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Abstract—A buffer management scheme destined to be deployed in In-
ternet routers should provide an adequate handling of all traffic types, in-
cluding UDP and TCP traffic as well as fairness among competing flows. In
core routers, keeping per-flow state and taking per-flow actions is strongly
discouraged, because of the scalability issues that ensue. Consequently,
CSFQ [12] adopts a distributed architecture, and uses rate information to
provide fairness in core routers. However, we show that CSFQ is sensitive
to the setting of its parameters and often leads to a reduction in aggregate
throughput. In this paper, we present Rate and Queue controlled Random
Drop (RQRD), a buffer management scheme which is based on CSFQ’s dis-
tributed architecture, but adds queue size information, as in RED, and pro-
vides two drop precedences to achieve all the objectives above. We show
that RQRD provides an adequate service in the context of both the present
and the future Internet.

I. INTRODUCTION

The Internet must support traffic types which are very differ-
ent in nature, generated by various applications using either the
TCP or UDP transport protocol. In today’s Internet, traffic of
all types is served by a single FIFO queue and share the same
bandwidth resources on the link. The traditional view which is
that TCP traffic is the real and useful traffic, whereas UDP traf-
fic is only an additional nuisance1 has led to the development of
buffer management schemes either aimed to serve TCP traffic,
or to protect TCP traffic from competing UDP flows (e.g., RED
[4], CSFQ [12]). However, in the context of an Integrated Ser-
vices network, UDP is not always undesirable, despite its non-
responsive nature. (For example, in the case of a video stream,
the excessive loss of packets renders the stream useless at the
receiver.) Consequently, (1) it is important for a buffer manage-
ment scheme to provide a service that is adequate to both UDP
and TCP traffic. In addition, it should be able to differentiate
between different UDP flows, in support of applications such as
layered video and voice. Moreover, (2) a buffer management
scheme should be equipped to provide fairness among compet-
ing flows. For example, unfriendly UDP traffic should not starve
competing TCP flows. Also, if different customers are paying
for the same service, each should be capable of getting the same
service rate from the network. Nevertheless, no per-flow state
should be kept in routers given the scalability issues that ensue.
Also, fairness should not be achieved at the expense of through-
put. Finally, (3) a buffer management scheme should be robust.
It should perform effectively for a wide range of conditions in
terms of buffer size, traffic characteristics and traffic mix. Also,
its performance should not be too sensitive to the setting of its
parameters.
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This belief is triggered by the original vocation of the Internet, which is to
serve TCP data traffic, and is reinforced by the responsive nature of TCP traffic.

Since keeping per-flow state and taking per-flow actions is
strongly discouraged, the design of such a scheme is a chal-
lenging task. For example, RED uses queue size information
to improve TCP throughput but is neither equipped to provide
fairness among various competing flows, nor is effective in the
presence of UDP traffic; on the other hand, CSFQ uses rate in-
formation to protect TCP traffic from competing UDP flows,
but (as we show in this paper) can lead to a massive reduction in
achievable throughput.

In this paper, we present Rate and Queue controlled Ran-
dom Drop (RQRD). Based on CSFQ’s distributed architecture,
RQRD takes into account both rate (just as CSFQ) and queue
size (just as RED) information to achieve the objectives de-
scribed above. We start in Section II with an overview of prior
work. In Section III, we state our assumptions and describe the
details of the RQRD algorithm. In Section IV, we use simula-
tion to compare RQRD to existing queue management schemes.
Finally, Section V summarizes the results of this paper. A longer
version of this paper including the algorithm pseudocode can be
found at http://www-mmnetworks.stanford.edu.

II. PRIOR WORK

According to Drop Tail (DT [5]) which, owing to its simplic-
ity, is used in most routers today, incoming packets that find the
queue full are simply dropped. Yet, DT suffers from a number of
shortcomings, preventing it from acting effectively in the pres-
ence of congestion: first, there is no way of ensuring fairness
among flows traversing a Drop Tail queue; second, in the case
of TCP traffic, DT queues have been shown to introduce global
synchronization in the network, leading to both a decrease in the
average throughput and an increase in the average delay through
the link [5]. To avoid DT’s shortcomings, RED [4] attempts to
avoid buffer overflow by controlling the queue size so it is kept
at a reasonably low level. Alternatively, CSFQ [12] attempts to
reduce the effect of congestion on individual flows by allocating
to each flow a minimum portion of the resources, independently
of other traffic in the network. In this section, we present a de-
scription of RED and CSFQ.

