsen, Beatriz Soret, Jimmy Jessen Nielsen, and Petar Popovski

Abstract—In mobile networks, Open Radio Access Network
(ORAN) provides a framework for implementing network slicing
that interacts with the resources at the lower layers. Both mon-
itoring and Radio Access Network (RAN) control is feasible for
both 4G and 5G systems. In this work, we consider how data-
driven resource allocation in a 4G context can enable adaptive
slice allocation to steer the experienced latency of Virtual Reality
(VR) traffic towards a requested latency. We develop an xApp
for the near real-time RAN Intelligent Controller (RIC) that
embeds a heuristic algorithm for latency control, aiming to: (1)
maintain latency of a VR stream around a requested value; and
(2) improve the available RAN allocation to offer higher bit rate to
another user. We have experimentally demonstrated the proposed
approach in an ORAN testbed. Our results show that the data-
driven approach can dynamically follow the variation of the traffic
load while satisfying the required latency. This results in 15.8%
more resources to secondary users than a latency-equivalent static
allocation.
Keywords—VR, ORAN, Network slicing, xApp

I. INTRODUCTION

While the 5G networks are being rolled out as the new cellu-
lar generation, a new paradigm is being developed for how the
Radio Access Network (RAN) should be defined architecturally.
Unlike the classical closed RAN approach where the Mobile
Network Operator (MNO) buys an all-in-one solution from a
vendor. Instead, Open Radio Access Network (ORAN) provides
an open architecture based on disaggregation, intelligent control,
virtualization, and open interfaces. The new open design is
intended to enable interoperability among vendors, therefore the
economic and technological potential is huge. Indeed, ORAN
is of great interest to MNOs, who find the status quo closed
RAN to be expensive in terms of Capital Expenditure (CapEx)
and Operational Expenditure (OpEx). They would always have
to buy the full implementation of a base station from a single
vendor [1]. In this regard, Rakuten has demonstrated a reduced
cost of operation [2]. CapEx was reduced by 40% while site
equipment and deployment costs were reduced by 60% and
50%, respectively, compared to traditional RAN. To ensure
compatibility with 3GPP systems, ORAN only adds a new set
of interfaces, independent of the 3GPP specifications connecting
the different RAN components. No changes are required to

Andreas Casparsen (aca@es.aau.dk), Beatriz Soret (bsa@es.aau.dk), Jimmy
Jessen Nielsen, and Petar Popovski (petarp@es.aau.dk) are with the Department
of Electronic Systems, Aalborg University, Denmark. Beatriz Soret is also with
the Department of Communications Engineering, Universidad de Málaga, Spain.
This work was partly funded by the European Commission as part of the
IntellIoT project, under the H2020 framework grant no. 957218.

3GPP specifications, rather, interoperability between equipment
from multiple vendors is desired through new open interfaces.
A key aspect of ORAN is to integrate intelligence into the
RAN. This is the role of the RAN Intelligent Controller (RIC),
a software-defined component responsible for controlling and
optimizing the RAN. The RIC enables control loops on two
levels: near real-time (near-RT), operating on a ten-millisecond
to one-second level, and non real-time (non-RT), with no timing
requirements. The monitoring and control are done via software
applications called xApps (for near-RT) and rApps (for non-RT).
The near-RT RIC utilizes the E2 interface to communicate with
E2 nodes i.e. eNB in 4G and O-RAN Distributed Unit (O-DU)
and O-RAN Central Unit (O-CU) in 5G. The E2 interface is
used by xApps to monitor and execute fast control of the RAN
on a smaller set of base stations, e.g., for scheduling, RAN
slicing, load balancing, and handover. The non-RT RIC interacts
with a greater amount of base stations and uses rApps for non-
RT control of eNBs, O-DU, and O-CU through the O1 interface.
Typical use cases are for long-term learning and monitoring
for policy-making on a networking level as well as assisted
machine learning management. Policies from rApps may in this
sense also influence how xApps make their decisions. Further,
the non-RT RIC can communicate directly with the near-RT
RIC via the A1 interface [3]. The ORAN framework enriches
the potential of typical 5G RAN slicing towards supporting
heterogeneous applications. Mixed requirements for low latency,
high bandwidth and massive access as illustrated in Fig. 1
can be enhanced by RAN intelligence. While the canonical
services of 5G: Ultra Reliable Low Latency Communication
(URLLC), Massive Machine-Type Communications (mMTC)
and enhanced Mobile Broadband (eMBB) have straightforward
requirements, it can be more difficult to know how the RIC
can optimize the user experience of a specific application or
service. An example is Virtual Reality (VR)-traffic as it has
a mixture of low latency and high bandwidth requirements in
addition to a varying data rate despite the use of Constant
Bit Rate (CBR) video coding [4]. Obviously, a dynamic real-
time adaptation of resources is necessary to fully satisfy such
application requirements.

