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Abstract—We consider a stochastic model of a RED gate- lytic understanding of TCP and RED is yet to be found.
way under competing TCP-like sources sharing the capacity. The difficulties arise from the complex behavior of TCP
As the number of competing flows becomes large, the queuecongestion-control, and are further compounded by the
behavior of RED can be described by a two-dimensional re- random drop mechanism and queue averaging. Detailed
cursion. We confirm the result by simulations and discuss . L .
their implications for the network dimensioning problem. modeling ,Of these characteristics results in a number'of

states which explodes when the number of TCP flows in-
crease, making the analysis untractable.
I. INTRODUCTION In this paper, we present a stochastic model that captures

o fthe k hani for th . fthe b the essential features of TCP, i.e., the gradual adaptive in-
ne ot the key mechanisms for the operation of the _eﬂ'ease and the sudden decrease of transmission rate, com-

_effort servige Internet is the congestiqn-control mechanls&hed with a random drop algorithm similar to RED. We
in TCP. Whlle there are seve_ral variations on the_ basic T%ﬁalyze this ersatz model as the number of competing TCP
conges"u.on-gontrol mechqm; m,. they all have in COMMQYA\vs becomes large, and show that the stochastic model
the_addltlve |ncrease/mult!pllcat|ve decreagIMD) aI—_ simplifies in the limit to a two-dimensional recursion. This
gorithm. The AIMD algorlth.m enables ,T_CP CongeStlor?esult suggests that with a large number of flows, it is easy
control to be robust under diverse conditions. However,fbtr network operators to estimate the aggregate behavior

is well known that with tail-drop gateways this congestior‘b-f TCP flows and to dimension network resources accord-

control also leads to undesirable behavior, i.e., global SXHQIy
chronization. When several TCP flows compete for band-.l_he remainder of the paper is organized as follows. Sec-

W'dth In a tail-drop gateway, it has been observed exp_%rén Il describes the stochastic model. Section Ill present
imentally that packets from many flows are usually di he main asymptotic results for the large number of TCP

carded simultaneously [1], resulting in a poor utiIizatioH . AP .
) ) ws whereby the stochastic model simplifies into a sim-
of the network. Active queue management algorithms sucf.

as Random Early Detection (RED) [2] were introduced ! led Iimifting recursion._ Simu_lation results suppprting
) ) . is behavior are shown in Section IV. The conclusions of
help alleviate this problem by randomly dropping packe . . .
. . o the paper are given in Section V.
depending on the queue size, thereby avoiding heavy con-
gestion and prevent global synchronization.

While there are many efforts to model TCP throughput
under a tail-drop assumption [3] [4] [5] [6], only a few TCP congestion-control utlizes the AIMD algorithm to
studies have focused on modeling the interaction of REPovide TCP flows a fair bandwidth share [10] by us-
gateways with TCP congestion-control. In [7], an an@ag feedback obtained through acknowledgement packets
Iytical framework for multiple TCP flows sharing a RED(ACKS). If an ACK packet is received (i.e., a packet is suc-
gateway is developed under several potentially unrealessfully transmitted and acknowledged), TCP increases
tic assumptions. In [8], a simple analysis has been doigtransmission rate by a small, conservative amount. Oth-
with TCP connections operating as Poisson processes erwise, TCP interprets a lack of acknowledgement as a
der “slow” and “fast” rates. Fixed point solutions to aversign of congestion and reduces its transmission rate by
age TCP window sizes and queue occupancy are discudsaifl We present an algorithm similar in spirit to the AIMD
in [9]. However, a model that can provide a good anaongestion-control in TCP and apply it to the model de-

Il. THE MODEL



scribed earlier. C. Statistical assumptions

A. Definitions and notation In order to fully specify the model, we need to specify
the statistics of the rv$B( )( 1),R§N) (t+1), =

Time is assumed discrete and slotted in contiguous N; t=0,1,...} for eachN = 1,2, .