A. Random Early Detection (RED)

RED [4] is a mechanism that attempts to provide a high ag-
gregate throughput while keeping the queue size small by drop-
ping packets probabilistically before the buffer overflows, using
for that purpose a probability drop function that increases with
the average queue size2. Designed for TCP traffic, the assump-
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The average queue size itself is computed using an Exponential Weighted
Moving Average (EWMA) when the queue is non-empty [4]. (In case the queue



tion is that marking a packet causes the source to reduce its rate
of transmission (by reducing the TCP window size). [4] shows
that by getting rid of global synchronization, RED is capable
of reducing the average queue size, while increasing the aver-
age throughput on the link. However, RED is shown to be sen-
sitive to the setting of its parameters ([3], [7]). [3] also finds
that unless the buffer size is large enough, RED is incapable of
avoiding buffer overflow. In addition, [7] finds that in some situ-
ations RED does not bear any progress in terms of fairness when
compared to DT. Finally, RED is not equipped to insure fairness
among a number of streams flowing through the buffer; in par-
ticular, in case UDP and TCP traffic are mixed together, TCP
gets a significantly lower portion of the link bandwidth.

In light of RED’s shortcomings, other approaches have been
investigated through the development of competing schemes,
e.g., BLUE [3]. Also, a number of buffer management schemes
that are based on RED have been developed, in order to alleviate
the lack of fairness that results from the basic RED algorithm,
e.g. RIO ([2], [10], [6], [11]) and CHOKe [8].

B. Core-Stateless Fair Queuing (CSFQ)

Similarly to RED, CSFQ [12] assumes that routers are
equipped with FIFO queues. As in RED, admittance to the
queue is controlled by an algorithm which computes a drop
probability for each packet that arrives to the queue. However,
whereas RED uses the queue size as a control parameter, CSFQ
uses rate information in an attempt to insure fairness among the
flows sharing the buffer. The Internet core is assumed to be par-
titioned into different administrative domains, called core net-
works. In order to avoid keeping per-flow information and per-
forming per-flow actions in core routers, CSFQ is a distributed
algorithm, where edge and core routers3 exercise different, com-
plementary functions.

Edge Router Function. Edge routers keep a table of all
flows entering the core network; they estimate the rate of each
flow and insert this estimate as a label in the packet. More
specifically, upon the arrival of a packet belonging to flow i at
time t, the current rate of that flow is estimated using �������� ���	�

��������������� �� ��� ����������� ��� � ��"! where ��� � �� denotes the old esti-
mate of the rate of the flow, # � represents the current inter-arrival
time between the previous and current packets pertaining to flow$

and % � is the size of the current packet. The result is a moving
exponential average of the rate � � of flow i4. The packet is then
stamped with � � and transmitted into the core network.

Core Router Function. Core routers decide on whether to
drop a packet based on aggregate measurements and the label
that is inserted in the packet. More specifically, the core router
computes the aggregate arrival rate to the queue & ��'(�

, the rate
of packets admitted to the queue ) ��'(�

, and uses both & ��'(�
and) �*'(�

to estimate the fair share of the link bandwidth + �*'(�
for

each flow that contends for the resources. The drop probability
is then computed as ,.- �0/2143 �65 ! 	7

8:9<;*=> 9<;*= �@? & ��'(�

and ) �*'(�
are

is idle, then a different formula is used, so the queue average size decreases
exponentially with the queue idle time [4].)A

Routers sitting at the edge of the domain, and those sitting inside the domain
are called edge and core routers, respectively.B

As described in [12], the weight used ( CEDGF �IH(J
) results in a rate estimate

that converges asymptotically to the real rate.

computed using the same exponential averaging method used by
the edge router for � �*'(�

.

Denoting by K the total link bandwidth, the fair share esti-
mation algorithm is as follows. A congestion bit L � is defined,
which value depends on & �*'(�

and K . More specifically, L � is
initialized to 0. If & �*'(�

exceeds K for a time period exceed-
ing MON , L � is set to 1, indicating that packets must be dropped
in order to prevent buffer overflow. Conversely, If & ��'(�

is less
than K for a time period exceeding a window M N , L � is reset to
0. The fair share + �*'(�

is updated once each M N period. In caseL � � 5
at time t, + �*'(�

is simply set to the largest per-flow rate
seen at the input of the queue during the period P 'Q
 MRN ! 'TS

. In
case L � � 	

, then + ��'(�
is updated using + ���U� � + � � � ?TVWX?

