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Abstract—In this paper, we leverage a multi-agent reinforcement
learning (MARL) framework to jointly learn a computation offload-
ing decision and multichannel access policy with corresponding
signaling. Specifically, the base station and industrial Internet of
Things mobile devices are reinforcement learning agents that need
to cooperate to execute their computation tasks within a deadline
constraint. We adopt an emergent communication protocol learning
framework to solve this problem. The numerical results illustrate
the effectiveness of emergent communication in improving the
channel access success rate and the number of successfully com-
puted tasks compared to contention-based, contention-free, and no-
communication approaches. Moreover, the proposed task offloading
policy outperforms remote and local computation baselines.

Index Terms—Dec-POMDP, IIoT, mobile edge computing, mul-
tiagent reinforcement learning, emergent communication.

I. INTRODUCTION

The rapid development of 5G and beyond network tech-
nologies is enabling a plethora of Internet of Things (IoT)
applications. The number of connected IoT devices is expected
to reach 25.4 billion devices by 2030 [1]. The application of IoT
in the industrial sector referred to as Industrial Internet of Things
(IIoT) accounts for a large part of these connected devices [2]. In
industrial environments, sensors, actuators, and other machines
continuously generate various types of computation tasks, lead-
ing to a large amount of data traffic, that needs to be processed
in a timely, reliable, and efficient way. However, IIoT mobile
devices have limited power and computation resources, which
limit their ability to process their computation tasks in a reliable
and efficient manner [3]. To tackle this problem, mobile edge
computing (MEC) is a promising solution in which base stations
are equipped with high-capacity computation resources, to which
IIoT mobile devices can offload their computation tasks for fast
execution. Nevertheless, computation task offloading adds an ad-
ditional transmission delay to the computation delay. Therefore,
IIoT mobile devices must decide whether to remotely or locally
execute their computation tasks based on the availability and
quality of communication resources and traffic load.

The huge number of connected IIoT mobile devices and their
various computation data traffic load drives the adaptability
of dynamic multichannel access schemes to allow efficient

utilization of spectrum resources. However, it is difficult for
IIoT mobile devices to observe all channel states across the
network. Traditional multichannel access approaches are mainly
categorized into contention-based and contention-free schemes.
In contention-based, IIoT mobile devices access the channel in a
random way, thus if multiple IIoT mobile devices simultaneously
choose the same channel to offload their computation tasks, high
interference and collision may occur leading to low efficient task
offloading performance [3], [4]. On the other hand, contention-
free adopts a centralized coordinator to allocate resources, which
may cause overhead and delay, that may not be tolerable by
some applications. Thus, task offloading may not give better
performance than local computing. Therefore, in this work, we
investigate the problem of joint task offloading decision and
task scheduling for maximizing the number of computation
tasks that can be executed under a task deadline constraint.
Recently, reinforcement learning has shown a great advantage
in solving problems in dynamic environments, where agents can
make decisions based on their partial observations and historical
information [5]. Therefore, we adopt reinforcement learning
(RL) as a framework to coordinate multichannel access and task
offloading to achieve efficient computing.

The works in [6]–[10] studied the task offloading problem in
the IIoT environment using RL. Studies in [6], [7] minimized the
system delay using different RL algorithms such as Q-learning,
and deep deterministic policy gradient (DDPG). However, the
authors ignored the multichannel access problem and assumed
that communication channels are uniformly distributed and pre-
allocated to the IIoT mobile devices at each time slot, which
is an unrealistic assumption. The work in [8], [9] considered
multiple edge computing servers to minimize the long-term
energy consumption and system costs (i.e., energy and delay).
Nonetheless, the authors assumed that each edge server has one
communication channel serving an IIoT mobile device, which
is an unrealistic assumption.

The closest related work to our study is [10], which con-
sidered the joint multichannel access and task offloading prob-
lem. Therein, the proposed RL algorithm shows a significant
reduction in computation delay and improvement in channel
access success rate compared to single-agent RL algorithms.979-8-3503-1090-0/23/$31.00 © 2023 IEEE
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However, the authors ignore the connection establishment time,
during which the signaling control messages are exchanged
among agents to coordinate channel access which may not
always achieve a good policy. Moreover, the authors ignored
dynamically generated computation traffic. In contrast to this
work, we consider the problem of jointly learning the signaling
control messages and offloading decision policy to achieve a
better coordination policy in dynamic environments.

