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Abstract–The sequential group detection technique [6] is

a generalization of the decision feedback detector: in the lat-

ter, users are successively demodulated and cancelled one-

by-one, while in the former this basic operation is performed

simultaneously on groups of users. The computational com-

plexity of a Group Decision Feedback Detector (GDFD) is

exponential in the largest size of the groups [6]; thus instead

of using the partition of users as design parameters, choosing

the “maximum group size” is more reasonable in practice.

Given the maximum group size, a grouping algorithm is pro-

posed. It is shown that the proposed grouping algorithm

maximizes the Asymptotic Symmetric Energy (ASE) of the

multiuser detection system. Furthermore, based on a set

of lower bounds on Asymptotic Group Symmetric Energy

(AGSE) of the GDFD, it is shown that the proposed group-

ing algorithm, in fact, maximizes the AGSE lower bound

for every group of users. Together with a fast computa-

tional method based on branch-and-bound, the theoretical

analysis of the grouping algorithm enables the offline esti-

mation of the computational cost and the performance of

GDFD. Simulation results are presented to verify the theo-

retical results.

I. Introduction

In synchronous Code Division Multi-Access (CDMA)

communication systems, the near-far problem caused by

interuser interference has been widely studied. When the

source signal is binary- or integer-valued, the conventional

linear decorrelator often fails to produce reliable decisions

for the CDMA channel. The computation of the optimal

decision, however, is generally NP-hard and thus is expo-

nential in the number of users [2]. Several new algorithms

have been proposed to provide reliable solutions with rela-

tively low computational cost. Among the sub-optimal al-

gorithms, the decision-driven detection methods, including

decision feedback [5] [9], group detection [6], and multi-

stage detection [3] [4], are popular. Although the Deci-

sion Feedback Detector (DFD) is simple and performs well,

there are situations when a marginal increase in computa-

tion can provide significant improvement in performance

[10].

The main drawback of DFD is that detections are made

userwise; the decision on the strong user is obtained by

treating the weak users as noise. However, when user chip

sequences are correlated, this noise becomes biased, and

thus is naturally harmful to the userwise detection. The

idea of sequential group detection was first introduced by

Varanasi in [6] and can be viewed as a group version of

the decision feedback detection. GDFD first divides users
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into several groups. The users with relatively high correla-

tions are assigned to the same group, and the correlations

between users in different groups are relatively low. Simi-

lar to DFD, GDFD makes decisions sequentially based on

successive cancelation. However, instead of making deci-

sions userwise, GDFD makes decisions groupwise, i.e., the

decisions on users in the same group (the correlated users)

are made simultaneously. The computational expense for

a GDFD is approximately exponential in the largest group

size, and this is expected to be small if the largest group

size is small.

In [6], the sizes of the groups are design parameters.

However, in practice, given a user signal set, it is not easy

for one to find the correlated users and assign them to

groups. Since the largest group size is closely related to the

overall computational cost, in this paper, we consider the

largest group size as the only design parameter. A group-

ing and ordering algorithm is proposed to find the optimal

size and users for each group. Theoretical results are given

to show the optimality in terms of the ASE. Together with

a fast computational method modified from [10], the pro-

posed GDFD method provides a unifying and efficient way

to improve the DFD with small extra computation.

The rest of the paper is organized as follows. In section

II, we review the problem model and the theoretical re-

sults on the performance measure given in [6]. In section

III, given the largest group size, a grouping and ordering

algorithm is proposed to maximize the ASE of the sys-

tem. Proof of optimality is given in the appendix. A fast

computational method is proposed for the GDFD and a

theoretical upper bound on computational cost is derived.

Simulation results on a small example as well as on a sys-

tem of 100 users are presented in section IV. Conclusions

are provided in section V.

II. Problem Formulation and Performance

Measure of GDFD

A discrete-time equivalent model for the matched-filter

outputs at the receiver of a CDMA channel is given by the

K-length vector [2]

y = Hb+ n (1)

where b 2 f¡1,+1g
K

denotes the K-length vector of bits

transmitted by the K active users. Here H =W

1

2RW

1

2 is

a nonnegative definite signature waveform correlation ma-

trix, R is the symmetric normalized correlation matrix with

unit diagonal elements, W is a diagonal matrix whose k-th
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diagonal element, wk, is the received signal energy per bit

of the k-th user, and n is a real-valued zero-mean Gaussian

random vector with a covariance matrix σ
2
H.