In the context of RAN-slicing, 5G is a typical association.
However, RAN-slicing is not necessarily a 5G specific function-
ality. Paradigms for software-controlling the RAN exist such as
the FlexRAN controller [5] for a Software-Defined RAN (SD-
RAN) with 4G. The principle is that the RAN can be controlled

1

ar
X

iv
:2

40
1.

01
65

2v
1

 [
cs

.N
I]

 3
 J

an
 2

02
4

CN

UPF

RU
DU
CU

RIC

xApp

Slice instantiation request
Service requirement (throughput, latency)

Slice1
handler

SliceN
handler

Slice2
handler

Service
monitor

SLA enforcer

Slice
handler

MEC server Hosting RIC
 connecting multiple BS

in near vicinity

Server hosting BS functions
Close to edge Create

Internal functionalities

Application specific

Base station

VR server

Connected
through RAN

Internet

Backhaul to Core network

Sensor

Sensor

RAN statistics

Figure 1: System model
and updated in terms of its functionalities and resource alloca-
tion by isolating resources for specific groups of users. The
SD-RAN principle is leveraged in the ORAN paradigm, where
xApps are utilized for resource control for both 4G and 5G.
In [6], a control loop adapts User Equipment (UE) association
to base stations aiming to optimize for sum throughput, base
station coverage, and even load distribution. This is feasible
due to utilizing RAN-level information on link quality and
evaluating instantaneous base station load. The modularity of
ORAN is shown in [7] through multiple xApps striving to
achieve a singular goal of traffic steering. In the work three
xApps were created, one for spectrum management, cell UE
association, and resource allocation. These act independently
with different actions to optimize individual goals. They could
be altered by the authors, as different policies may change
over time. A predictive uplink slicing xApp is proposed in [8],
where experimental evaluation with 4G components is used.
The work considers eMBB and URLLC traffic for two users,
where the xApp seeks to guarantee the latency of the URLLC
traffic, while allocating as many Resource Blocks (RBs) as
possible to the best-effort traffic in the eMBB slice. In [9]
the Colosseum platform is used to emulate a RAN, for which
specialized schedulers are trained (both online and offline) to
optimize metrics associated with three different slices, eMBB,
URLLC, and mMTC. The work illustrates how specialization of
logical functions can improve the service for the UEs, and how
xApps can help realise this. In [10] the POWDER testbed, based
on the srsRAN project, is used for 4G RAN slicing. The authors
have applied RAN control through a RESTful interface to make
slice requests. The authors implement an xApp that applies
slicing policies. These adapts resource allocation according
to user throughput to balance sub-frame allocation. In [11]
optimization of flow splitting, congestion control and scheduling
is proposed for traffic steering in OpenRAN. Historical data is
used to split data to the UEs on the non-RT RIC. Meanwhile,
congestion control of queues is processed on the near-RT RIC.

