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Absrracr-We consider a modification of TCP congestion con- 
trol in which the congestion window is adapted to explicit bottle- 
neck rate feedback; we call this RATCP (Rate Aduprive TCP). Our 
goal in this paper is to study the performance of RATCP (using 
analytical models, and an experimental test-bed) in various net- 
work scenarios, and to compare the performance of RATCP and 
TCP, both with and without fast-retransmit and fast-recovery. 
We find that when sessions with the same round trip times share 
a bottleneck link then, even with ideal fair rate feedback, the 
performance of RATCP is only slightly better than that of TCP. 
RATCP, however, does reduce losses significantly. When there are 
random losses, however, RATCP with fast-recovery provides sub- 
stantially better throughput than plain TCP. Further, when ses- 
sions with different round trip times share the bottleneck link, as 
expected, RATCP ensures fairness. Finally, we suggest a practical 
situation in which RATCP can be useful for improving web access 
performance. 

Keywordr-explicit rate controk rate adaptive TCP; bandwidth shar- 
ing; adaptive window congestion control 

I. INTRODUCTION 

TCP window adaptation is based on implicit feedbacks from 
the network; acknowledgements cause the congestion window 
to increase, and packet losses (indicated by timeouts or dupli- 
cate acknowledgements) cause the window to decrease. Ow- 
ing to this blind rate adaptation mechanism, TCP has often 
been found to be inefficient and unfair in its throughput per- 
formance. Recent research has, therefore, focussed on explicit 
involvement of the network in the congestion control mech- 
anism of TCP. This work includes router based mechanisms 
such as packet drop policies (RED), ECN, and packet colour- 
ing([l], [2],[3]). ack pacing by the network edge device ([4]). 
explicit window feedback based on buffer occupancy ([SI) or 
rate allocation at the network edge device ([6]). 

In this paper, we consider explicit feedback of fair session 
rates from the network directly to the individual TCP sources, 
and study a policy for utilizing this rate information in TCP's 
adaptive window based congestion control. We call this modi- 
fication Rate Adaptive TCP (RATCP). It can be expected that, 
if the TCP sources adapt to the rate feedback there will be few- 
er losses, the network bandwidth will be used efficiently, and 
fairness will be achieved among the competing sessions. We 
assume that the network is somehow able to feedback fair ses- 
sion rates to TCP sources (later in the paper we suggest a prac- 
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tical situation in which this can be done). The TCP transmitter- 
s adapt their congestion windows based on this rate feedback 
and a round-trip-time (RTT') estimate. Thus our concern in this 
paper is to study the performance implications of feeding bot- 
tleneck rate information directly into TCP windows, assuming 
that such rate information can be obtained and that mechanism- 
s exist for feeding it back to the sources. 

We compare the performance of RATCP and TCP in the fol- 
lowing scenarios: (1) A long-lived (or persistent) session shar- 
ing a bottleneck link with short-lived (or ephemeral) sessions 
that arrive and depart randomly; the ephemeral sessions are as- 
sumed to be ideally rate controlled and the persistent session 
uses RATCP or TCP; thus the persistent session has a time 
varying fair rate. (2) A persistent session over a bottleneck 
link with random loss. (3) n o  persistent sessions with differ- 
ent round-trip times sharing a bottleneck link; both the sessions 
use RATCP or TCP. (4) n o  persistent sessions on a link, one 
using RATCP and the other TCP. (5) A link being shared by 
ephemeral sessions that randomly arrive and depart. 

We use an analytical model and an experimental test-bed to 
study the above scenarios. For case (1) we develop an analyti- 
cal model for obtaining the throughput of the persistent session 
using either RATCP or TCP, both without the fast-retransmit 
feature. The analysis is based on identifying a certain Markov 
renewal reward process, and calculating the TCP throughput as 
the reward rate in this process. Our experimental setup com- 
prises an implementation of RATCP in Linux; the bottleneck 
link is emulated in the Linux kernel. This setup is used to 
verify the analysis, and to provide numerical results for the 
other cases, including results for RATCP and TCP with fast- 
retransmit and recovery. 