Note
that updating + �*'(�

has the desired effect of adjusting ) �*'(�
such

that ) �*'(�ZY� K 5.

Additional Considerations. The rate estimate computed by
the edge router and inserted in a packet header is only a good
estimate of the rate of the flow to which the packet belongs as
long as no packets are dropped inside the network. To allevi-
ate this problem, each core router along the path of a packet
modifies � �*'(�

using � ���U� �[/]\ ^ � � � � � ! + ��?
Also, CSFQ can be

easily extended to provide competing flows unequal shares of
the link. For this purpose, each flow

$
is assigned a weight _ � .

The Ingress router stamps each packet with
> �� � instead of � � . In

addition, the expression for , - becomes , - �`/21�3 �65 ! 	a
 + � �> � �
.

Goals and Shortcomings. As its name indicates, the purpose
of CSFQ is to prevent congestion by giving to each flow a fair
share of the resources. In particular, simulations in [12] show
that CSFQ is capable of protecting TCP flows from overwhelm-
ing UDP flows. In addition, contrary to traditional fair queu-
ing schemes that keep per-flow state in routers, the advantage
of CSFQ lies in it’s simplicity and scalability: FIFO queues are
maintained in core routers, which neither carry state nor perform
actions on a per-flow basis.

However, we will show in our simulations that CSFQ suf-
fers from three shortcomings that hinder its performance. First,
CSFQ is not capable of protecting UDP traffic against TCP traf-
fic. Second, we show in Section IV that in its attempt to provide
fairness among competing flows, RQRD leads to a massive re-
duction in throughput in a number of common and realistic situ-
ations, in particular when applied to TCP traffic. Finally, CSFQ
drops packets according to the drop probability ,�- as soon asL � is set to 1 even though there could be enough buffer space
to accommodate the excess traffic. As suggested in [12], this
makes the choice of the value for the K parameter essential to
the operation of CSFQ6.

b
As mentioned in [12], CSFQ includes two additional heuristics: first, CSFQ

reduces cedgf�h by 1% each time the buffer overflows. Conversely, when i�j is
reset to 0, i�j remains equal to 0 until the queue size exceeds half the buffer size.
This feature insures that no packet is dropped when the buffer is almost empty
([12]).k

In fact, the amount of transient burstiness allowed by the estimation algo-
rithm should be proportional to buffer size; thus, K must be proportional to the
buffer size, i.e. lnmporqtsu . Also, the optimal value of o depends on the ex-
pected traffic burstiness, so l cannot always be set optimally in a realistic en-
vironment, where traffic burstiness constitutes a dynamic phenomenon. In fact,
simulation will shed some light on the undesirable dependence of achievable
throughput on l in case CSFQ is used. (See Section IV.)



III. RQRD ALGORITHM

RQRD is based on the distributed architecture used in CSFQ.
RQRD provides two drop precedences to differentiate loss sen-
sitive traffic, such as voice and video traffic from other traffic in
the network. Edge routers implementing RQRD keep for each
flow7 $

, in addition to the estimate the rate of the flow � � the drop
precedence of that flow, � � . We assume two priority levels for
dropping (1 designating the highest level, 0 the lowest). Flows
that do not tolerate any packet drop belong to level 1 (e.g., the
base layer of an UDP video stream). Flows that tolerate packet
drop belong to level 0, and can include both TCP and UDP traf-
fic. � � is estimated just as in CSFQ. (See Section II-B.) Each
packet is stamped with both � � and � � prior to its transmission
into the transit network.

An RQRD core router delays any dropping action until both
the queue size increases significantly and the aggregate rate ex-
ceeds the total link bandwidth, indicating that the transient con-
gestion experienced will most likely become persistent. In order
to achieve this goal, RQRD uses two drop probability functions,
a rate dependent ,.- and a queue size dependent ,�� .

Drop Probability , - . , - relates to the fair share, as estimated
by a core router + �*'(�

, � �*'(�
and � . In case s = 1, , - � 5

, meaning
that the packet is only dropped in case of buffer overflow. In case
s = 0, the drop probability ,.- is function of r(t) and + ��'(�

, exactly
as in CSFQ, using the formula shown in Section II-B.