When all the user signals are equally probable, the opti-

mal solution of (1) is the output of a Maximum Likelihood

(ML) detector [2]

φML :
ˆ
b = arg min

b∈{−1,+1}K

(
b
T

Hb¡ 2y
T

b

)
(2)

The ML detector has the property that it minimizes, among

all detectors, the probability that not all users’ decisions

are correct. Usually, φML is considered NP-hard and ex-

ponentially complex to implement.

The idea of successive cancelation is that a correct de-

cision on the strong users will improve the performance

for weak users. In order to avoid an exponentially com-

plex search among all users, it is intuitive to divide users

into several groups, and to make decisions sequentially and

groupwise. This was first introduced by Varanasi in [6].

Here we will present the GDFD in an alternative way since

the results are to be used in later sections of the paper.

Suppose users are partitioned into an ordered set of P

groups, G0, ..., GP−1. The number of users in group Gi is

denoted by jG
i
j. The decision on group fG0g is made by

ˆ
bG0

= arg min

b
G

0
∈{−1,+1}|G

0
|

[
min

b
Ḡ

0

(
b
T

Hb¡ 2y
T

b

)]
(3)

where b
G0

and
ˆ
b
G0

denote, respectively, the parts of vectors

b and
ˆ
b that correspond to users in group G0, and

¯
G0 de-

notes the complement ofG0, i.e., the union ofG1, ...,GP−1.

The decisions of (3) are then used to subtract the multiple-

access interference due to users in G0 from the remaining

decision statistics y
Ḡ0

. The detector for the next group

G1 is designed under the assumption that the multiple-

access interference cancelation is perfect. This process of

interference cancelation and group detection is carried out

sequentially for users in groups G2, ..., GP−1, with the

group detector for group Gi taking advantage of the deci-

sions made by group detectors for G0, ..., Gi−1. Denote the

channel model for the user expurgated channel that only

has users in groups G
i
, ..., G

P−1 by

y
(i)

=H
(i)
b
(i)

+ n
(i)

(4)

The decisions on group Gi can be represented as

ˆ
bGi

= arg min

b

(i)

G
i

∈{−1,+1}|G
i
|


min

b

(i)

¯
G

i

(
b
(i)

T

H
(i)
b
(i)

¡ 2y
(i)

T

b
(i)

)



(5)

The group detection procedure is illustrated in Figure 1.

In multi-user detection, the Asymptotic Symmetric En-

ergy (ASE) is an important performance measure. Define

the probability that not all users are detected correctly as

P (σ,φ), then the ASE for the detector φ [9] is given by

η(φ) = sup



e ¸ 0; lim

σ→0

P (σ, φ)

Q

(√
e

σ

) <1



 (6)

Fig. 1. Detection Procedure of GDFD

where σ
2
is the additive noise variance (see (1)), and

Q(x) =

∫∞

x

1√
2π

e
−x

2

2 dx. The ASE for the optimal detector

φML is given by

η(φ
ML

) = d
2

min
= min

e∈{−1,0,1}K\{0}K

e
T

He (7)

where “n” is set subtraction and dmin is known as the min-

imum distance of matrix H [8]. Similarly, we can define

the Asymptotic Group Symmetric Energy (AGSE) for each

user group. For a group detector, define the probability

that not all users in group fGig are detected correctly as

PGi
(σ,φ), and correspondingly we have

ηGi
(φ) = sup



e ¸ 0; lim

σ→0

PGi
(σ, φ)

Q

(√
e

σ

) <1



 (8)

as the AGSE for group fGig. Although an exact perfor-

mance analysis of GDFD is intractable [6], one can obtain

upper and lower bounds for the AGSE of all groups. In the

above description of the GDFD, define J
(i)

=

[
H

(i)
−1

]
,

and denote J
(i)

GiGi

to be the sub-matrix of J
(i)

that only

contains the columns and rows corresponding to users in

Gi. Define dGi,min to be the minimum distance of matrix(
J
(i)

GiGi

)−1

, i.e.,

d
2

Gi,min
= min

e∈{−1,0,1}|G
i
|\{0}|G

i
|

e
T

(
J
(i)

GiGi

)−1

e (9)

Then the AGSE for group Gi can be bounded by

min(d
2

G0,min
, ..., d

2

Gi,min
) · η

Gi

(φ) · d
2

Gi,min
(10)

A similar result can be found in [6]. The upper bound in

(10) is reached when all decisions on the users in group G1

through group Gi−1 are correct.