11. RATCP: WINDOW ADAPTATION WITH RATE 
FEEDBACK 

A. A Naive Rate to Wndow Translation 

Consider a TCP session through a bottleneck link. If the 
round trip propagation delay for the session is A, and the fair 
share of the bottleneck rate is R. then the congestion window 
for this session should be W = R . A + p, where /3 is a target 
buffer backlog for this session. N?w if the fair rate for the 
session is time varying (R(t)) ,  and A(t) is an estimate (at the 
transmitter) of A at t ,  then a simple, nave rate adapted window 
wouldbetotakeW(t) = R(t-A) -A(t)+p,whereR(t-A) 
is the available rate as known to the transmitter at time t. In this 
paper, we wish to study how an appropriate implementation of 
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such a naive feedback performs. 

B. Wndow Adaptation 

The rate adaptive window adaptation strategy is the follow- 
ing (Wcong denotes the congestion window, and is the window 
actually used for transmission control): 

Slow start is carried out either at connection startup, or at the 
restart after a timeout. We use the rate information for setting 
the slow start parameters: Wcon9 at timeout is set to 1, and the 
slow start threshold (ssthresh) is set to the value of Wrote at 
the timeout epoch. If during slow start Wrote < Wcong then 
the congestion window is dropped to Wrote, and congestion 
avoidance is entered. This is appropriate, since it is as if the 
ssthresh has been adjusted downward. 

During congestion avoidance, at time t, we compute 
WCong(t+) = min{Wcong(t), Wrate(t)). If the congestion 
window reduces as a result of Wrcte(t) < WCon9(t), then it 
means that more than the desirable number of packets are in 
the network. Acks following such a window reduction do not 
cause the window to increase until the number of unacknowl- 
edged packets corresponds to the new window. This adds a 
phase of inactivity in the modified TCP. Normal congestion 
avoidance behavior continues after the number of outstanding 
packets matches the new congestion window. If during conges- 
tion avoidance Wcon9 becomes less than ssthresh (due to a 
Wrote feedback) then slow start is not re-initiated. This is rea- 
sonable, since it is as if the ssthresh has been adjusted down- 
ward, and we are now just entering congestion avoidance. This 
also implies that ssthresh no longer differentiates the phases 
of the TCP algorithm; we need to introduce a separate variable 
for this purpose. 

If fast-retransmit and fast-recovery are implemented then 
upon receiving K (typically K = 3) duplicate acks we 
set Wcon9 c min(Wcon9, Wrote) (instead of Wcon9 t 
w-ng 7 + K as in TCP-Reno), and the missing packet is re- 
transmitted. After every additional acknowledgement received 
Wcon9 is increased by 1. Upon receipt of the ack for the resent 
packet, congestion avoidance resumes, as described above. 
We call this modification of TCP, Rate Adaptive TCP 
(RATCP). We will compare RATCP and TCP without fast- 
retransmit and fast-recovery, and will call these versions 
RATCP-OldTahoe and TCP-OldTahoe. The versions with fast- 
retransmit and fast-recovery will be called RATCP-Reno and 
TCP-Reno. 

111. A MODEL AND ITS ANALYSIS 
Analysis, even if it is approximate, is very useful for provid- 

ing insight into factors that affect the performance of a proto- 
col, and, in addition, analysis can help to validate and debug 
simulations and experimental implementations. 

We develop an analytical model for the performance of 
RATCP OldTahoe in the following network scenario. There 
is a persistent RATCP session, that shares a bottleneck link 
with other elastic sessions. The elastic sessions are assumed 

Fig. 1. A queueing model of the persistent TCP session. 

to be ideally rate controlled and ephemeral. When there are m 
ephemeral sessions, we assume that these sessions use exactly 

of the link capacity of C packets per sec, and the persis- 
tent session’s share is & pktslsec. Thus the fair bandwidth 
available to the persistent session is randomly time varying. 
Figure 1 shows a schematic queueing model of the persistent 
TCP session. Note that the ephemeral sessions are only mod- 
elled as modulating the rate available to the TCP session, and 
hence the link buffer only holds packets from the TCP session. 
A denotes the fixed round trip delay. 