timeslots of equal duration normalized to a packet trans-_ T
0 do so we introduce the collectlon of i.i.do, 1]-
mission time. We conside¥ traffic sources, all transmit- it V(t+1) Us(t4+1), i = 1,000 £ =0,1,...}
ting through a bottleneck RED gateway. The capacity EPI ormrvs { o
oreach =1,...,N, we take
this bottleneck scales with the numhb¥rof flows, i.e., it
has capacityNC' packets/slot for some positive constant Bz'(N Wt +1) =1[U;(t+ 1) < aEN ()] )
C. We model the RED buffer as an infinite queue, so that
packet losses are due only to the random drop algorithmwhere aEN) (t) is an [0,1]-valued rv which denotes the
. (conditional)transmission ratgto be specified shortly) of
B. Dynamics traffic sourcei at the beginning of the timeslét, ¢ + 1).
Fix N =1,2,...andt = 0,1,.... For any quantityX, We also set
we write X (V) (¢) to indicate the explicit dependence Xf (V) _ (N) N)(A(N
on the numbe/V of connections. B+ 1) =1 ¢+ 1) < fl )(Q( )(t))] 3)
Let Q) (t) denote the number of packets in the buffawhere f™) : R, — [0,1] denotes thelrop probability
at the beginning of the timesldt,¢ + 1). Suppose that function of the RED gateway.
each source (or equivalently, TCP connection) generatego select the transmission rates we argue as follows:
at most one packet in each timeslot. Solféfv) (t +1) Suppose that sourcegenerates no packet during times-
be a{0,1}-valued rv that encodes the number of packelist [¢, + 1) (i.e. BfN) (t + 1) = 0), then the transmission
generated by sourdeat the beginning of the timesIft ¢4+  rate of sourceé in the next timeslot remains unchanged. If
1). The packet from sourcé upon arrival at the RED on the other hand, a packet is produced by souatethe
gateway, may be rejected by the random drop algoritimeginning of timesloft, ¢ + 1), then either the packet is
(to be specified shortly). We represent this possibility tguccessfu”y transmltted-?é (t+1) = 0), oritis dropped
the {0, 1}-valued rvR{™ (¢ + 1) with the interpretation (R (t+1) = 1). Inthe former case, the transmission rate
that R} )Ejtle) 1 (respé%( )(th+ 1R)ED(B ']‘:fthf pG""Cket of sourcei in the next timeslot isncreasedo o™ (£)1 -
is rejected (resp. accepted into the uffer). Givent
N scj)urces are IZtctlve tFrJ1e total number of packets which th 0<e<) In the latter casea( )(t + 1) is de-

N) (v
accepted into the RED buffer at the beginning of tlmesl8feased3y afactory (or (" (t + 1) = ya{™ (t)), where
[, + 1) is given by < 7 < 1. These two S|tuat|ons attempt to emulate (under

the constraint that transmission rates are bounded to the
unit interval) the additive increase and multiplicative de-
crease, respectively, of the TCP congestion-control. They

can be summarized into the single equation
If Q")(t) denotes the number of packets in the

buffer at the beginning of the timesldt,¢ + 1), then alM) (t+1
QM (t) + AN (t + 1) packets are available for transmis-
sion. Since the outgoing link operates at the ratévaf

packets/timeslot[Q(N () + AM(E+1) =N C’] " pack- N
ets will not be transmitted during timeslpt ¢ + 1], and +ai™M (1) (1 - BV (£ + 1)) 4
remain in buffer, their transmission being deferred to sub- For eacht — 0.1
sequent timeslots. The numb@f™) (¢ + 1) of packets in ”

(V) (N) : : —
the buffer at the beginning of the times[ot- 1,¢ + 2) is erated by the vg@/(0), ; (0)’(?)(8)’ U’(s)’(NZ)
therefore given by ,...; s =1,...,t}. Note the rvsQ'""/(t) anda; ' (t)

N (z=1,...,N) are allF;-measurable, so that
Mit+1)= QM) = NC+AM@E+1)| . @
QM (t+1) = [@™M (1) t+1]" . @) B (Bt + 117 = ()

AN (¢4 1) = i(l ~R™M @t +1)B™M (¢ +1).
=1

., let F7; denote thes-field gen-

'We can account for the finiteness of the buffer by modifying the
queue dynamics as is done in the footonote to recursion (1). min([QYY)(t) — NC + Efvzl (1- REN) (t+ 1))Bi(N> (t+1)]*,NB)
2The finiteness of the buffer in (1) can be replaced}$y’ (¢+1) = whereB denotes the buffer size per connection.



foralli=1,..., N, and 2® EEET)

B[RV (t+1)|7] = F™QY ).
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discuss the implications of the result. VTS OISR C O
A. The asymptotics - ' i o

The discussion is carried out under the following a: ; v
sumptions: There exist a continuous functipn Ry — 7 | |
[0,1] and a constand in (0, 1) such that for eacliv = [‘ﬁ‘
(Al) f(N) ($) — f(x/N) ($ Z 0)’ 0 20 40 60 80 1(1)0 120 140 160 180 200
(A2) QM (0) = 0 ande!™(0) = a (i = 1,..., N)

) . ¢ PSS Fig. 1. The normalized queue length of Simulation 1.

