
Performance of TCP Congestion Control with Explicit Rate Feedback:
Rate Adaptive TCP (RATCP)

Aditya Karnik and Anurag Kumar
Dept. of Electrical Communication Engg.

Indian Institute of Science. Bangalore, 560012, INDIA

Absrracr-We consider a modification of TCP congestion con-
trol in which the congestion window is adapted to explicit bottle-
neck rate feedback; we call this RATCP (Rate Aduprive TCP). Our
goal in this paper is to study the performance of RATCP (using
analytical models, and an experimental test-bed) in various net-
work scenarios, and to compare the performance of RATCP and
TCP, both with and without fast-retransmit and fast-recovery.
We find that when sessions with the same round trip times share
a bottleneck link then, even with ideal fair rate feedback, the
performance of RATCP is only slightly better than that of TCP.
RATCP, however, does reduce losses significantly. When there are
random losses, however, RATCP with fast-recovery provides sub-
stantially better throughput than plain TCP. Further, when ses-
sions with different round trip times share the bottleneck link, as
expected, RATCP ensures fairness. Finally, we suggest a practical
situation in which RATCP can be useful for improving web access
performance.

Keywordr-explicit rate controk rate adaptive TCP; bandwidth shar-
ing; adaptive window congestion control

I. INTRODUCTION

TCP window adaptation is based on implicit feedbacks from
the network; acknowledgements cause the congestion window
to increase, and packet losses (indicated by timeouts or dupli-
cate acknowledgements) cause the window to decrease. Ow-
ing to this blind rate adaptation mechanism, TCP has often
been found to be inefficient and unfair in its throughput per-
formance. Recent research has, therefore, focussed on explicit
involvement of the network in the congestion control mech-
anism of TCP. This work includes router based mechanisms
such as packet drop policies (RED), ECN, and packet colour-
ing([l], [2],[3]). ack pacing by the network edge device ([4]).
explicit window feedback based on buffer occupancy ([SI) or
rate allocation at the network edge device ([6]).

In this paper, we consider explicit feedback of fair session
rates from the network directly to the individual TCP sources,
and study a policy for utilizing this rate information in TCP's
adaptive window based congestion control. We call this modi-
fication Rate Adaptive TCP (RATCP). It can be expected that,
if the TCP sources adapt to the rate feedback there will be few-
er losses, the network bandwidth will be used efficiently, and
fairness will be achieved among the competing sessions. We
assume that the network is somehow able to feedback fair ses-
sion rates to TCP sources (later in the paper we suggest a prac-

Based on research supported by Nortel Networks.
email: kamik, anurag9ece.iisc.emet.in

tical situation in which this can be done). The TCP transmitter-
s adapt their congestion windows based on this rate feedback
and a round-trip-time (RTT') estimate. Thus our concern in this
paper is to study the performance implications of feeding bot-
tleneck rate information directly into TCP windows, assuming
that such rate information can be obtained and that mechanism-
s exist for feeding it back to the sources.

We compare the performance of RATCP and TCP in the fol-
lowing scenarios: (1) A long-lived (or persistent) session shar-
ing a bottleneck link with short-lived (or ephemeral) sessions
that arrive and depart randomly; the ephemeral sessions are as-
sumed to be ideally rate controlled and the persistent session
uses RATCP or TCP; thus the persistent session has a time
varying fair rate. (2) A persistent session over a bottleneck
link with random loss. (3) n o persistent sessions with differ-
ent round-trip times sharing a bottleneck link; both the sessions
use RATCP or TCP. (4) n o persistent sessions on a link, one
using RATCP and the other TCP. (5) A link being shared by
ephemeral sessions that randomly arrive and depart.

We use an analytical model and an experimental test-bed to
study the above scenarios. For case (1) we develop an analyti-
cal model for obtaining the throughput of the persistent session
using either RATCP or TCP, both without the fast-retransmit
feature. The analysis is based on identifying a certain Markov
renewal reward process, and calculating the TCP throughput as
the reward rate in this process. Our experimental setup com-
prises an implementation of RATCP in Linux; the bottleneck
link is emulated in the Linux kernel. This setup is used to
verify the analysis, and to provide numerical results for the
other cases, including results for RATCP and TCP with fast-
retransmit and recovery.