III. Optimal Grouping and Ordering for GDFD

It is known that the performance of the decision-driven

multi-user detector is significantly affected by the order of

the users. In GDFD, different partitioning of the users

and different detection orderings of the groups will result
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in different performances. Since finding the group de-

cision (5) is generally NP hard, the computational cost

for (5) is exponential in the group size jGij. Hence the

overall computation for GDFD can be considered expo-

nential in the maximum group size, which is defined by

jGjmax = max(jG0j, ..., jGP−1j). In this section, we de-

velop a grouping and ordering algorithm that maximizes

the ASE of the GDFD given jGjmax as a design parameter.

Denote the Cholesky decomposition of H by L
T
L = H,

where L is a lower triangular matrix. Multiply both sides

of (1) by (L
−1

)
T
to obtain,

ỹ = (L
−1

)
T

y = Lb+ ñ (11)

Where E[ññ
T
] = σ

2
I. Partition the matrices and the vec-

tors according to G0 and
¯
G0 to obtain

[
ỹG0

ỹ
Ḡ0

]
=

[
LG0G0

0

L
Ḡ0G0

L
Ḡ0Ḡ0

] [
bG0

b
Ḡ0

]
+

[
ñG0

ñ
Ḡ0

]
(12)

The decision on group G0 in (3) can be written as

ˆ
bG0

= arg min

bG
0
∈{−1,+1}|G

0
|

kLG0G0
bG0

¡ ỹG0
k
2

2
(13)

Therefore, the AGSE of groupG0 is determined by the min-

imum distance of matrix L
T

G0G0

L
G0G0

. SinceH = L
T
L, we

have

L
T

G0G0

LG0G0
=

[
(H

−1
)G0G0

]−1

=

[
J
(0)

G0G0

]−1

ηG0
(φGDFD) = d

2

G0,min
(14)

A similar result can be obtained for group Gi. In the

description of GDFD in section II, if we let H
(i)

=

L
(i)

T

L
(i)
, then L

(i)
T

GiGi

L
(i)

GiGi
=

(
J
(i)

GiGi

)−1

. Notice that

L
(i)

GiGi
= LGiGi

, we have

L
T

GiGi

LG
i
G

i
=

(
J
(i)

G
i
G

i

)−1

(15)

The above result shows that dGi,min is determined by the

diagonal block-matrix L
GiGi

of L. Now, given all the de-

cisions on group G0 to group Gi−1 are correct, denote the

probability that not all the users in group G
i
are detected

correctly by Pe(GijG0, ..., Gi−1) ¼ Q

(
dG

i
,min

σ

)
. The prob-

ability that not all the K users are detected correctly can

be represented as

P (σ, φ) = 1¡

P−1∏

i=0

[
1¡Q

(
dGi,min

σ

)]
(16)

Therefore, the ASE of GDFD is given by

η(φGDFD) = min(d
2

G0,min
, ..., d

2

GP−1,min
) (17)

Recall that the computational cost for a GDFD is ex-

ponential in the largest group size jGjmax. If jGjmax is

given as a design parameter, the problem is then to find

an optimal partition and detection order that maximizes

min(d
2

G0,min
, ..., d

2

GP−1,min
).

Grouping and Order Algorithm : Find the optimal

grouping and detection order via the following steps.

Step 1: Partition the K users into two groups fG0g and

f
¯
G0g with jG0j · jGjmax. Among these partitions

(fG0g and jG0j are not fixed), select the one that max-

imizes d
G0,min

(which is the minimum distance of ma-

trix

[
J
(0)

G0G0

]−1

).

Step 2: Partition the remaining K ¡ jG0j users into two

groups G1 and Ḡ1 with jG1j · jGjmax. Among these

partitions, select the one that maximizes dG1,min (the

minimum distance of matrix

[
J
(1)

G1G1

]−1

).

Step 3: Continue this process until all the users are as-

signed to groups.

Example 1 : The algorithm is illustrated by the follow-

ing 4-user example. Suppose the H matrix is given by

H =




4.30 1.00 0.60 0.30

1.00 3.00 1.70 0.50

0.60 1.70 2.20 0.70

0.30 0.50 0.70 1.90


 (18)

Assume that the desired maximum group size is jGj
max

=

2. In step 1 of the algorithm, the possible choices for

group G0 and the resulting d
2

G0,min
are shown in Table I.