In [12] traffic prediction is used along with user association and
radio resource management for the process of traffic steering
of eMBB and URLLC traffic. Artificial Intelligence (AI) is
used for the traffic prediction in the non-RT RIC. Given the
traffic prediction, RBs are allocated to UEs. Latency Quality
of Services (QoSs) guarantees are given through a latency
threshold for both eMBB and URLLC traffic. While these traffic
steering approaches do improve the experience of different types
of traffic, they do so only from a resource allocation perspective
and not from an application perspective.

A different perspective is provided in [13], where the authors
seek to predict video Key Quality Indicators (KQI) of a video
feed for different network configuration choices and configure
network slices accordingly. The ML-based prediction uses both
video KQIs as defined by 3GPP in addition to Reference Signal
Received Power (RSRP) and Reference Signal Received Quality
(RSRQ) radio-level information. In [14], a similar approach is
taken to estimate visual and interaction KQIs in Cloud gaming
scenarios and in turn optimize resource allocation for Quality
of Experience (QoE). First, A statistical analysis of application
and radio-level KQIs is used to rank the features of importance.
Second, six different ML-based methods are compared in terms
of prediction accuracy, considering the cases of measurements
being taken on the UE or BS side. These works combine
high-level service metrics with additional RAN-level metrics
to estimate the application performance. These do, however,
not address RAN control to approach a desired performance.
Neither do they utilize the ORAN framework for a SD-RAN
with rich monitoring.

While the above works concerned with network slicing and
traffic steering have successfully demonstrated per-slice opti-
mization of performance metrics such as latency and throughput
in ORAN, the characteristics of the end user application is
not considered in any of the optimizations, when applying
RAN-slicing. On the other hand, existing work has also shown
how QoE estimation also can leverage radio information for
end-to-end performance estimation. For this, the knowledge
of the application is of importance for the key performance
indicator (KPI) measurement. This has, however, not been done
in an adaptive way, nor in an ORAN context. The openness
of the ORAN framework suggests that different tasks can be
outsourced to specialists. That is, different vendors can provide
specific xApps for serving a variety of heterogeneous services
to be supported by the RAN as seen in Fig. 1. These could
provide application-layer QoE guarantees through RAN control
for specific applications that have complex requirements. In
[15] a framework for Distributed Ledger Technology (DLT)
management of RAN sharing is proposed. Service providers
facilitate their service on top of the general RAN infrastructure,
by renting resources. In this context, radio resource management
has a different use case than otherwise. While network slicing
for eMBB or URLLC service require the optimization of basic
metrics such as throughput or latency, respectively. Such simple

2

optimization would not necessarily lead to good performance for
applications with more complex needs. In the present work, we
propose a data-driven, application-aware approach to optimizing
the experienced latency of a VR application, while limiting
overprovisioning. Our proposed algorithm is implemented as
an xApp and evaluated experimentally in our ORAN testbed.

II. SYSTEM MODEL

The considered system consists of N UEs with heterogeneous
services and requirements connected to a base station. The base
station possesses a near-RT RIC which exposes control and
monitoring functionalities. The xApp is the key component of
our design. When a service is requested, the xApp requests a
service slice and instantiates a slice handler, which has the task
of monitoring and estimating the UE application performance.
The estimation reports are used to allocate more or fewer re-
sources for the guarantees that were made for the corresponding
slice. The request for a slice creation is from an external entity
to the RAN such as a service provider. Fig. 1 illustrates this
association and interaction. The handlers individually monitor
and estimate the performance of the slice that they control.
They do so by observing the RAN-side statistics on data sent
to the specific UE. They report if more or fewer resources
are required for the service. If resources are insufficient, the
xApp will handle conflict mitigation and interact with the RIC
for resource allocation. Ultimately, the xApp will attempt to
uphold service guarantees, but when this is infeasible a decision
must be made to prioritize the different slices. We consider that
our slice handler uses an Service Model (SM) to continuously
acquire fresh RAN data, and is specialized for inference of the
service in question. Thus, different modules could be developed
by different service providers. Both to infer on the application
performance, as well as estimating the required resources to
uphold a guarantee. In this work, we consider an xApp that
makes inference on the characteristics of VR traffic. With this,
slice guarantees for a service is made feasible through resource
isolation in the RAN In this regard, a request on a video-
frame latency on average is requested, while background traffic
occurs. Optimally the latency guarantee is close to the latency
request, while as much bandwidth is allocated to another user
as possible. We consider this as background data that could be
available to other users, hence maximizing this means being
more effective with the available bandwidth resources.