We begin with an easy consequence of these assump-
tions. _ _

Lemma 1: Assume (A1)-(A2) to hold. Then, for eachB- Discussion
t = 0,1,..., the vs{a{M@®),..., o ()} are ex- Theorem 1 suggests that a bottleneck queue with
changeable for alN = 1,2, .... random-drop algorithm, under large number of TCP-like

The next proposition presents the asymptotics for tBgurces, can be characterized by a two-dimensional recur-
normalized buffer content as the number of TCP sourcasisn giving the evolution of the normalized queue length
becomes large. q(t) and the limiting transmission rate(¢). This result

Theorem 1:Assume (A1)-(A2) to hold. Then, for eachis not a straightforward consequence of the Law of Large
t=0,1,..., there exist a non-random constgft) and a Number due to the fact that (i) the transmission rates of
rv a(t) such that traffic sources areorrelated and (ii) they vary withNV.

However, as the number of sources increases, the depen-
= ng(t) and agN ) (1) E ~va(t) (5) dency between any pair of sources becomes weaker so that

N the aggregate behavior eventually becomes deterministic.
and for evenyp > 0, Thus, as the aggregate queue behavior scales linearly with
LN (N) P the number of sources, the network provider could effec-
~ i1 (g (1) = NvE[at)]. (6) tively dimension network resources by tacking the normal-
Moreover ized queue behavior.
' The sequencé(q(t), «(t)), t = 0,1,...} in Theorem

gt +1)=[q(t) = C + (1 — f(q(t))E[a(t)]]T (7) 1definesamR, x [0,1]-valued Markov process, and we
expect that it admits a steady-state regime. This will be

and discussed elsewhere.
alt+1) IV. SIMULATION
_ l—e
= at) "1V(E+1) > f(q@)1[UE + 1) < af?)] We simulate the system described earlier fér =
Fye®)1[V(t+1) < f(g®)L[UE+1) < a(t)]  10,100,1000 with ¢ = 0.1, v = 0.5 andC = 0.5; the

+a(t)1[U(t +1) > aft)] (8) initial conditions are™)(0) = 0 anda!™) = 0.5 for all

1 =1,.., N. The drop probability is calculated through the
piecewise linear functiorf : R — [0, 1] given by

for i.i.d. [0, 1]-uniform rvs{V (¢t + 1),U(t + 1), ¢

0,1,...}.
With a,,(t) = E [a(t)?] (p > 0), we readily get 0 r<1
aplt+1) = aplt) + (1= f(a(®)ag o0 fe)=y 5 lso<s (10)

+ (P f(q(t) — 1) apy1(t). 9)
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Flg 2. The average transmission rate per user of Simulation 1. F|g 3. The average queue size per user of ns simulation.

~ The simulation results are shown in Figure 1 and 2. dcyrsion. We have also discussed the implications of our
is clear that the fluctuation @) (¢)/N decreases as theyegyits to the dimensioning of the network.

number of sources increases, and the same is true for thﬁlthough we have yet to prove the existence of a steady-
average transmission rate. With a hundred or more flowg,e regime for the limiting recursion, the limited simula-
our anﬁ!ync_al rlesglt seemls tol hold reasonaﬁly well. Morga results (i) are compatible with the existence of such
over, this simulation result also suggests the existence 0lio 44y state and (i) suggest that the rate of convergence

the steady-state, which happens quickly after only aroupd,qt in either the number of sources (to achieve limiting
a hundred iterations. behavior) and the time (to reach the steady-state).