Emergent communication protocols have been studied using
MARL in [11], [12] and have shown a significant improvement
in learning cooperative behavior in multi-agent reinforcement
learning. The authors in [13]–[16] show that a significant reduc-
tion in signaling overhead and delay and higher average good-
put and successful channel accessing is achieved via emergent
communication protocols. Thus, in this study, we aim to pro-
pose a general framework adopting emergent communication
protocols for solving the computation offloading decision and
multichannel access problem. The goal is to let agents learn
a joint offloading decision and multichannel access policy via
communication. To the best of our knowledge, this is the
first work applying emergent communication protocols in a
mobile edge computing IIoT scenario. Our contribution can be
summarized as follows:

• We proposed a novel framework for mobile edge computing
in IIoT based on emergent communication to solve the
problem of joint task offloading decision and scheduling
of computation tasks.

• We consider a dynamic traffic arrival model and show that
our proposed combined scheme, which offloads part of the
tasks when resources are available and executes part of
tasks locally in case of scarce resources outperforms remote
and local computation schemes in increasing the number of
successfully computed tasks within the deadline constraints.

• Simulation results demonstrate the efficiency of emergent
communication in increasing the channel access success
rate and the number of successful computation tasks within
deadline constraints compared to traditional schemes and
no communication approaches.

The rest of the paper is organized as follows. In Section II, we
state our system model. In Section III, we formulate the problem
using a reinforcement learning framework. Section IV provides
our simulation model and results. Finally, we conclude the paper
in Section V.

II. SYSTEM MODEL

A. Network Model

We consider a mobile edge computing (MEC) network system
consisting of a base station and N industrial internet of things
(IIoT) mobile devices indexed by N ≜ {1, 2, . . . , N} as shown
in Fig.1. The base station has a central processing unit (CPU)
with maximum computation speed Fmax and M downlink
multiaccess channels indexed by M ≜ {1, 2, . . . ,M} each with
bandwidth W MHz. The base station computation resources are
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Figure 1: System Model.

divided equally among the scheduled users to allow parallel
computation. Each IIoT mobile device has limited computation
speed fn and a computation queue operates in a first-in-first-
out (FIFO) manner with a maximum capacity of K computation
tasks indexed by K = {1, 2, . . . ,K}. Each computation task k is
non-dividable and has parameters (Ak, Lk, τk), where Ak is the
task size in bits, Lk is the number of CPU cycles per bit required
for complete task execution and τk is the task delay deadline 1.
The arrival of computation tasks in the queue is modeled as a
Poisson process with arrival rate λ = pk × T , where pk is the
task arrival probability and T is the communication time period.
The computation tasks can be either computed locally at the IIoT
mobile device or remotely at the base station. The computation
decision is denoted by xk,n = {0, 1}, where xk,n takes value
0 if task k at mobile device n is locally computed and 1 if the
task is remotely computed. We assume that each IIoT mobile
device offloads the task with a fixed power level pn.

B. Communication Model

We assume that the base station and IIoT mobile devices
communicate over data and control channels. The data channels
are used for exchanging data while control channels are used to
share information about the system state. We consider a discrete
system model which adopts an orthogonal frequency division
multiple access (OFDMA) transmission scheme. At each time
slot, the IIoT mobile devices randomly access the shared data
channels to offload their computation tasks, which may lead to
collisions. Thus, at each time step t, the base station can transmit
a control message Dn to each IIoT mobile device and each
IIoT mobile device n can send a control message Un to the
base station while being able to offload his computation task
through one of the uplink shared data channels to manage the
channels access. We assume that the uplink and downlink control

1Note that we consider a smart logistics use case, where mobile robots read
the RFID of goods and get information about the goods like size, type etc. then
offload the information to the base station to compute the best path for goods
from a vehicle to shelves and vice versa.



channels are dedicated and error-free and have a maximum
capacity of Cmax bits per second, which allows transmission
of messages from a vocabulary set V of size 2Cmax (i.e. each
message has length Cmax bits). We also assume that the data
channels are modeled as a time-invariant Gaussian channel with
additive white Gaussian noise vector z ∼ CN (0, σ2), where
σ2 = ℵ0W and ℵ0/2 is the noise power spectral density. Thus,
the uplink rate of IIoT mobile device n is expressed as

Rn = W log2

(
1 +

gn,mpn
σ2

)
bps (1)

where gn,m is the data channel gain between the base station
channel m and IIoT mobile device n. We assume that each IIoT
mobile device can be allocated at most one channel at each
time slot and offload one task. We consider the transmission of
computation tasks to be finished when each IIoT mobile device’s
queue is empty.