III. ALGORITHMIC SOLUTION

In this section, we define the principles of the data-driven
process for inferring the VR frame latency, and how these
are used to steer the allocation. For the data-driven allocation
to ensure the latency experienced by a VR UE, we consider
an algorithm that uses RAN data. The data provided for the
algorithm is the downlink bits sent to the UE from the base
station per millisecond. We define a heuristic algorithm that
detects individual video frames sent to the UE from the spacing
of the video Frames Per Second (FPS). Once every time interval,

the corresponding aggregate Medium Access Control (MAC)
data samples of how many bits were sent to the UE and when,
is fed to the algorithm. Every transmission of bits following one
or more empty slots is marked as a chunk of 1 or more video
frames. In the second step, the algorithm considers the expected
number of video frames, given the used video FPS, by which
consecutive, partially overlapping video frames are detected.
With the set of frames detected over the past one-second period,
we calculate an average latency. This is computed as the
time it takes to send the frame, and adding an empirically
observed offset to the latency based on the network. This offset
is a compound average value describing propagation delay,
networking delay and processing delay and other inherent delays
in the system. It was found as the average offset from using
the algorithm to estimate latency of the video frames, and the
observed latency from server to client. The latency is averaged
over the number of frames observed in the period. The result
is used to decide if the allocation should be modified. For this
purpose, we add an allowed slack to the guarantee. That is, if
average latency > requested latency + slack is true, we
increase the RB allocation. Oppositely, if average latency <
requested latency− slack is true we decrease the RB alloca-
tion. Otherwise, the resource allocation remains unchanged.

IV. EXPERIMENTAL SETUP AND IMPLEMENTATION

In this section, we define the xApp to be implemented with
basic functionalities to control the RAN through slicing. This is
executed via a Python application to create an interface to make
requests. Upon the request of a slice with a latency requirement,
a handler is created and attached to the specific slice, on which
the UE is associated. The handler implements the algorithmic
solution in section III. How well latency fulfilment can be
supported will depend on the data-driven approach. As the
required bandwidth varies over time, it may not always be
feasible, if more users require bandwidth. In 5G low-latency
can be supported in an URLLC slice with short Transmission
Time Interval (TTI). As we base our implementation on Ope-
nAirInterface (OaI) [16], and use the FlexRIC implementation
[17] from [18], only 4G slicing is currently possible. With
our experimental setup based on 4G with ORAN support, we
optimize the use of resources by exploiting the control options
of ORAN to optimize the resource allocation. Since network
slicing is a service provided for both 4G and 5G, the learnings
from this work for 4G can also be applied to 5G. We employ
the algorithmic solution described in section III. The xApp will
receive a request for a latency guarantee. Its control loop will
then continuously allocate RBs to keep the VR latency around
the request. On the MAC layer, information relating to the
signal channel quality, and data sent to and from the UE can
be extracted using the default monitoring SM implemented in
the FlexRIC project. When instantiating a SM, different update
rates can be used for how often function calls are made. For our
purpose, we set our monitoring to receive RAN statistics every

3

FlexRIC

Resource Manager xApp

Evaluate
request

Update
allocation

Estimate latency based on
video frame size

Slice
handler

Measure video
frames and

estimate latency

Allocation
controller

MAC stats monitor
(for each RNTI)