11. RATCP: WINDOW ADAPTATION WITH RATE
FEEDBACK

A. A Naive Rate to Wndow Translation

Consider a TCP session through a bottleneck link. If the
round trip propagation delay for the session is A, and the fair
share of the bottleneck rate is R. then the congestion window
for this session should be W = R . A + p, where /3 is a target
buffer backlog for this session. N?w if the fair rate for the
session is time varying (R(t)) , and A(t) is an estimate (at the
transmitter) of A at t , then a simple, nave rate adapted window
wouldbetotakeW(t) = R(t-A) -A(t)+p,whereR(t-A)
is the available rate as known to the transmitter at time t. In this
paper, we wish to study how an appropriate implementation of

0-7803-6451-1/ooc610.00 0 2000 IEEE

57 1

Bottleneck Link Propagation Delay
A

such a naive feedback performs.

B. Wndow Adaptation

The rate adaptive window adaptation strategy is the follow-
ing (Wcong denotes the congestion window, and is the window
actually used for transmission control):

Slow start is carried out either at connection startup, or at the
restart after a timeout. We use the rate information for setting
the slow start parameters: Wcon9 at timeout is set to 1, and the
slow start threshold (ssthresh) is set to the value of Wrote at
the timeout epoch. If during slow start Wrote < Wcong then
the congestion window is dropped to Wrote, and congestion
avoidance is entered. This is appropriate, since it is as if the
ssthresh has been adjusted downward.

During congestion avoidance, at time t, we compute
WCong(t+) = min{Wcong(t), Wrate(t)). If the congestion
window reduces as a result of Wrcte(t) < WCon9(t), then it
means that more than the desirable number of packets are in
the network. Acks following such a window reduction do not
cause the window to increase until the number of unacknowl-
edged packets corresponds to the new window. This adds a
phase of inactivity in the modified TCP. Normal congestion
avoidance behavior continues after the number of outstanding
packets matches the new congestion window. If during conges-
tion avoidance Wcon9 becomes less than ssthresh (due to a
Wrote feedback) then slow start is not re-initiated. This is rea-
sonable, since it is as if the ssthresh has been adjusted down-
ward, and we are now just entering congestion avoidance. This
also implies that ssthresh no longer differentiates the phases
of the TCP algorithm; we need to introduce a separate variable
for this purpose.

If fast-retransmit and fast-recovery are implemented then
upon receiving K (typically K = 3) duplicate acks we
set Wcon9 c min(Wcon9, Wrote) (instead of Wcon9 t
w-ng 7 + K as in TCP-Reno), and the missing packet is re-
transmitted. After every additional acknowledgement received
Wcon9 is increased by 1. Upon receipt of the ack for the resent
packet, congestion avoidance resumes, as described above.
We call this modification of TCP, Rate Adaptive TCP
(RATCP). We will compare RATCP and TCP without fast-
retransmit and fast-recovery, and will call these versions
RATCP-OldTahoe and TCP-OldTahoe. The versions with fast-
retransmit and fast-recovery will be called RATCP-Reno and
TCP-Reno.

111. A MODEL AND ITS ANALYSIS
Analysis, even if it is approximate, is very useful for provid-

ing insight into factors that affect the performance of a proto-
col, and, in addition, analysis can help to validate and debug
simulations and experimental implementations.

We develop an analytical model for the performance of
RATCP OldTahoe in the following network scenario. There
is a persistent RATCP session, that shares a bottleneck link
with other elastic sessions. The elastic sessions are assumed

Fig. 1. A queueing model of the persistent TCP session.

to be ideally rate controlled and ephemeral. When there are m
ephemeral sessions, we assume that these sessions use exactly

of the link capacity of C packets per sec, and the persis-
tent session’s share is & pktslsec. Thus the fair bandwidth
available to the persistent session is randomly time varying.
Figure 1 shows a schematic queueing model of the persistent
TCP session. Note that the ephemeral sessions are only mod-
elled as modulating the rate available to the TCP session, and
hence the link buffer only holds packets from the TCP session.
A denotes the fixed round trip delay.

The continuous time processes are hard to analyse. Instead,
we follow the analysis procedure developed in [7]. Define the
epochs t k = kA,k = 0,1,2, Observe that none of the
packets that are in the delay queue at time t k will still be in that
queue at time i!k+l, and any packet that arrives into the delay
queue during (t h , &+I] will still be there at time t k + l . We thus
consider the processes embedded at the epochs { t k , k 2 0)
(see Figure 2), and define

{Zk,k 2 0) = {(Bk,Dk,WkCDng,W~te,Mk),k 2 0)

where, at epoch tk, W p t e , W y g denote the rate window and
the congestion window for the persistent RATCP session. M k
denotes the number of ephemeral sessions on the link, B k the
number of packets in the link buffer, and Dk the number of
packets in the propagation queue; this is the total number of
packets and acks in transit.