C. Computation Model
At the beginning of each time slot, each IIoT mobile device

has a new computation task that arrives with a certain probabil-
ity. We adopt the computation model based on the advanced
dynamic voltage and frequency scaling (DVFS) technique at
both the base station and IIoT mobile devices [17]. If the IIoT
mobile device n decided to compute task k locally, the local
computation time is given by

tlk,n =
Ak,n × Lk,n

fn
(2)

If the IIoT mobile device n decided to offload task k to the base
station, the remote computation time includes the upload time,
execution time at the base station, and download time for the
computed result. Since in our usecase (i.e smart logistics) the
size of the computed result is relatively small compared to the
task size and the base station has high power capabilities, we
ignore the download time. Therefore, the remote computation
time includes only the upload time and execution time at the
base station, which is given by

trk,n = tuk,n + tek,n =
Ak,n

Rn
+

Ak,n × Lk,n

fm
(3)

where fm is the computation resources allocated to the com-
putation task offloaded on channel m. Hence, for IIoT mobile
device n, the delay time for task k can be expressed as follows

tk,n =

{
tlk,n if xk,n = 0 local computation
trk,n if xk,n = 1 remote computation

In this study, our objective is to maximize the number of
computation tasks that can be executed within the delay con-
straint by solving the problem of joint offloading decision
and scheduling of computation tasks. Since successful channels
access have a major impact on the task offloading decision, we
also aim to maximize the channel access success rate expressed
as Rs =

Ns

M×T which is defined as the total number of channels
successfully accessed denoted by Ns divided by the total number
of channels and the number of communication time slots.
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Figure 2: IIoT MDs and BS are cooperative MARL.

III. PROBLEM FORMULATION

We formulate the problem as a multi-agent reinforcement
learning (MARL) cooperative task due to the advancements
in deep reinforcement learning (DRL), where the base station
and IIoT mobile devices are RL agents that need to learn
how to communicate to solve the problem of joint offloading
decision and scheduling of computation tasks as shown in
Fig. 2. The problem is modeled as a decentralized partially
observable Markov decision process (Dec-POMDP), augmented
with communication. A Dec-POMDP for n agents is defined
by the global state space S, an action space A1,A2, . . . ,An,
and an observation space O1,O2, . . . ,On for each agent. In
Dec-POMDP, an agent observation does not fully describe the
environment state and each agent action space is subdivided into
an environment action space and a communication action space.

We assume that the agents interact with each other over
T finite episodes, where each episode terminates when the
queues of all IIoT mobile devices are empty or the maximum
number of time steps tmax is reached. At each time step t,
each agent has his own observation of the system. The IIoT
mobile device n has observation ont = (|K|, S), which includes
the number of computation tasks in the queue |K|, and S
the selected channel state. The selected channel state takes
values S ∈ {0, 1, 2} where 0 means that the channel is not
needed in case of local computation, 1 if the channel is free
and 2 if a collision occurs over the channel. The base station
has an observation obt = (h1, h2, . . . , hM ,Ns), which contains
the states of the M channels, where

hm =


0, if the channel is idle
n, if IIoT MD n transmits on the channel
N + 1, if the channel has collision

indicates if the channel is idle or has a successful transmission
from user n (i.e. one IIoT mobile device transmits) or has a
collision (i.e. more than one IIoT mobile device transmits). It
also contains the mobile devices that successfully computed their
tasks within the deadline constraint denoted by Ns.