The continuous time processes are hard to analyse. Instead, 
we follow the analysis procedure developed in [7]. Define the 
epochs t k  = kA,k = 0,1,2, .  . .. Observe that none of the 
packets that are in the delay queue at time t k  will still be in that 
queue at time i!k+l, and any packet that arrives into the delay 
queue during ( t h ,  &+I] will still be there at time t k + l .  We thus 
consider the processes embedded at the epochs { t k ,  k 2 0) 
(see Figure 2), and define 

{Zk,k 2 0) = {(Bk,Dk,WkCDng,W~te,Mk),k 2 0) 

where, at epoch tk, W p t e ,  W y g  denote the rate window and 
the congestion window for the persistent RATCP session. M k  
denotes the number of ephemeral sessions on the link, B k  the 
number of packets in the link buffer, and Dk the number of 
packets in the propagation queue; this is the total number of 
packets and acks in transit. 

We model {Mk, k 2 0) as a Markov chain that evolves 
independently of the other components of the process {zk}. 
We assume that delay A is known at the TCP source. Ow- 
ing to one A delay in rate feedback, the rate window cal- 
culated at t k  is given by W p t e  = LRk-l.AJ + p where, 
Rk-1 = &. Then, the window adaptation policy im- 
plies that W l y g  = m i n { W y g ,  Wiote) (note that IC+ de- 
notes “just after epoch t,”). 

We make some basic assumptions in order to make the anal- 
ysis of the { 2,) process tractable. 

The transmitter immediately transmits new packets as soon 
as its window allows it to; these arrive instantaneously at the 
link buffer. 

Packet transmissions from the link do not straddle the epochs 
{tk)- 

During each interval (tk, t k + l ] ,  the acknowledgements (ack- 
s) arrive at the TCP transmitter at the rate Rk-1. 
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Fig. 2. Evolution of the process { Zk , k 2 0). showing the model for timeout based loss recovery.. 

Let zk = (b,d,  wCong,wrote,m). Then W i y  = 
min (wCong, wrote). Note that there can be at most d acks dur- 
ing ( t k ,  & + I ) .  These acks may trigger new packet arrivals into 
the link buffer. In congestion avoidance we have the following 
possibilities, 
1. If W i y g  < b + d (this would occur if wrote < wCong), 
then h = b + d - W i y g  packets need to be removed from 
the network before congestion avoidance resumes. Since the 
number of acks that will be received in ( t k ,  t k + l )  is d, we first 
have the following two cases. 

Case 1: d < h + not enough acks are received, the source 
is inactive throughout ( t k ,  & + I )  and W i T  = W i y ;  there 
is no packet loss. 

Case 2: d > h + congestion avoidance commences dur- 
ing ( t k ,  t k + l )  after the first h acks are received. There may be 
losses in ( t k ,  t k + l )  after h acks are received. 
2. Case 3: W i y  = b+d + congestion avoidance continues; 
as acks are received, Wcong is incremented and new packets 
are generated. There may be losses in ( t k ,  t k + l ) .  

If a loss does occur during ( t k ,  t k + l ) ,  adjustments to W i y g  
may occur till the ack for the packet just prior to the one that is 
lost is received (see Figure 2). We assume that this ack arrives 
at the source in ( t k + l ,  t k + 2 ) .  At this point the transmitter starts 
a coarse timer. We assume that the coarse timeout occurs dur- 
ing ( t k + 2 ,  t k + 3 )  and the recovery begins at t k + 3  (see Figure 2) .  
Recalling that we are not modelling the fast-retransmit proce- 
dure, denote by L,,, the duration of the slow start phase (in 
number of A intervals). L,, will vary with each loss instance, 
but developing an indexing for it would be cumbersome. Then 
the recovery is over at tk' , k' = k + 3 + L,, and the congestion 
avoidance phase begins. 