We model {Mk, k 2 0) as a Markov chain that evolves
independently of the other components of the process {zk}.
We assume that delay A is known at the TCP source. Ow-
ing to one A delay in rate feedback, the rate window cal-
culated at t k is given by W p t e = LRk-l.AJ + p where,
Rk-1 = &. Then, the window adaptation policy im-
plies that W l y g = m i n { W y g , Wiote) (note that IC+ de-
notes “just after epoch t,”).

We make some basic assumptions in order to make the anal-
ysis of the { 2,) process tractable.

The transmitter immediately transmits new packets as soon
as its window allows it to; these arrive instantaneously at the
link buffer.

Packet transmissions from the link do not straddle the epochs
{tk)-

During each interval (tk, t k + l] , the acknowledgements (ack-
s) arrive at the TCP transmitter at the rate Rk-1.

572

recovery

tk-1 tk tk+l tk+2 tk+3 A
starts 7

- b
f------s- - t - slow start

coarse
.T

loss epoch window
ceases to grow time-out

Fig. 2. Evolution of the process { Zk , k 2 0). showing the model for timeout based loss recovery..

Let zk = (b,d, wCong,wrote,m). Then W i y =
min (wCong, wrote). Note that there can be at most d acks dur-
ing (t k , & + I) . These acks may trigger new packet arrivals into
the link buffer. In congestion avoidance we have the following
possibilities,
1. If W i y g < b + d (this would occur if wrote < wCong),
then h = b + d - W i y g packets need to be removed from
the network before congestion avoidance resumes. Since the
number of acks that will be received in (t k , t k + l) is d, we first
have the following two cases.

Case 1: d < h + not enough acks are received, the source
is inactive throughout (t k , & + I) and W i T = W i y ; there
is no packet loss.

Case 2: d > h + congestion avoidance commences dur-
ing (t k , t k + l) after the first h acks are received. There may be
losses in (t k , t k + l) after h acks are received.
2. Case 3: W i y = b+d + congestion avoidance continues;
as acks are received, Wcong is incremented and new packets
are generated. There may be losses in (t k , t k + l) .

If a loss does occur during (t k , t k + l) , adjustments to W i y g
may occur till the ack for the packet just prior to the one that is
lost is received (see Figure 2). We assume that this ack arrives
at the source in (t k + l , t k + 2) . At this point the transmitter starts
a coarse timer. We assume that the coarse timeout occurs dur-
ing (t k + 2 , t k + 3) and the recovery begins at t k + 3 (see Figure 2) .
Recalling that we are not modelling the fast-retransmit proce-
dure, denote by L,,, the duration of the slow start phase (in
number of A intervals). L,, will vary with each loss instance,
but developing an indexing for it would be cumbersome. Then
the recovery is over at tk' , k' = k + 3 + L,, and the congestion
avoidance phase begins.

A Markov renewal process: Define, the embedded epochs
{Tk) by: TO = t o , and for k 2 0

Tk+l = { T~ T k + A + (3 + L,,).A iflossin (T ~ , T ~ + A)
if no loss in (T k , Tk + A)

where L,, denotes the duration of the slow start phase. Final-
ly, define the embedded process { X k = ZT*,]E > 0) with
XO = 20. With the assumptions made above, it can be argued
that { X k , k _> 0) is a Markov chain. The analysis proceeds by
obtaining the epochs T k and the Markov chain X k = ZT,. The
transition probabilities of this Markov chain are obtained by

the linear increase during the congestion avoidance probabilis-
tically. For simplicity in the analysis, we do not consider adap-
tation to Wrote in the slow start phase; however, Wrote is used
to set the value of ssthresh at time-out. We model the losses
in slow start. It can then be shown that, given X k and T k , the
distribution of T k + l can be computed without any knowledge
of the past. Hence, the process { (X k , T k) , k 2 0) is a Markov
renewal process (MRP). It is this MRP that is our model for
the persistent TCP connection with time varying bandwidth.