The action space contains the actions of the IIoT mobile
devices and base station. Each IIoT mobile device based on its
current state takes an environment action and a communication



action. The environment action contains an offloading decision
and a channel selection action at

n = (ao, ac), where ao ∈ {0, 1}
is the offloading decision action and ac ∈ {0, 1, 2, . . . ,M}
is the channel selection action such that 0 indicates that the
IIoT mobile device does not need to access the channel if
the task is computed locally and {1, 2, . . . ,M} is the selected
channel for offloading. The communication action (i.e uplink
message) Un ∈ {0, 1} is interpreted by the base station as 0
for a null message and 1 for a scheduling request. The base
station based on its current state utters a communication action
to each IIoT mobile device Dn ∈ {0, 1, 2,M,M + 1} that has
no direct effect on the environment, which is interpreted as 0
for a null message, {1, 2, . . . ,M} for scheduling grant to one
of the communication channels and M +1 for acknowledgment
of the successful computation of the offloaded task. Note that
the agents have no prior knowledge about the meaning of the
communication messages and they learn to associate meaning
during training.

The reward at each time step is defined as

rn(t) =



+ρ if the task computed within the deadline
constraint.

−ρ if the task computation exceeded the
deadline constraint.

0 otherwise

The reward is +ρ if the IIoT mobile device computed his
task within the deadline constraint, −ρ if the task computation
exceeds the deadline constraint, and 0 otherwise. The team
reward is the sum of the rewards of all IIoT mobile devices,
which is defined as r(t) =

∑
n∈N rn(t). The agent state at

time step t is a tuple comprising the most recent l observations,
actions, and uplink and downlink messages:

• IIoT mobile device state: (ont , . . . , o
n
t−l, a

n
t , . . . , a

n
t−l, U

n
t ,

. . . , Un
t−l, D

n
t , . . . , D

n
t−l)

• Base station state: (obt , . . . , o
b
t−l,U t, . . . ,U t−l,Dt,

. . . ,Dt−l)

where U ≜ [U1, U2, . . . , UN ] and D ≜ [D1, D2, . . . , DN ]
are the uplink and downlink messages, respectively. Each IIoT
mobile device deletes the computation task from the computation
queue if it is successfully computed locally or remotely at the
base station otherwise the task is kept in the queue for two-time
steps and then dropped.

IIoT MDs have low computational power and low battery
power which makes performing AI learning models at each
device not practical and limits cooperation among MDs. Thus,
we use the multi-agent proximal policy optimization (MAPPO)
algorithm [18], [19], which is an on-policy policy gradient
algorithm. MAPPO allows centralized training and decentralized
execution (CTDE), where the agents learn a shared optimal
policy instead of individual policy for each agent. The actor-
critic network architecture is adopted along with the general-
ized advantage estimation (GAE) [20]. MAPPO optimizes a

Table I
SIMULATION PARAMETERS

Parameters Values
Number of Sub-carriers 2

5G-NR frequency band (FR1) 410–7125 MHz
Sub-carrier Bandwidth 10 MHz

Number of IIoT Mobile Devices 3
Distance-dependent Path loss 128.1 + 37.6 log10 d, dB

Tasks Size 100− 500 bits
Tasks Computation Requirement 102 − 2× 104

Tasks Delay Tolerance 1− 5 millisecond
Noise Power Spectral Density -174 dBm/Hz

Base station Computation Capacity 100 GHz
IIoT Mobile Device Computation Capacity 1 GHz

IIoT Mobile Device Queue Capacity 25
Probability of Task Arrival 0.90

Duration of episode 25

Table II
MAPPO HYPERPARAMETERS

Hyperparameter Values Hyperparameter Values
Number of episodes 10000 Learning rate 10−3

Minibatch size 128 Discount factor (γ) 0.99
GAE parameter (λ) 0.95 Clipping parameter (ϵ) 0.2

VF coeff. (c1) 0.2 Entropy coeff. (c2) 0.2
Optimizer Adam Optimizer epsilon 10−5

surrogate-clipped objective function and updates the policy and
value functions via mini-batches.