A Markov renewal process: Define, the embedded epochs 
{Tk) by: TO = t o ,  and for k 2 0 

Tk+l = { T~ T k + A  + (3 + L,,).A iflossin ( T ~ , T ~  + A) 
if no loss in ( T k ,  Tk + A) 

where L,, denotes the duration of the slow start phase. Final- 
ly, define the embedded process { X k  = ZT*, ]E > 0) with 
XO = 20. With the assumptions made above, it can be argued 
that { X k ,  k _> 0) is a Markov chain. The analysis proceeds by 
obtaining the epochs T k  and the Markov chain X k  = ZT,. The 
transition probabilities of this Markov chain are obtained by 

the linear increase during the congestion avoidance probabilis- 
tically. For simplicity in the analysis, we do not consider adap- 
tation to Wrote in the slow start phase; however, Wrote is used 
to set the value of ssthresh at time-out. We model the losses 
in slow start. It can then be shown that, given X k  and T k ,  the 
distribution of T k + l  can be computed without any knowledge 
of the past. Hence, the process { ( X k ,  T k ) ,  k 2 0 )  is a Markov 
renewal process (MRP). It is this MRP that is our model for 
the persistent TCP connection with time varying bandwidth. 

Given the Markov Renewal Process { ( X k , T k ) ,  k > 0). a 
reward Vk is associated with the kth cycle ( T k , T k + 1 ) ,  as the 
number of successful packets accounted in that interval. Let 
V(z) and U ( z )  respectively, denote the reward and the length 
of the cycle beginning with X k  = z. Denote by n(z), the sta- 
tionary probability distribution of the Markov chain { X k ,  k 2 
0). Then denoting by 7 the throughput, and by E,, the expec- 
tation with respect to ~ ( z ) ,  from the Markov Renewal-Reward 
Theorem we have, 

where, ploss(z) denoting the probability of packet loss in the 
state X k  = z, 

W.P. 1 - P l O S S ( 2 )  

Dbefore l o s s ( z ) +  

Dslow start W.P. p l o s e ( 2 )  

The details of this analysis and analysis of TCP without rate 
feedback are provided in [8]. 

IV. SIMULATION SETUP 
The simulation results for the network of Figure 1 reported 

here are obtained from a Linux based test-bed, where the bot- 
tleneck link (buffering, transmission rate, and propagation de- 
lay) is emulated in the loop-back interface. Rate variations on 
the bottleneck link are artificially created by the rate transitions 
made to occur at discrete time epochs. Loop-back file transfers 
are run within one machine, using the actual TCP code modi- 

examiningeach of the three cases described above. We model fied according to RATCP. In order to validate the analysis, the 
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Fig. 3. Throughput variation of RATCP and TCP with the ephemeral session 
arrival rate. Analysis and simulation. = 1 packet. 

exact rate feedback is artificially provided to the TCP sender. 
In case of multiple connections, we modify the ftp client and 
the socket layer so that the client application is able to select 
the underlying transport protocol (TCP or RATCP). This en- 
ables us to compare the performance of competing TCP and 
RATCP sessions over the bottleneck link. 

V. NUMERICAL RESULTS 

A. RATCP OldTahoe and TCP OldTahoe: Analysis and Simu- 

The common parameters selected for these results are: link 
rate, C= 0.8 Mbps, link buffer, B,,,, = 10 packets, TCP pack- 
et length = 500 Bytes, mean ephemeral session length, E ,  = 
200 KBytes, round trip delay, A, = 100 ms, maximum num- 
ber of ephemeral sessions on the link, M,,,, = 3. In order to 
validate the analysis, it is assumed that the round trip time is 
known to the sender. 

Figure 3 shows the basic comparison of the performance of 
RATCP and TCP obtained analytically as well as from simula- 
tions. Note from Figure 3, that analysis and simulation results 
match well with analysis being slightly overestimating. Thus, 
overall the analysis procedure captures the performance quite 
well. Numerical values are shown in Table I. 