Given the Markov Renewal Process { (X k , T k) , k > 0). a
reward Vk is associated with the kth cycle (T k , T k + 1) , as the
number of successful packets accounted in that interval. Let
V(z) and U (z) respectively, denote the reward and the length
of the cycle beginning with X k = z. Denote by n(z), the sta-
tionary probability distribution of the Markov chain { X k , k 2
0). Then denoting by 7 the throughput, and by E,, the expec-
tation with respect to ~ (z) , from the Markov Renewal-Reward
Theorem we have,

where, ploss(z) denoting the probability of packet loss in the
state X k = z,

W.P. 1 - P l O S S (2)

Dbefore l o s s (z) +

Dslow start W.P. p l o s e (2)

The details of this analysis and analysis of TCP without rate
feedback are provided in [8].

IV. SIMULATION SETUP
The simulation results for the network of Figure 1 reported

here are obtained from a Linux based test-bed, where the bot-
tleneck link (buffering, transmission rate, and propagation de-
lay) is emulated in the loop-back interface. Rate variations on
the bottleneck link are artificially created by the rate transitions
made to occur at discrete time epochs. Loop-back file transfers
are run within one machine, using the actual TCP code modi-

examiningeach of the three cases described above. We model fied according to RATCP. In order to validate the analysis, the

573

I = A rmr~rrun-prrmr~~:~a.(:ulonY-, 0.S ,.s P

Fig. 3. Throughput variation of RATCP and TCP with the ephemeral session
arrival rate. Analysis and simulation. = 1 packet.

exact rate feedback is artificially provided to the TCP sender.
In case of multiple connections, we modify the ftp client and
the socket layer so that the client application is able to select
the underlying transport protocol (TCP or RATCP). This en-
ables us to compare the performance of competing TCP and
RATCP sessions over the bottleneck link.

V. NUMERICAL RESULTS

A. RATCP OldTahoe and TCP OldTahoe: Analysis and Simu-

The common parameters selected for these results are: link
rate, C= 0.8 Mbps, link buffer, B,,,, = 10 packets, TCP pack-
et length = 500 Bytes, mean ephemeral session length, E , =
200 KBytes, round trip delay, A, = 100 ms, maximum num-
ber of ephemeral sessions on the link, M,,,, = 3. In order to
validate the analysis, it is assumed that the round trip time is
known to the sender.

Figure 3 shows the basic comparison of the performance of
RATCP and TCP obtained analytically as well as from simula-
tions. Note from Figure 3, that analysis and simulation results
match well with analysis being slightly overestimating. Thus,
overall the analysis procedure captures the performance quite
well. Numerical values are shown in Table I.

Note that, since M,,, = 3 at any time t . when the ar-
rival rate of the ephemeral sessions is very low or very high
the fair rate variations are slow, whereas for intermediate ar-
rival rates the rate variations are fast. When the arrival rate
of the ephemeral sessions is very low, RATCP gives about
17%-20% better throughput than TCP. Since both RATCP and
TCP recover conservatively from losses, the improvement with
RATCP occurs since it suffers less losses, because of the adap-
tation to the rate. As the arrival rate increases RATCP does
not have a significant advantage over TCP. This is because,
when the rate variations are comparable to the propagation de-
lay, there are frequent mismatches between the sending rate

lation

0.-.
RI- IOU -miw

Fig. 4. Throughput variation of Tahoe and Reno versions of RATCF' and TCP
with random packet drop probability.

and the available bottleneck rate, and hence the rate feedback
is not very effective. When the arrival rate is higher, the mean
number of sessions on the link increases. This implies that the
rate available per session is small, and TCP needs to build a
smaller window before a loss occurs. Thus the penalty for a
packet loss is not significant and TCP performance is close to
that of RATCP.

We provide additional results in Table I. These numbers
show the effect of increasing p, and reducing the link buffer
size. It can be seen that the performance of RATCP is im-
proved by a larger value of p in the region where the fair rate
varies rapidly since RATCP is able to take advantage of tran-
sient rate increases. If the buffer size is reduced from 10 to 8
packets, observe that, because of the control over the number
of packets in the network, the reduction in the buffers does not
degrade the performance of RATCP as much as TCP.

B. RATCP Reno; Random Losses: Simulation Results

In the following simulations, RATCP uses the base RTT es-
timate to calculate the rate window.

We have described fast-retransmit and recovery in RATCP
Reno in Section 11. Table I shows the comparison of RATCP
Reno and TCP Reno. Fast retransmit works well in TCP Reno
when the rate variations are slow; particularly with high arrival
rate it matches the performance of RATCP with p = 1. How-
ever, multiple losses in the fast variation region cause multi-
ple window cutbacks and hence the degradation in throughput.
RATCP Reno on the other hand improves overall performance.