The fair share estimation performed in core routers is done
in a manner that is very similar to CSFQ, except that the drop
precedence of incoming packets is also taken into account. In
particular, an RQRD core router estimates the total rate of pack-
ets of drop priority 0 at the queue input, & �6'(�

, and the total rate
of packets of priority 0 and 1 admitted to the queue, ) �6'(�

and� �*'(�
, respectively; for that, it uses the same exponential aver-

aging method described in Section II-B. The value of a link
congestion bit, L � is obtained as in CSFQ (Section II-B), except
that K is replaced here with K�� �*'(� � K 
 � �*'(�

, which rep-
resents the service rate for packets of drop priority 0. The fair
share + �6'(�

is then updated exactly like in CSFQ.
Queue Dependant Drop Probability , � . In addition, RQRD

uses a queue dependent drop probability function , � , which, as
in RED, is a non-decreasing function of the average queue size� �*'(�

. The value of ,�� is obtained as follows: as in RED, we
define

�	� � � and
����

�

to be two thresholds to which
� �*'(�

is
compared, and

� ; � ; to be the total buffer size. We also define
a buffer congestion bit, L�� , and set its value according to the
position of

� �*'(�
with respect to

�	� � � ,
����

�

and
� ; � ; . More

specifically, L � is initialized to 0. If
� �*'(�

exceeds
����

�

for
a time period greater than a given time window M � , then L��
is set to 1. L�� is only reset to 0 when

� �*'(�
drops back below��� � � and stays under that value for a time period exceedingM � . ,�� is always set to 0 when

�����	� � � and to 1 when����� ��
��
. For

� � � � ������� ��

�
, , � � � �

depends on the
value of L�� . (See Figure 1.) If L�� � 5

, then the algorithm uses
an optimistic drop function ,�� � � � � , � � � � � �

that increases
slowly with Q. Conversely, when L � � 	

, then RQRD uses a
more aggressive drop function. Therefore, unlike RED , � is

�
As in CSFQ, the operation of RQRD is independent of what is considered a

flow. Hence, we intentionally keep the definition of the world flow imprecise.

Fig. 1. Examples of d ��j ���! "�$#
%'&(#4h pairs

hysteretic in form in the region P � � � � ! � ��

� S . Hysteresis is
needed to deal with both UDP and TCP traffic. In case of TCP
traffic, the drop of a packet leads to a relatively fast response
from the source, leading to a fast decrease in the queue size.
Hence, when RQRD is applied to TCP traffic, the congestion
bit L � is rarely set to 1, and ,�� � � � � , � � � � � �

most of the
time, leading to a drop probability that depends on the queue
size in a manner that is very similar to RED. However, in case
RQRD is applied to unresponsive UDP traffic, the rate of arrival
to the queue remains high, independently of the rate of packets
dropped. In these conditions, the queue size can exceed

�)��

�
for a period exceeding M � . L�� is thus set to 1, and , � � � �

to,�* �,+ * � � �
, which in turn leads to a much more aggressive packet

drop function. In Section IV, we demonstrate the effectiveness
of such a hysteresis function in providing an adequate handling
of both UDP and TCP traffic. One candidate

� , � � � ! ,�* �-+ * �
pair,

which we call Ellipse, is obtained by using symmetric elliptic
functions. We have also experimented with other

� , � � � ! , * �,+ * �
pairs, such as the ON/OFF and RED pairs8. (See Figure 1.)

The average queue size
� �*'(�

is found using the exponential
averaging method described in II-A. (As done in RED [4], we
use a different equation to update our estimate of

� ��'(�
in case

the queue is idle.)
Total Drop Probability , � . The drop probability function used

by RQRD, , � consists of the product of both , � and , - , i.e., � � ,.- ? ,�� . Using such a drop probability function ensures
that a packet is only dropped in case both the average queue size
is large, and the rate of the flow the packet belongs to exceeds
its fair share, meaning that the flow in question is most probably
responsible for the congestion experienced on the link.

If either L�� or L � is 0, RQRD assumes that the congestion
is transient and that dropping packets is unnecessary, unlike
CSFQ, which drops packets according to ,�- as soon as L � is
set to 1 even though there could be enough buffer space to ac-
commodate the excess traffic. Even though RQRD also uses M
in its estimation algorithms, the resulting performance proves to
be much less sensitive to its specific value.

Additional considerations. In RQRD, a packet that arrives
.
Simulation results have shown that the continuity of the curve is essential to

the stability of the algorithm (see Section IV-A). For this reason, we use the
Ellipse pair in most of our experiments.