Note that, since M,,, = 3 at any time t .  when the ar- 
rival rate of the ephemeral sessions is very low or very high 
the fair rate variations are slow, whereas for intermediate ar- 
rival rates the rate variations are fast. When the arrival rate 
of the ephemeral sessions is very low, RATCP gives about 
17%-20% better throughput than TCP. Since both RATCP and 
TCP recover conservatively from losses, the improvement with 
RATCP occurs since it suffers less losses, because of the adap- 
tation to the rate. As the arrival rate increases RATCP does 
not have a significant advantage over TCP. This is because, 
when the rate variations are comparable to the propagation de- 
lay, there are frequent mismatches between the sending rate 

lation 
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Fig. 4. Throughput variation of Tahoe and Reno versions of RATCF' and TCP 
with random packet drop probability. 

and the available bottleneck rate, and hence the rate feedback 
is not very effective. When the arrival rate is higher, the mean 
number of sessions on the link increases. This implies that the 
rate available per session is small, and TCP needs to build a 
smaller window before a loss occurs. Thus the penalty for a 
packet loss is not significant and TCP performance is close to 
that of RATCP. 

We provide additional results in Table I. These numbers 
show the effect of increasing p, and reducing the link buffer 
size. It can be seen that the performance of RATCP is im- 
proved by a larger value of p in the region where the fair rate 
varies rapidly since RATCP is able to take advantage of tran- 
sient rate increases. If the buffer size is reduced from 10 to 8 
packets, observe that, because of the control over the number 
of packets in the network, the reduction in the buffers does not 
degrade the performance of RATCP as much as TCP. 

B. RATCP Reno; Random Losses: Simulation Results 

In the following simulations, RATCP uses the base RTT es- 
timate to calculate the rate window. 

We have described fast-retransmit and recovery in RATCP 
Reno in Section 11. Table I shows the comparison of RATCP 
Reno and TCP Reno. Fast retransmit works well in TCP Reno 
when the rate variations are slow; particularly with high arrival 
rate it matches the performance of RATCP with p = 1. How- 
ever, multiple losses in the fast variation region cause multi- 
ple window cutbacks and hence the degradation in throughput. 
RATCP Reno on the other hand improves overall performance. 

On links where transmission error probability is high, e.g. 
satellite links ([9]), it is particularly important that TCP re- 
transmit the packets lost due to corruption without reducing 
its congestion window. Since RATCP-Reno maintains the fair 
window in fast retransmit, it is indirectly able to differentiate 
congestion and corruption losses which is a difficult problem 
for TCP. This can be seen from Figure 4 where we plot the 
throughput of a single persistent session versus the packet loss 
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TABLE I 
THROUGHPUT ( K B Y T E S ~ E C )  OF THE PERSISTENT SESSION FOR VARIOUS PROTOCOLS AND PARAMETERS. EACH COLUMN CORRESPONDS TO AN 

ARRIVAL RATE OF EPHEMERAL SESSIONS ON THE LINK. 

Ephemeral session arrival Rate(sessi0ndsec) 0.0 0.01 0.05 0.1 0.2 0.33 0.5 1.0 2.0 
Protocol 
RATCP (p=l):analysis 99.60 95.69 85.87 74.75 57.27 43.68 34.73 27.19 24.70 
RATCP (P=l):simulation 99.52 97.68 83.05 69.24 52.50 44.35 33.43 25.83 23.97 
TCP :analysis 85.54 84.36 77.23 68.75 57.27 42.71 34.44 26.93 24.37 
TCP :simulation 82.44 79.95 73.02 59.52 51.00 40.43 31.79 25.93 24.24 
RATCP (P4):analysis 99.68 97.33 87.51 76.93 59.96 46.55 37.60 29.57 27.67 
RATCP (P4):simulation 99.52 96.83 83.62 71.58 57.73 46.69 35.63 29.07 27.26 
RATCP (Bmaz=8 pkts):analysis 99.60 93.46 83.62 74.59 57.08 43.29 34.43 26.95 24.65 
RATCP (Bm,z=8 pkts):simulation 99.54 93.41 78.90 71.17 48.86 45.87 32.98 25.39 23.86 
TCP (Bm,,=8 pkts):analysis 83.13 81.49 74.92 66.43 55.30 41.06 33.16 26.11 23.57 
TCP (Bm,,=8 pkts):simulation 78.91 77.40 73.51 65.35 47.19 38.24 31.08 25.23 23.47 
RATCP-Reno (p= 1):simulation 99.63 95.89 88.24 71.03 55.24 45.00 34.68 25.37 23.61 
RATCP-Reno (p=4): simulation 99.54 98.19 87.13 72.97 58.96 47.12 36.58 29.67 27.90 
TCP-Reno :simulation 92.31 87.67 77.14 65.24 49.63 43.42 34.19 27.61 25.87 

---______---- 

rate. The parameters are as given earlier except that there are 
no ephemeral session arrivals. Notice that RATCP Reno suc- 
ceeds in maintaining the throughput of the session above 85K- 
Bytedsec (on a 100KBytedsec link) for a wide range of pack- 
et loss probabilities, whereas the session throughput with TCP 
Reno drops to less than 5OKBytedsec with a packet loss prob- 
ability of 1%. 