On links where transmission error probability is high, e.g.
satellite links ([9]), it is particularly important that TCP re-
transmit the packets lost due to corruption without reducing
its congestion window. Since RATCP-Reno maintains the fair
window in fast retransmit, it is indirectly able to differentiate
congestion and corruption losses which is a difficult problem
for TCP. This can be seen from Figure 4 where we plot the
throughput of a single persistent session versus the packet loss

574

TABLE I
THROUGHPUT (K B Y T E S ~ E C) OF THE PERSISTENT SESSION FOR VARIOUS PROTOCOLS AND PARAMETERS. EACH COLUMN CORRESPONDS TO AN

ARRIVAL RATE OF EPHEMERAL SESSIONS ON THE LINK.

Ephemeral session arrival Rate(sessi0ndsec) 0.0 0.01 0.05 0.1 0.2 0.33 0.5 1.0 2.0
Protocol
RATCP (p=l):analysis 99.60 95.69 85.87 74.75 57.27 43.68 34.73 27.19 24.70
RATCP (P=l):simulation 99.52 97.68 83.05 69.24 52.50 44.35 33.43 25.83 23.97
TCP :analysis 85.54 84.36 77.23 68.75 57.27 42.71 34.44 26.93 24.37
TCP :simulation 82.44 79.95 73.02 59.52 51.00 40.43 31.79 25.93 24.24
RATCP (P4):analysis 99.68 97.33 87.51 76.93 59.96 46.55 37.60 29.57 27.67
RATCP (P4):simulation 99.52 96.83 83.62 71.58 57.73 46.69 35.63 29.07 27.26
RATCP (Bmaz=8 pkts):analysis 99.60 93.46 83.62 74.59 57.08 43.29 34.43 26.95 24.65
RATCP (Bm,z=8 pkts):simulation 99.54 93.41 78.90 71.17 48.86 45.87 32.98 25.39 23.86
TCP (Bm,,=8 pkts):analysis 83.13 81.49 74.92 66.43 55.30 41.06 33.16 26.11 23.57
TCP (Bm,,=8 pkts):simulation 78.91 77.40 73.51 65.35 47.19 38.24 31.08 25.23 23.47
RATCP-Reno (p= 1):simulation 99.63 95.89 88.24 71.03 55.24 45.00 34.68 25.37 23.61
RATCP-Reno (p=4): simulation 99.54 98.19 87.13 72.97 58.96 47.12 36.58 29.67 27.90
TCP-Reno :simulation 92.31 87.67 77.14 65.24 49.63 43.42 34.19 27.61 25.87

---______----

rate. The parameters are as given earlier except that there are
no ephemeral session arrivals. Notice that RATCP Reno suc-
ceeds in maintaining the throughput of the session above 85K-
Bytedsec (on a 100KBytedsec link) for a wide range of pack-
et loss probabilities, whereas the session throughput with TCP
Reno drops to less than 5OKBytedsec with a packet loss prob-
ability of 1%.

C. Fairness: Simulation Results

We continue to use the same simulation set-up and the link
parameters. Figure 5 shows the fairness comparison of RATCP
and TCP, when 2 sessions with round trip times l00ms and
200ms share the bottleneck link. As expected, RATCP is seen
to be fair as against TCP which is biased against sessions with
larger propagation delays. However, when an RATCP session
competes with a TCP session, as seen from Figure 6, TCP gain-
s because of its greedy nature. A similar phenomenon is seen
when TCP-Vegas competes with TCP-Reno (see [lo]).

D. Small file transfers: Simulation Results

Web traffic is the predominant traffic in the Internet today.
To model such a realistic situation, we need to consider the
transfer of small files. We model file sizes as being exponen-
tially distributed with mean 200KB. We now use the following
parameters: link rate, C, = 2 Mbps, link buffer, Bmazr = 30K-
Bytes, TCP packet length = 1500 Bytes, mean file transfer size,
E , = 200 KBytes, round trip Delay, A, = 100 ms. For RATCP,
we assume that the exact rate is available at the sender (after
one round trip time), and it uses the base R l T estimate to cal-
culate the rate window.