Fig. 2. Network scenario.

at the input of the queue at time t is relabeled using � � � ; �
P 	e
 , � ��'(�TS � � � , where � � � and � � � ; constitute the original and
new labels, respectively, and , � ��'(�

represents the drop proba-
bility associated to the incoming packet. Also, extending the
algorithm to support heterogeneous rates is done exactly as in
CSFQ. (See Section II-B.)

IV. SIMULATION RESULTS

In this section, we conduct simulation experiments that shed
a light on the potential benefits of RQRD. The general sce-
nario (see Figure 2) consists of flows entering the core network
through a number of edge routers, and then forwarded to a core
router. We are interested in per-flow average throughput mea-
surements at the output of the queue. We use K = 10Mb/s,
and experiment with values for the total buffer size

� ; � ; varying
from 64 to 512KBytes. We experiment with different round trip
times by considering propagation delays � ranging from one to
20ms. (Unless stated otherwise, we use a propagation delay of
1ms, that is a round trip time of 2ms.) In the RQRD algorithm,
we use the same value for all constants pertaining to the estima-
tion of the different parameters (that is, K, M�� , M W

, M � , M�� ,M N and M � ). As for
�	� � � and

�	��

�
, the default chosen val-

ues are
�� � ; � ; and

�� � ; � ; . However, we experiment with other� � � � � ! � ��

� �
combinations to understand their effect on the

algorithm. For RED, we use 	 $�
 ; * � 5 ? � � ; � ; , 	�
�� ; * � � ; � ; ,_ � � 5t? 	
and 	�
���� � ���� .

Since RQRD is designed to work well with both UDP and
TCP traffic, we consider both traffic types in our experiments.
UDP traffic consists of a succession of bursts of size M. The
burst inter-arrival time T has a mean #�� and is uniformly dis-
tributed (in the range P 5 !�� # � S ). In the case of Constant Bit Rate
(CBR) UDP traffic, we use a constant burst size � � � � . We
also use Variable Bit Rate (VBR) UDP traffic, in which case
M is distributed according to a log-normal distribution with ge-
ometric standard deviation ��� � � . In addition, we use a
version of TCP Reno (implemented in our network simulator)
to generate TCP traffic. Such traffic also consists of a succes-
sion of bursts generated by the source9. Since bursts trans-
mitted in the Internet have been shown to be long-tailed [9],
we use burst sizes distributed according to a log-normal dis-
!
A TCP connection is opened to transmit each burst; a source starts the trans-

mission of a burst only after the correct receipt of the previous burst at the des-
tination.

Fig. 3. " versus #%$ � $ for DT, RED, CSFQ and different RQRD implementa-
tions.

tribution. As for UDP traffic, we use two sets of parameters:& � ! � ��' � & � �)( M+*-, '�� � !/. ' (where � represents the geo-
metric average burst size, and ��� the geometric standard devi-
ation for the log-normal distribution), used to model bursty (e.g.
http, ftp) TCP traffic;

& � ! � � ' � & � �0� M1*-, '�� � ! � ' for less
bursty (e.g. smtp, nntp) TCP traffic.

We assume that the minimum available bandwidth offered to
this queue is known, through the use of a Weighted Fair Queue-
ing scheduling algorithm10. Since RQRD is designed to achieve
both CSFQ’s and RED’s advantages, its performance is com-
pared to both. Also, we compare RQRD to DT, since it is im-
portant to make sure that the improvement achieved warrants the
complexity introduced. The simulation experiments conducted
are grouped in three categories. In a future differentiated ser-
vices network, UDP and TCP traffic will be separated in differ-
ent queues; hence, we first assess the benefits of RQRD when
applied to UDP traffic alone (Section IV-A), and TCP traffic
alone (Section IV-B). Also, since RQRD is primarily intended to
provide an adequate support of UDP and TCP traffic in today’s
networks, we include a set of experiments that demonstrate the
performance of RQRD when applied to a mixture of UDP and
TCP traffic (section IV-C).