Evaluate average frame latency
(Every e.g. 1 second)

Step 4
Send suggested

slice configuration

Receive
monitor information

If allocation feasible
Send slice definition

Average
performance

Compare to
guarantee

Step 5

Step 3
running slice handler

in loop

Slice instantiation request
QoE request

Step 1

Slice deletion request
(Reservation ID)

Step 6

Step 2

Deny Accept

Request denied

Requester

Request accepted:
Reservation ID

Reserved performance

Figure 2: System logic and flow of the xApp.

one millisecond. The flow of the system is illustrated on Fig. 2.
It illustrates the process through which a slice is created, and
how the handler ensures a specific latency in this data-driven
fashion.

In step one, a message is sent to create a slice with the bit rate
of the video, the FPS, and the desired latency. Step two, the slice
is evaluated to be accepted, or denied, based on if the bit rate can
be supported. Step three occurs if the request is accepted, which
leads to creating the slice and the handler. The handler will
execute in a loop until the removal of the slice. Measurements
of the RAN traffic, inference on video frames, and estimates
of the latency are performed before an averaging is applied
to the estimated video latencies. Depending on the result, the
allocation may be updated if too much or too little was allocated
to fulfil the latency. Step four occurs if an allocation update
was found necessary, which means the xApp sends a request to
update the allocation made. Step five occurs at the allocation
controller as information from handlers is gathered, which is
used to define to whom to allocate more or fewer resources. It
is determined if the current bandwidth allocation is sufficient or
if it should be altered. New slice allocation schemes are then
sent to the FlexRIC. Step 3 continues its loop, and steps 4 and
5 will continue to update resource allocation until step 6, where
a request to delete the slice is received. The request contains a
slice ID, which acts as an identifier for the service request.

The solution is tested experimentally by deploying open-
source components. The implementation by OaI [16] is used
for the base station, srsRAN [19] for the UEs, and Open5GS
[20] for a non-standalone core network. The RIC is deployed
as the FlexRIC [17], which currently supports 4G slicing

functionalities for both OaI and srsRAN. Each of the two UEs
utilizes a USRP B210 as radio front-end. One is used as for the
VR user, the other for the secondary UE where we run iperf3
to generate background traffic. We deploy base station, core
network, FlexRIC, and xApp on the same physical computer
in a dockerized environment. The eNB uses a USRP X310
radio front-end that operates with 20 MHz of bandwidth. This
translates into 100 RBs (that can be allocated in Resource Block
Groups (RBGs) of 4 RBs) to be allocated in the downlink.
The UE USRPs are connected to the eNB USRP using cable-
connectors. The resulting channels are randomly time-varying.
For the considered configuration the average downlink data rate
from the eNB, shared between the two users, is ∼ 34Mbit/s.
The used VR traffic trace files [4] contain the size of the video
frame and the timestamp that they were generated. We have
developed a trace playback server that is instantiated on the
User Plane Function (UPF) on the core network. It transmits the
frames at their respective timestamps in User Datagram Protocol
(UDP) packets to the user, who has a client running. The client
can determine the latency that it took the frame to traverse the
network using the timestamp encoded in the packet the client
receives. For accurate latency measurements, the two computers
are clock-synchronized with chrony. The Root Mean Square
(RMS) clock offset of the system from the UE computer, to
the other is less than 50 µs, which is sufficient for measuring
millisecond-level latency. In addition to the VR traffic traces
sent to one UE, a full-buffer traffic flow is generated using the
iperf3 traffic generator. This setup allows to evaluate the latency
of VR frames in a fully loaded system, while measuring leftover
throughput in the network for secondary users.