Figure 7 shows the variation of average throughput of ses-

Fig. 5. Throughput comparison of 2 competing sessions on the link with
different round hip times- lOOms and 2OOms.Sessions either use RATCP
Reno or TCP Reno. p = 1 packet.

sions (averaged over 500 sessions) as the load on the link in-
creases. Note that, the performance of RATCP and TCP is
almost the same. Since RATCP allocates fair rates to all the
sessions, sessions get equitable throughputs, but with TCP s-
maller files get significantly higher throughputs and the aver-
age performance of both the protocols is almost the same. Fig-
ure 8 shows that losses incurred by RATCP with p = 1 are
significantly fewer than by TCP and by RATCP with p = 4.

Experiments with small file transfers on a link with ran-
dom losses show that RATCP gives 10% better throughput than
TCP. However, with larger file sizes (mean file size 1 MByte)
and small load values, performance similar to Figure 4 can be
achieved.

575

00

I -
.!i -
1 - j 20

20

10

I
1 .o

A . m r 5 . L 01 --A . o m . ,uu-./-,
* O a

Fig. 6. Throughput comparison of 2 competing sessions on the link, one uses
TCP Reno and the other RATCP Reno. Round trip time is equal to lOOms
for both the sessions. = 1 packet.

Fig. 7. Average throughpul variation of sessions vs load. Mean file transfer
size is 200KB.

,00000, . . , 1 ,

L d

Fig. 8. Average retransmitted data per sessions vs load. Mean file transfer size
is 2”.

VI. CONCLUSIONS
We studied an approach for adapting the TCP congestion

window to explicit bottleneck rate feedbacks, and called this
modification RATCP. Analysis and simulation results show
that though the throughput performance of RATCP is only s-
lightly better than TCP, it reduces losses substantially and al-
so deals effectively with random losses on the link. Further,
RATCP ensures fair bandwidth sharing between sessions even
if they have different propagation delays. We believe that

,- -.=--- Interrut

. - - _ _ - _ - _ - - _ -. --
=..J

6 ----2i a &&=--
P: web pmry
R: R o u t u
0: 0l.m

Fig. 9. A satellite networking situation where RATCP will be useful.

RATCP can find application in bandwidth managers. A possi-
ble scenario is shown in Figure 9 where clients download data
from the Internet via a proxy server(shown as an integration of
proxy-web server and a bandwidth controller) using a satellite
link which is the bottleneck link. RATCP is implemented in
the proxy for client side connections. Ongoing simulations of
this network scenario show that RATCP performs significantly
better than TCP under low load cpnditions when the download
file sizes are larger.

REFERENCES
Sally Floyd and Van Jacobson, “Random early detection gateways for
congestion avoidance.:’ IEEELACM Transactions on Networking, vol. 1,
no. 4, pp. 397-413. August 1993.
K.K. Ramakrishnan and Sally Floyd, “A proposal to add explicit con-
gestion notification ECN to P.,” Tech. Rep., IETF Draft, September
1998.
W. Feng, D.D. Kandlur, D. Sahq and K.G. Shin, “Understanding and
improving TCP performance over neworks with minimum rate g u m -
lees,” IEEELACM Transactions on Networking, vol. 7, no. 2, pp. 173-
187, April 1999.
Paolo Narvaez and Kai-Yeung Siu, “An acknowledgement bucket
scheme for regulating TCP flow over ATM:’ in Pmc. IEEE Globecom
1998,1998.
L. Kalampoukas. Anujan Varma, and K.K. Ramakrishnan. “Explicit
window adaptation: A method to enhance TCP performance.” in IEEE
Infocom 1998. IEEE, March 1998.
R. Satyavolu, Ketan Duvedi. and S. Kalyanraman, “Explicit rate con-
trol of TCP applications:’ Tech. Rep. ATM Forum Document Number:
ATM-Fo“/98-0152Rl, February 1998.
S.G. Sanjay and Anurag Kumar. ‘TCP over end-toad ABR A study of
TCP performance with end-to-end rate control and stochastic available
capacity,” in Proc. IEEE Globecom 1998,1998.
Aditya Kamik, “Performance of TCP Congestion Control with Rate
Feedback TCPIABR and TCP/IP,” M.S. thesis, Indian Institute of Sci-
ence, January 1999.
Mark Allman et. al. “Ongoing TCP research related to satellites,” Tech.
Rep. IETF Draft: drafc-ietf-tcpsat-res-issues-05.txt, May 1999.

[lo] Jeonghoon MO, Richard J. 6, Venkat Anantharam. and Jean Walrand,
“Analysis and comparison of TCP Reno and Vega:’ in IEEE Infocom
1999. IEEE. March 1999.

576