A. RQRD Applied to UDP Traffic Alone

We start with an experiment used in [12] where N sources, 2 �
to 2/3 � � transmit UDP flows with Source 2 � transmitting at an
average rate � �� � � � $ � 	�� V3 . The goal is not to reproduce a real-
istic situation, but to have a common benchmark representing an
extreme situation, with which the fairness achieved by different
queue management schemes can be compared. We denote by 4
the measure of fairness, defined by 4 � 57698�:�<;�= 9 > �>@? s �BA6

=DC
5E698�:�<;�=GF 9 ( �IH :6

H
:
� � = A
6
J C !

where � �� � ; represents the output rate of flow i. In case the queue
management scheme achieves perfect fairness, an average ser-
vice rate of

V3 is allocated to each of the flows, leading to 4 � 5
;

conversely, a considerably unfair algorithm will allocate to each
flow a portion of the link bandwidth that is proportional to its
input rate yielding 4 � 	

. As shown in Figure 3a, CSFQ is the
most capable in providing fairness in such a setting. Clearly,

�LK
In our simulations, we experiment with a single-queue system. (Accord-

ingly, the minimum available bandwidth consists of the total link bandwidth.)



Fig. 4. Per-flow loss rate for
�

VBR UDP flows versus # $ � $ .

both DT and RED are inadequate to provide fairness to UDP
flows. In the case of RQRD, as attested by the results obtained
with the RED and ON-OFF pairs, a discontinuity in either func-
tion , � � � ��? �

or ,�* �,+ * (.) can result in RQRD becoming unsta-
ble. Using the Ellipse

� , � �(� ! ,�* �,+ * �
pair instead (in which case

both , � �(� ��? �
and ,�* �,+ * (.) are continuous), RQRD achieves a

fairness that is comparable to that achieved by CSFQ as long
as
� ; � ; is larger than 128KBytes. Experimenting with differ-

ent values of
� � � � and

� ��
��
, the results show that the pair

(
� � � � � �� � ; � ; ! � ��
�� � �� � ; � ; ) bears the most homogeneous

performance. Finally, M should be set to a small value (e.g.,
100ms) for RQRD to function correctly. (As seen in Figure 3b,
RQRD performance degrades with increasing values of M .) In
the remainder of these experiments (unless stated otherwise),
we use M � 	 5�5

ms for RQRD. (However, we use M � 	�� � s > sV
for CSFQ so extra burstiness is allowed when the buffer size is
increased [12].) We conclude from this first experiment that un-
like DT and RED, RQRD is capable of providing a theoretical
fairness comparable to that obtained with CSFQ.

We now consider a realistic scenario in which � statistically
identical VBR streams share the link. In real life, this sce-
nario represents, for example, the transmission of � VBR video
streams over the link. The important measure in this case con-
sists of the loss rate experienced by video traffic. (See Figure
4.) We consider values of &���� � ranging from

5 ? � � K to
5t? �a5 K ,

where & ��� � represents the average aggregate UDP arrival rate.
The results show that in all cases, the best queue management
scheme is simply DT. In fact, since traffic is bursty and sources
are non responsive, preventive drop becomes harmful. We can
see from the results that RQRD matches very closely RED’s be-
havior and drops slightly more packets than DT. (This indicates
that the congestion bit L � is rarely set to 1.) Comparatively,
with CSFQ, transient burstiness that could have been stored in
the buffer is unnecessarily dropped instead, resulting in heavy
packet drop, particularly when the average arrival rate is small11.

In another experiment, we consider the mixture of CBR and
VBR UDP traffic. This experiment models, for example, a situ-

� �

These results suggest that mechanisms aimed at taking into account queue
size in CSFQ (that is, reducing c d f�h with buffer overflow, and avoiding packet
drop when the queue size is less than half the total buffer size, as described
in Section II-B) are not sufficient. In order to confirm this fact, we repeat all
experiments described in this paper with a version of CSFQ that is stripped from
these two amendments: the results obtained with the two RQRD configurations
match almost exactly.

Fig. 5. Per-flow loss rate for 	 � VBR UDP flows and 	 � CBR UDP flows

sharing a link. The rate proportion is
�A CBR,

�A VBR.

Fig. 6. Average per-flow rate for
�

TCP flows sharing a link versus # $ � $ .

ation where CBR and VBR video streams share the link. In our
setting, one third of the traffic volume (in Mb/s) consists of 3 (
CBR flows, while the remaining two thirds consists of 3 ( VBR
flows. We consider &
��� � values ranging from 25 to 90% ofK , and values of � ranging from 8 to 64. As can be seen from
Figure 5, CSFQ consistently drops VBR traffic the most. When
the total arrival rate to the link is large, this behavior results in
a lower drop rate for CBR traffic, a desirable result in line with
the fairness objective that CSFQ is striving to achieve. However,
when & ��� � is small, then the excessive drop of VBR packets
does not help reducing the drop rate of CBR traffic, which is
the highest with CSFQ. Conversely, RQRD drops significantly
less VBR packets. Also, when &���� � is large, RQRD is almost
as capable in protecting CBR traffic as CSFQ. In fact, RQRD’s
ability to tailor its drop probability function based on the queue
size using a hysteresis function allows it to differentiate more
effectively between situations where congestion is transient (in
which case packet drop is kept low) and those in which conges-
tion is persistent (in which case adequate packet drop is applied).