IV. SIMULATION MODEL AND RESULTS

In this section, we evaluate the performance of our proposed
framework. We consider a 10×10 m2 warehousing logistic area
with a base station and N = 3 IIoT mobile devices 2. The
path loss between the base station and IIoT mobile devices is
modeled as 128.1 + 37.6 log10(d), where d is the distance in
Kilometers. The system parameters are listed in Table I. MAPPO
is implemented with the hyperparameters listed in Table II,
where the policy and value functions are represented by separate
MLP fully connected linear neural networks and optimized by
Adam optimizer [21].

We evaluate the performance over the training process, where
the solid lines represent the average performance in the evalu-
ation episodes during the training and the shaded regions show
the 95% confidence interval (CI). We compare the proposed
combined mode (i.e. local and remote computation) solution
with the following baselines

1) Local computation: all IIoT MDs locally compute their
computation tasks.

2) Remote computation with no-communication: all IIoT
MDs remotely compute their computation tasks at the BS
without exchanging messages.

3) Remote computation with communication: all IIoT
MDs remotely compute their computation tasks at the BS
and exchange messages.

2limited computing resources restricted us to small setting but the idea is
applicable to large setting scenarios.
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Figure 3: Number of tasks successfully computed versus training
episodes.

4) Contention-free: the BS controls and schedules the trans-
mission over the downlink data channels. Each IIoT MD
sends a scheduling request if its computation queue is not
empty and offloads the task if the BS sends a scheduling
grant. The IIoT MD deletes the task from the queue if it is
computed successfully within the deadline constraint and
an ACK is received from the BS. At each time step, the
BS assigns the available channels to the IIoT MDs sent
scheduling requests. If the IIoT MD made a successful task
computation simultaneously and sent a scheduling request,
the BS will send an ACK and ignore the scheduling
request.

5) Contention-based: Each IIoT MD transmits with a certain
probability pt if the computation queue is not empty and
randomly accesses the channels.

Fig. 3 shows the number of tasks successfully computed
within the deadline constraint during training. It indicates the
superiority of the proposed combined scheme with communi-
cation in increasing the number of successfully computed tasks
within deadline constraints compared to other schemes during
the training and testing phase as well. As we can observe, the
combined and remote schemes with communication outperform
the combined and remote with no communication highlighting
the effectiveness of the learned communication protocol in im-
proving system performance. Obviously, contention-free scheme
outperforms the contention-based one as the BS schedules
the transmission and eliminates collision compared to random
channel access in contention-based.

Fig. 4 demonstrates the channels access success rate with
training. As expected the remote scheme has the highest channel
access rate as the IIoT MDs always offload their computation
tasks to the BS. On the other hand, the local scheme does
all computations locally and does not access the channels.
As we can notice, the learned channel access protocol by
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remote schemes outperforms contention-free and contention-
based schemes, which shows that the remote schemes learned
different and more efficient protocols to access the channels.
Moreover, the remote scheme with communication has a high
channel access rate during the training and testing phases, which
indicates that the IIoT MDs and BS learned a good communi-
cation protocol from scratch to coordinate channel access and
reduce collision. The collision rate for different schemes is
shown in Fig. 5. We can observe that the contention-free scheme
has zero collision rate due to the centralized coordination of
channels access. We can also observe the effectiveness of com-
munication in remote and combined schemes in maintaining a
low collision rate (i.e. high task offloading efficiency) compared
to no communication schemes.

Fig. 6 depicts the goodput versus the training episodes.
The goodput is defined as the unique number of computation
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tasks successfully received at the base station divided by the
episode duration. The larger the goodput the better the scheme
performance as a larger number of tasks has been successfully
received in less time. It is easy to see the superior performance
of the remote scheme as it always sends computation tasks to
the BS.

V. CONCLUSION

In this article, we proposed an emergent communication
protocol learning framework for solving the problem of joint
task offloading decision and scheduling of computation tasks
in an IIoT scenario. The problem is formulated to maximize
the number of computation tasks that can be executed within
the deadline constraint. MARL framework is adopted where the
base station and IIoT MDs are reinforcement learning agents that
learn how to communicate with each other to solve the problem
in a cooperative manner. The simulation results indicated the
effectiveness of the learned protocols in maintaining highly
efficient task offloading and maximizing the number of success-
fully computed tasks within the deadline constraint compared
to traditional approaches. In future work, the scalability of the
proposed approach in which a large number of IIoT mobile
devices are connected to the network will be studied.
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