We also simulate a similar system ms by generating Future work on this class of models includes (i) a proof

N TCP Reno connections, each of which having 100 "B the existence of a steady state for the limiting dynamics

:Io und-l:rlp ?elay, all'ttr:]olrml)(etlng tqttran,\jgnlt thr_?ﬁgh_l_‘égognd its evaluation; (ii) a derivation of a CLT complement to
enEct ga gwayt 'lNIb |1n50(()::;1)p?0| Wl'h bpsf'f € the basic convergence result; and (iii) the development of
packet size Is setlo be ytes. The butier managemt%r&tre accurate models (e.g., More than one packet gener-

tschc_a)r;e mi;[hf g?\';eway thElZ vzlt?];he foIIovilnlg pr?ram%-ted per timeslot; asynchronous updating of the transmis-
ers.thresh = 2V, maxtiresh = olV, Parop = > WNEN g3 vaie6: non-homogeneous population of TCP flows and

?hueiue S'ZS 'S gre(zja’;ﬁr thanv andw, = O'II' Trhe .tm,:ﬁ sl?)t ) ontinuous-time versions.) Itis also interesting to see how
al we observed Ihe average queue fengin in the bothgs shape of the drop function affect the rate of conver-

neck gateway is 1 second. Figure 3 shows the S"mUI""t'%ane. Furthermore, we should be able to investigate the

result; a trend similar to that of Figure 1 is observed in th tirness of the competing TCP flows in this model. And

as the number of TCP connection increases, the ﬂUCtH?i'ally, we believe that this model is simple enough to be

tion in the average queue size decreases. As time Pasges, o4 o the scenario where the sources are stochastic,
the range of fluctuation settles to a certain limited ranggay on-off sources

The preliminary findings comfort our belief that our ersatz
model captures some of the essential features of TCP and
RED and then illustrate the important behavior of the in-
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VI. OUTLINE OF A PROOF OFTHEOREM 1 where the i/, (¢ + 1) is independent of the ru(t). Fi-

A complete proof of Theorem 1 is available in [11]. Benally, underB:t], we obtain (8) directly from (4). ~ H
fore we outline the key elements of this proof, we intro- The next two lemmas provide the final steps in the proof
duce the following notation: For each= 0,1,..., the Of Proposition 1.

statement§A:t] , [B:f] and[C:t] refer to the convergences Lemma 5:Under (A1), iffAit] , [B:t] and[C:t] hold for
somet =0,1,..., then

[A:t]: M i ~q(t) with ¢(¢) non — random; AM(E+1) p

By (N])V( 5 S B fao)a® @)
1 t] aj (t) = ya(t);

[C:t]: + ZZ-NZI[QEN) (t)]P LS ~Nap(t) non — random. and[A:t+1] holds.

Lemma 6: Under (A1)—-(A2), if[A:], [B:t] and[C:t]
The equalitya, (t) = E [«(t)?] in [C:t] readily follows hold for some =0, 1, ..., then[C:t+1] holds.
under[B:] since the rvs{agN) (t)’m’a%\r) (1)} are ex- The pro_of_s of Lemmas 5 and 6, while involved, are
changeable and bounded. Since the statenjartis [B:t] not Ve?]'v)d'ﬁ'cu" argg)follow the( E?me patt?]([r)]: The rvs
and[C:t] do hold fort = 0, Theorem 1 will be proved (I — B; "(t +1))B; '(t + 1), By (¢ + 1) By /(¢ + 1)
by induction if the following induction step can be estaand1 — BfN) (t + 1) are indicator functions of mutually
lished. exclusive events. HencﬁexEN) (t41)]? equals to the right-
Proposition 1: Assume (A1)-(A2) to hold as in Theo-pang side of (9) Wi'[h)zz(-N) (t) replaced by{aEN ) (t)]7. We
rem 1. If for somet = 0,1,..., [A1], [B:f] and[C:] (N)(t +1)]7 by “cen-

. _ ’ can expandd™) () and & S oy
hold,'then SO C_@A"Hl] , [Bit+]] and[_C.t+1]. _tering” each term by subtracting and adding back the ap-
This proposition can be proved with the help of a seri

opriate conditional mean, sayV;(t +1) < t))] for
of lemmas. The first two lemmas are elementary, and th ?(AI?) 4 1) anda™ (1) 1 B(N))y t( le )B_ Jal )t)]d
proofs are therefore omitted. ‘ ( +1) anda; (1) for 2 (t+ )',, y repeated ap-
. ; . .. plications of Lemma 3, each “centered” term will converge
Lemma 2: LetU denote a [0,1] uniform rv which is in- bability t d the desired its foll
dependent of th@, 1]-valued rvs{ X, X,,, n = 1,2,...}. N probabiiity 1o z€ro, and the desired results Tollow.
If X, 5. X, thenl [U < X,,] & ,1[U < X].