B. RQRD Applied to TCP Traffic Alone

We now investigate RQRD’s ability to provide an adequate
handling of TCP traffic. We first consider the simple case of
� statistically identical TCP flows mixed on a link. As can be
seen from Figure 6, CSFQ performs poorly when � is small:
in fact, CSFQ falsely assumes that dropping packets at a rate ,



Fig. 7. Average rates for
�

TCP connections sharing the same link; 	 � con-

nections have a round trip time of 2ms, while the other 	 � have a round trip

time of 40ms. ( l0m ��� q s > su .)

from a flow with an incoming rate � � � leads to an output flow
with a rate � � � ; � ��	 
 , � � � � . This is only true in the case
of UDP traffic; however, in the case of TCP traffic, whenever� � � exceeds + , , becomes positive irrespectively of the queue
size, triggering an abrupt reduction in the TCP window size.
The resulting sawtooth behavior leads to an average output rate� � � ;�� �(	�
 , � � � � . The performance gap between CSFQ and
the other schemes gets smaller when either � or

� ; � ; increases.
In fact, as � increases global synchronization among TCP flows
is reduced. Also, as

� ; � ; increases, the reduction in throughput
caused by the increase in round-trip time over-shadows the dif-
ference in throughput that results from the choice of a specific
scheduling scheme.

Next, we consider the scenario where the � TCP streams in
question are divided into two groups (of 3 ( streams each) which
traverse links that have different propagation delays: � � 	

ms
and � � � 5 ms for Groups 1 and 2, respectively; as a result,
TCP traffic from Group 1 is more aggressive, capturing most
of the buffer resources. The experiment is intended to verify
whether CSFQ is capable of insuring fairness among competing
TCP flows. In fact, CSFQ falls short in this respect. For exam-
ple, even though the plots corresponding to � � ��� in Figure
7 reveal that for

� ; � ; � � � � KBytes, the use of CSFQ leads to
an increase in the average rate of the flows belonging to Group
2 from 0.16 to 0.18Mb/s, at the expense of a reduction in the
average rate of flows pertaining to Group 1 from 0.25Mb/s to
0.22Mb/s, these results are not consistent for all values of �
(e.g., � � 	 �

and � � � 5
). Also, as observed in the previous

experiment, CSFQ performs poorly when either the number of
flows is small or the buffer size is less than 256KBytes. Con-
versely, RQRD and RED are very close in their performance.
Compared to DT, aggregate throughput is slightly improved by
getting rid of global synchronization. Compared to CSFQ, ag-
gregate throughput is in all cases higher, in most cases by a sig-
nificant amount12.

Similar results are obtained for an experiment in which two
groups (of 3 ( flows each) traverse links that have identical prop-

� �

As mentioned in Section IV-A in the context of UDP traffic, the similarity
between the behavior of RQRD and RED suggests that with RQRD, TCP adapts
quickly enough so that i q is seldom set to 1.

Fig. 8. UDP loss rate and TCP average rate per flow for one UDP CBR stream
transmitting at � %	� m�
 mixed with 20 TCP flows.

agation delays ( � � 	 	 � ), but differ in their per-flow burst
statistics ( � � � ��( versus � �0� Bytes, � � � . versus 5).

Summary. Even though the use of CSFQ leads, in some situ-
ations to a desirable increase in fairness among TCP flows, this
result is not consistent, and depends on factors such as the size
of the buffer, the number of flows sharing the link and the setting
of the parameter M used in the algorithm. Perhaps more impor-
tantly, the results show that if either the buffer is too small, or
the number of TCP flows is too small, CSFQ leads to a drastic
decrease in aggregate throughput. In this case, the use of RQRD
does not lead to an improved fairness among competing TCP
flows, but provides an aggregate throughput that matches very
closely that provided by RED, and which is never noticeably
lower than that provided by Drop Tail.