The assessment of the data-driven approach is twofold. First,
we look at the latency. For VR latency we estimate the video
frames latency at the xApp based on the RAN data and a one
second moving average as explained in section III, assuming
a slack of 1 millisecond. This is compared with the latency
measured at the UE to assess how accurate the estimation is.
Second, we evaluate the bit rate of the secondary UE, which
receives iperf3 traffic from the eNB to quantify the efficiency
of slicing strategy.

V. RESULTS AND DISCUSSION

For the experiments, the VR server streams a 60 FPS VR
video with a 10 Mbit/s avg. bit rate in the downlink to a client
UE, while the iperf3 traffic generator has a full buffer traffic
model, meaning that the traffic streams must share the available
downlink bandwidth. Initially, we consider a shared resource
approach, with no slicing. From this, we extract the latency
of the video frames for the VR traffic, and the downlink data
rate of the other UE, which are the key performance indicators
of interest. In Fig. 3a an overview of latency over time can
be seen. First, we study the accuracy of the of UE video
frame latency estimation. Fig. 3a shows that the estimated RAN
latency follows the actually observed latency from the UE well,

4

thereby confirming the ability to estimate the latency well. From
around the 280-second mark, the latency increases to around 13-
14 ms, due to an increase in VR-UE bit rate as shown in Fig.
3b (a) and (b). Obviously, the impact on the iperf3 UE is a
decrease in the traffic rate it can transmit.

Next, we apply slice isolation to create a set of dedicated
resources that are allocated to the VR user. The iperf3 user gets
the remaining resources (with a total of 25 RBGs to share).
Before presenting the remaining results in Fig. 3b, we consider
static slice allocation, where a set of RBGs are allocated to a
slice, and a UE is associated with the slice. In this context, we
create one custom slice, which is intended to assure the VR
user a specific performance. This is tested with six allocations
to study the impact. The VR UE is allocated 10, 12, 15, 17, 18,
and 20 RBGs respectively in each experiment. The other UE is
on a best-effort slice, that simply utilizes the remaining RBGs
available. In Fig. 4a a box plot of the performance shows the
impact in the respective experiments, with the whiskers showing
the 5th and 95th percentiles. As expected, the more RBGs
allocated to the VR user the lower the experienced latency is. On
the other hand, as shown in Fig. 4b, the fewer RBGs allocated
to the best effort slice, the less bit rate can be consumed by
the iperf3 user. This means that, while an improved latency is
experienced on average, the large variation in frame size means
that too many resources are dedicated for time instances with
small frame sizes, hence those resources remain unused.

To prevent this wastage of resources, we apply the data-driven

approach to monitor the VR traffic and dynamically update the
allocation. The desired latency that the xApp strives to reach
is requested to be ten milliseconds, with the one-millisecond
slack. From Fig. 3c, the data-driven approach is shown. While
the latency increases above 10 ms briefly around the 280-second
mark the latency quickly returns to oscillating just below the
10 ms target. Interesting to the other UE, is how bandwidth is
allocated when the VR traffic does not need it anymore. For
example from 150 seconds until 280 seconds, an increase in
throughput is made available to the iperf3 user. As the VR
application is observed to require a smaller data rate to maintain
the latency, additional RBGs are utilized for the iperf3 user
instead. For the data-driven slicing the mean experienced VR
latency was 9.3 milliseconds. To achieve the same latency using
static allocation would require 18 RBGs. We found that the
mean bit rate of the iperf3 user is 8.2 and 9.5 Mbit/s when
applying the static allocation of 18 RBGs and when applying
data-driven slicing, respectively. This means more resources
were made available to the iperf3 user while maintaining the
same latency for the VR user, demonstrating how data-driven
slicing provides a more efficient use of resources. While the
data-driven approach can improve secondary user data rate
while guaranteeing latency of the VR user, it is worth noting
that this guarantee costs ∼ 17 Mbit/s, when comparing the total
achieved bit rate of ∼ 34 Mbit/s and ∼ 17 Mbit/s in Fig. 3c
(b) and (d), respectively. However, for a system with more VR
users allocated in the same slice, the slicing overhead would be