C. Fairness: Simulation Results 

We continue to use the same simulation set-up and the link 
parameters. Figure 5 shows the fairness comparison of RATCP 
and TCP, when 2 sessions with round trip times l00ms and 
200ms share the bottleneck link. As expected, RATCP is seen 
to be fair as against TCP which is biased against sessions with 
larger propagation delays. However, when an RATCP session 
competes with a TCP session, as seen from Figure 6, TCP gain- 
s because of its greedy nature. A similar phenomenon is seen 
when TCP-Vegas competes with TCP-Reno (see [lo]). 

D. Small file transfers: Simulation Results 

Web traffic is the predominant traffic in the Internet today. 
To model such a realistic situation, we need to consider the 
transfer of small files. We model file sizes as being exponen- 
tially distributed with mean 200KB. We now use the following 
parameters: link rate, C, = 2 Mbps, link buffer, Bmazr = 30K- 
Bytes, TCP packet length = 1500 Bytes, mean file transfer size, 
E ,  = 200 KBytes, round trip Delay, A, = 100 ms. For RATCP, 
we assume that the exact rate is available at the sender (after 
one round trip time), and it uses the base R l T  estimate to cal- 
culate the rate window. 

Figure 7 shows the variation of average throughput of ses- 

Fig. 5. Throughput comparison of 2 competing sessions on the link with 
different round hip times- lOOms and 2OOms.Sessions either use RATCP 
Reno or TCP Reno. p = 1 packet. 

sions (averaged over 500 sessions) as the load on the link in- 
creases. Note that, the performance of RATCP and TCP is 
almost the same. Since RATCP allocates fair rates to all the 
sessions, sessions get equitable throughputs, but with TCP s- 
maller files get significantly higher throughputs and the aver- 
age performance of both the protocols is almost the same. Fig- 
ure 8 shows that losses incurred by RATCP with p = 1 are 
significantly fewer than by TCP and by RATCP with p = 4. 

Experiments with small file transfers on a link with ran- 
dom losses show that RATCP gives 10% better throughput than 
TCP. However, with larger file sizes (mean file size 1 MByte) 
and small load values, performance similar to Figure 4 can be 
achieved. 
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Fig. 6. Throughput comparison of 2 competing sessions on the link, one uses 
TCP Reno and the other RATCP Reno. Round trip time is equal to lOOms 
for both the sessions. = 1 packet. 

Fig. 7. Average throughpul variation of sessions vs load. Mean file transfer 
size is 200KB. 
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Fig. 8. Average retransmitted data per sessions vs load. Mean file transfer size 
is 2”. 

VI. CONCLUSIONS 
We studied an approach for adapting the TCP congestion 

window to explicit bottleneck rate feedbacks, and called this 
modification RATCP. Analysis and simulation results show 
that though the throughput performance of RATCP is only s- 
lightly better than TCP, it reduces losses substantially and al- 
so deals effectively with random losses on the link. Further, 
RATCP ensures fair bandwidth sharing between sessions even 
if they have different propagation delays. We believe that 
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Fig. 9. A satellite networking situation where RATCP will be useful. 

RATCP can find application in bandwidth managers. A possi- 
ble scenario is shown in Figure 9 where clients download data 
from the Internet via a proxy server(shown as an integration of 
proxy-web server and a bandwidth controller) using a satellite 
link which is the bottleneck link. RATCP is implemented in 
the proxy for client side connections. Ongoing simulations of 
this network scenario show that RATCP performs significantly 
better than TCP under low load cpnditions when the download 
file sizes are larger. 
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