C. RQRD Applied to both UDP and TCP Traffic

In this section, we investigate RQRD’s ability to deal with
TCP and UDP traffic when mixed in the same FIFO queue. We
start with a scenario in which we investigate RQRD’s ability to
protect TCP flows from a high volume, non-adaptive UDP flow.
In this respect, we consider the following setting: one UDP flow,
transmitting at a rate � � � � K � 	 5

Mb/s is combined with �
TCP flows. As shown in Figure 8, with DT and RED, TCP traf-
fic is starved almost totally by the ill-behaved UDP flow. On the
other hand, both RQRD and CSFQ drop enough UDP packets
so TCP throughput increases to reasonable levels13. (CSFQ per-
forms slightly better than RQRD, owing to its ability to drop the
ill-behaved UDP traffic consistently, proportionally to its input
rate.) Similar results are obtained for

	E5 � � � � 5
.

We now consider a set of realistic scenarios in which 16 UDP
CBR streams, having an aggregate average arrival rate of 5Mb/s
(that is,

�( K ) share the link with a number of TCP flows � � V �
ranging from 5 and 20. TCP traffic is heavily penalized in case
CSFQ is used (see Figure 9); the gap between CSFQ and other
queue management schemes is excessive when � � V � is small.
Moreover, CSFQ drops significantly more UDP packets in this
case (around 1%) than other schemes (0.5% for DT, 0.2% for

��A
In the case of CSFQ, with l set to 100ms, throughput is higher for small# $ � $ , but decreases sharply when # $ � $ increases (because CSFQ acts too ag-

gressively, forbidding the buffer to be fully utilized). As observed before, withl proportional to # $ � $ instead, CSFQ is capable of taking advantage of the
additional buffer space to bear a slight improvement in throughput.



Fig. 9. UDP loss rate and TCP per-flow average rate versus # $ � $ for
� F u �

TCP flows sharing the link with 16 CBR UDP flows having an aggregate
average rate of 5Mb/s. (16 UDP, 5 TCP flows.)

Fig. 10. UDP loss rate and TCP average per-flow rate in case one CBR UDP
flow is mixed with

�
TCP flows for different queue management schemes.

(1 CBR flow mixed with 10 TCP flows.)

RED, and 0.08% for RQRD). In contrast, TCP per-flow average
rates are significantly higher when RQRD is used instead. Also,
RQRD drops significantly less UDP packets as long as

�������
is

kept larger than 128KBytes (consistent with the results obtained
in Section IV-A).

Finally, we illustrate RQRD’s capability in differentiating be-
tween different traffic flows using the drop priority field. In that
respect, we experiment with a scenario in which one 8Mb/s UDP
flow shares the link with � TCP flows. We consider two differ-
ent settings for RQRD: in the first setting, we assign the drop
precedence 	�

� for all flows; in the second setting, UDP traf-
fic is assigned 	�
�� , whereas the � TCP flows are assigned
	�
�� . As shown in Figure 10, while the aggregate throughput
remains the same, TCP throughput is reduced in such a way that
the UDP loss rate becomes insignificant.

Summary. In this section, we have demonstrated the key fea-
tures that enable RQRD to be appropriate when applied to a
FIFO queue that is shared by both UDP and TCP traffic. First,
we show that unlike RED and DT, RQRD is capable of giving
the same level of protection as CSFQ to TCP flows from un-
friendly UDP flows, without incurring a loss of aggregate TCP
throughput in situations where packet dropping is unnecessary.
Also, we demonstrate the effectiveness of RQRD in shielding
loss-sensitive UDP traffic from other traffic in the network.

V. CONCLUSION

In this paper, we have presented a new buffer manage-
ment scheme, Rate and Queue Size controlled Random Drop
(RQRD). RQRD is based on the Core-Stateless Fair Queueing
distributed architecture, but provides two drop precedences, and
uses both rate information and queue size information to con-
trol the drop probability of packets. As a result, RQRD per-
forms well in the presence of both UDP and TCP traffic. Also, it
achieves a good compromise between providing fairness among
different flows competing for a given link and maximizing the
aggregate throughput on the link. Finally, it proves to be ro-
bust to both changes in internal parameter values and to a wide
range of external conditions. These features render RQRD ideal
in today’s switches, where UDP and TCP traffic share the same
buffer resources. In future routers, where UDP and TCP traf-
fic will likely be provided with separate queues, the advantages
of RQRD in a purely TCP context are the same as those pro-
vided by RED, and may not warrant the complexity introduced.
However, RQRD’s advantages are significant in a UDP context.
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