0 100 200 300 400 500

10

15

20

25

time in seconds

la
te

nc
y

(m
s)

UE observed latency
RAN measured UE latency

(a) Latency, no slicing

0 100 200 300 400 500

0

10

20

30

time in seconds

B
itr

at
e

(M
bi

t/s
)

Iperf3-UE bit rate
VR-UE bitrate

(b) Bit rate, no slicing

0 100 200 300 400 500

6

8

10

12

14

time in seconds

la
te

nc
y

(m
s)

UE observed latency
RAN measured UE latency

(c) Latency, data-driven slicing

0 100 200 300 400 500

0

5

10

15

time in seconds

B
itr

at
e

(M
bi

t/s
)

Iperf3-UE bit rate
VR-UE bit rate

(d) Bit rate, data-driven slicing

Figure 3: Performance of the two users for the no slicing and data-driven slicing cases.

5

10RBG 12RBG 15RBG 17RBG 18RBG 20RBG 10ms

10

15

Allocation type

la
te

nc
y

(m
s)

(a) Latency for VR user with different allocations

10RBG 12RBG 15RBG 17RBG 18RBG 20RBG 10ms
5

10

15

Allocation type

B
itr

at
e

(M
bi

t/s
)

(b) Bit rate available to iperf3 user with different allocations

Figure 4: Latency and bit rate box plots of static allocations (10RBGs - 20RBGs) as well as the data-driven allocation (10ms).

less.

VI. CONCLUSION AND OUTLOOK

In this work we have experimentally demonstrated data-
driven RAN slicing, which uses a continual adaptation of RB
allocation to ensure low latency for a VR stream in a resource-
constrained two-user scenario. This is realized in an ORAN-
based testbed, allowing monitoring of the RAN, where we
extract radio-level information for specific users. Data-driven
slicing is implemented as an xApp that creates a RAN slice
for a VR user, and instantiates monitoring and control of the
performance of this UE. From the monitoring data, the xApp
uses a heuristic algorithm to identify the individual video frames
and the duration of their transmission from which the RAN
latency is estimated. The average estimated latency over a 60
frame period is used to decide if more or fewer RBGs should be
allocated to reach the target of 10 ms latency. Compared to the
static RBG allocation that would result in a similar VR latency,
the data-driven allocation allows the secondary user to have a
15.8% higher throughput.

An obvious next step is to replace the heuristic rule-set of
the data-driven RB allocation algorithm by an AI algorithm,
e.g., exploiting the reinforcement learning paradigm to enable
the xApp to adapt to the characteristics of different types of
application traffic without manually specifying a corresponding
ruleset. Another direction could be to optimize the perceived
QoE instead of VR latency, to avoid unnecessary overprovision-
ing. As QoE cannot be measured directly, proxy metrics would
need to be identified and, e.g., learned by a neural network,
which could in turn be used to guide resource allocation.

REFERENCES

[1] W. Azariah, F. A. Bimo, C.-W. Lin, R.-G. Cheng, R. Jana, and N. Nikaein,
“A survey on open radio access networks: Challenges, research directions,
and open source approaches,” arXiv preprint arXiv:2208.09125, 2022.

[2] A. K. U and G. Gundu Hallur, “Economic and technical implications of
implementation of openran by ”rakuten mobile”,” in 2022 International
Conference on Decision Aid Sciences and Applications (DASA), 2022, pp.
959–964.

[3] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Under-
standing o-ran: Architecture, interfaces, algorithms, security, and research
challenges,” IEEE Communications Surveys & Tutorials, 2023.

[4] F. Chiariotti, M. Drago, P. Testolina, M. Lecci, A. Zanella, and M. Zorzi,
“Temporal characterization of vr traffic for network slicing requirement
definition,” arXiv preprint arXiv:2206.00317, 2022.