Therefore, the best choice for group G0 is fuser 0g. Then,

User(s) 0 1 2 3 0,1

d
2

G0,min
3.96 1.62 1.14 1.67 1.69

User (s) 0,2 0,3 1,2 1,3 2,3

d
2

G0,min
1.14 1.68 1.74 1.62 1.24

TABLE I

Choices for group G
0
and the corresponding d

2

G0,min

for the user expurgated channel, we have

H
(1)

=




3.00 1.70 0.50

1.70 2.20 0.70

0.50 0.70 1.90


 (19)

The possible choices for groupG1 and the resulting d
G1,min

are shown in Table II. We can see that the best choice for

User(s) 1 2 3 1,2 1,3 2,3

d
2

G1,min
1.69 1.14 1.68 1.78 1.68 1.24

TABLE II

Choices for group G
1
and the corresponding d

G1,min

group G1 is fuser 1, user 2g. Naturally fuser 3g will be

the last group. The resulting ASE for this partitioning and

ordering is η = 1.78.

The above example has 4 users and jGjmax = 2. One

may have posited that partitioning users into 2 groups with
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2 users in each group is a good choice. For example, as-

sign groups as fuser0, user3g and fuser1, user2g. We get

η = 1.68 < 1.78. Furthermore, instead of having one 2-user

group, we now have two 2-user groups. This will also result

in additional computation in detection (see the computa-

tional analysis at the end of this section).

Proposition 1 : The proposed grouping and ordering

algorithm maximizes the ASE in (17).

See Appendix of [11] for the proof.

The proposed grouping and ordering algorithm is also

optimal in the following sense.

Proposition 2 : The proposed grouping and ordering

algorithm maximizes the performance lower bound in (10)

for every group. In other words, suppose G is the grouping

and ordering result obtained from the proposed algorithm,

and Gk is one of the groups in G. Further suppose there

is another group and detection sequence Ĝ with Ĝl being

one of the groups in
ˆ
G, and

ˆ
Gl = Gk. Then the following

result holds,

min(d
2

G1,min
, ..., d

2

Gk,min
) ¸ min(d

2

Ĝ1,min

, ..., d
2

Ĝ
l
,min

)

(20)

See Appendix of [11] for the proof.

In addition to the above 2 propositions, we can derive a

fast computational method for GDFD, which is a modified

version of the method proposed in [10].

Similar to (12), suppose that the decisions on groups

fG1g, ..., fGi−1g have already been made. From (5) in

the user expurgated channel, partition the matrices by Gi

and Ḡ
i
, where Ḡ

i
is the complement of G

i
in the user

expurgated channel. We obtain the white noise model,

[
ỹ
(i)

Gi

ỹ
(i)

Ḡi

]
=

[
L
(i)

GiGi

0

L
(i)

ḠiGi

L
(i)

ḠiḠi

] [
b
(i)

Gi

b
(i)

Ḡi

]
+

[
ñ
(i)

Gi

ñ
(i)

Ḡi

]
(21)

and, using the fact that L
(i)

GiGi

= LGiGi
, the decision on

group G
i
is made by

ˆ
bGi

= arg min

b

(i)

G
i

∈{−1,+1}|G
i
|

∥∥∥LGiGi
b
(i)

Gi

¡ ỹ
(i)

Gi

∥∥∥
2

2

(22)

We propose the following steps for the group detection.

Computational Method for GDFD : Suppose the

GDFD has P groups, G0, ..., GP−1

1) Initialize ỹ
(1)

= (L
−1

)
T
y, L

(1)
= L. Let i = 1;

2) Partition L
(i)

as shown in (21) according to group Gi

and its complement Ḡi. Find the decision on group

G
i
by

ˆ
bGi

= arg min

bG
i
∈{−1,+1}|G

i
|

∥∥∥LGiGi
bGi

¡ ỹ
(i)

Gi

∥∥∥
2

2

(23)

3) Compute ỹ
(i+1)

by

ỹ
(i+1)

= ỹ
(i)

Ḡi

¡ L
(i)

ḠiGi

ˆ
bGi

(24)

Let

L
(i+1)

= L
(i)

ḠiḠi

(25)

4) Let i = i + 1. If i < P , go to step 2; otherwise, stop

the computation.