[5] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Kontovasilis,
“Flexran: A flexible and programmable platform for software-defined radio
access networks,” in Proceedings of the 12th International on Conference
on emerging Networking EXperiments and Technologies, 2016, pp. 427–
441.

[6] O. Orhan, V. N. Swamy, T. Tetzlaff, M. Nassar, H. Nikopour, and S. Tal-
war, “Connection management xapp for o-ran ric: A graph neural network
and reinforcement learning approach,” in 2021 20th IEEE International
Conference on Machine Learning and Applications (ICMLA). IEEE,
2021, pp. 936–941.

[7] M. Dryjański, Ł. Kułacz, and A. Kliks, “Toward modular and flexible
open ran implementations in 6g networks: Traffic steering use case and
o-ran xapps,” Sensors, vol. 21, no. 24, p. 8173, 2021.

[8] R. Wiebusch, N. A. Wagner, D. Overbeck, F. Kurtz, and C. Wietfeld,
“Towards open 6g: Experimental o-ran framework for predictive uplink
slicing,” 2023.

[9] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Colo-ran:
Developing machine learning-based xapps for open ran closed-loop control
on programmable experimental platforms,” IEEE Transactions on Mobile
Computing, 2022.

[10] D. Johnson, D. Maas, and J. Van Der Merwe, “Nexran: Closed-loop
ran slicing in powder-a top-to-bottom open-source open-ran use case,”
in Proceedings of the 15th ACM Workshop on Wireless Network Testbeds,
Experimental evaluation & CHaracterization, 2022, pp. 17–23.

[11] V.-D. Nguyen, T. X. Vu, N. T. Nguyen, D. C. Nguyen, M. Juntti, N. C.
Luong, D. T. Hoang, D. N. Nguyen, and S. Chatzinotas, “Network-
aided intelligent traffic steering in 6g oran: A multi-layer optimization
framework,” arXiv preprint arXiv:2302.02711, 2023.

[12] F. Kavehmadavani, V.-D. Nguyen, T. X. Vu, and S. Chatzinotas, “In-
telligent traffic steering in beyond 5g open ran based on lstm traffic
prediction,” IEEE Transactions on Wireless Communications, 2023.

[13] C. Baena, S. Fortes, E. Baena, and R. Barco, “Estimation of video
streaming kqis for radio access negotiation in network slicing scenarios,”
IEEE Communications Letters, vol. 24, no. 6, pp. 1304–1307, 2020.

[14] C. Baena, O. Peñaherrera-Pulla, R. Barco, and S. Fortes, “Measuring and
estimating key quality indicators in cloud gaming services,” arXiv preprint
arXiv:2212.14073, 2022.

[15] L. Giupponi and F. Wilhelmi, “Blockchain-enabled network sharing for
o-ran in 5g and beyond,” IEEE Network, vol. 36, no. 4, pp. 218–225,
2022.

[16] OpenAirInterface. [Online]. Available: https://gitlab.eurecom.fr/oai/
openairinterface5g

[17] Flexric. [Online]. Available: https://gitlab.eurecom.fr/mosaic5g/flexric
[18] R. Schmidt, M. Irazabal, and N. Nikaein, “Flexric: an sdk for next-

generation sd-rans,” in Proceedings of the 17th International Conference
on emerging Networking EXperiments and Technologies, 2021, pp. 411–
425.

[19] srSRAN. [Online]. Available: https://github.com/srsran/srsRAN 4G
[20] Open5GS. [Online]. Available: https://github.com/open5gs

6

https://gitlab.eurecom.fr/oai/openairinterface5g
https://gitlab.eurecom.fr/oai/openairinterface5g
https://gitlab.eurecom.fr/mosaic5g/flexric
https://github.com/srsran/srsRAN_4G
https://github.com/open5gs

	Introduction
	System model
	Algorithmic solution
	Experimental setup and Implementation
	Results and Discussion
	Conclusion and Outlook
	References