The computational cost for step 1 is
K(K+1)

2
multipli-

cations and
K(K−1)

2
additions. Assume the computational

cost for step 2 can be bounded by

“£ ” ·M(jGij) , “ + ” · S(jGij) (26)

where “£” denotes the number of multiplications and “+”

denotes the number of additions. In step 3, since b can only

take known discrete values, Lb can be precomputed and

stored. Thus, only jG
i
j

∑
P−1

k=i+1
jG

k
j additions are needed.

Therefore, the overall computational cost is bounded by

“£ ” ·

K(K + 1)

2

+

P−1∑

k=0

[M(jGkj)]

“ + ” ·

K(K ¡ 1)

2

+

P−1∑

k=0


S(jGkj) + jGkj

P−1∑

j=k+1

jGjj




(27)

Furthermore, we recommend to use the depth-first

branch-and-bound-based algorithm proposed in [11] for

step 2 in the GDFD procedure.

IV. Simulation Results

Example 1 - continued : In the previous 4-user exam-

ple, η(φ
GDFD

) = 1.78. The ASE for optimal decorrelator-

based DFD and the ML detector can be obtained from [9]

as η(φ
DFD

) = 1.69 and η(φ
ML

) = 1.8. The simulation re-

sults are shown in Figure 2, which are consistent with the

theoretical analysis.

Fig. 2. Performance comparison (4 users, 10000 Monte-Carlo runs.)

Example 2 : In this 8-user example, we study the situ-

ation when a strict computational limit exists. The system

transition matrix H is randomly generated as

H =




2.0 0.9 −2.0 −0.3 −0.3 0.3 0.8 1.7

0.9 3.7 −0.4 −1.1 0.4 −0.4 0.3 1.4

−2.0 −0.4 3.3 1.0 1.1 0.3 −0.3 −1.3

−0.3 −1.1 1.0 3.0 −1.1 −0.3 0.3 1.2

−0.3 0.4 1.1 −1.0 3.4 −0.3 0.3 −0.4

0.3 −0.4 0.3 −0.3 −0.3 2.7 0.9 −1.2

0.8 0.3 −0.3 0.3 0.3 0.9 2.6 −0.4

1.7 1.4 −1.3 1.2 −0.4 −1.2 −0.4 4.5




(28)
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Suppose the design parameter is given as jGjmax = 3.

We obtained the optimal grouping and detection order

as fusers 1, 4,3g,fusers 7,5g,fuser 6g, fusers 0,2g. The

computational upper bound for the number of multipli-

cations using the GDFD is 54 multiplications and 59 addi-

tions. Now let the computational upper limit for the num-

ber of multiplications vary from 30 to 90. The performance

of the φGDFD compared with the “any-time” sub-optimal

algorithms (represented as φBB) proposed in [10] is shown

in Figure 3.

Fig. 3. Performance comparison of φ
GDFD

and φ
BB

with compu-

tational constraints. (8 users, 10000 Monte-Carlo runs, SNR =

21.14db.)

As shown in [10], φBB finds the first feasible solution

with a low computational cost, and improves its perfor-

mance when the upper limit of computational cost in-

creases. However, in this example, the ASE for φBB−1

is η(φ
BB−1) = η(φ

DDFD
) = 0.89, and η(φ

BB−7) = 0.89,

η(φBB−8) = 1.14. Therefore, the performance of φBB im-

proves slowly. GDFD, although costs more in finding the

first feasible solution, is evidently more efficient in this case.

Example 3 : In this final example, we randomly gener-

ated one thousand 10-user systems. Let the largest group

size vary from 2 to 6. Figure 4 shows the average group size

among all the randomly generated systems. It appears that

the average group size is small (¼
|G|max

2
), thereby demon-

strating that the GDFD can provide substantial improve-

ment in performance with little additional computational

cost.

V. Conclusion

An optimal grouping and ordering algorithm for Group

Decision Feedback Detector is proposed. Together with a

fast computational method based on the idea of branch and

bound, the proposed algorithm provides a systematic way

of improving the Decision Feedback Detector, especially

when correlation exists among the users. Simulation results

show that GDFD with the optimal grouping and ordering

algorithm provides a significant improvement over D-DFD,

while the increase in computational cost is marginal and

even negative in some cases. The proposed method can be

easily extended to finite-alphabet signals instead of binary

Fig. 4. Average group size for 10-user system. (Spreading factor =

12, 1000 Monte-Carlo runs)

ones. Our future research work will focus on extending the

GDFD to asynchronous CDMA systems.
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