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Abstract— We consider the problem of bounding the probability of
buffer overflow in a network nodefed with independentarri val processes
that are eachconstrained by arri val curves,but that are served asan ag-
gregate. Existing results(for example[1] and [2]) assumethat the nodeis
a constantrate sewver. However, in practice, one finds complex network
nodesthat do not provide a constantservicerate, and thus to which the ex-
isting boundsdo not apply. Now many nodescan be adequatelyabstracted
by a sewice curve property. We extendthe resultsin [1] and [2] to such
casesAs a by-product, we alsoprovide a slight impr ovementto the bound
in [2]. Our boundsare valid for both discreteand continuoustime models.

Index Terms— Statistical multiplexing, scheduling,queuing analysis

|I. INTRODUCTION

OUNDS on the probability of buffer overflow in a network node

(element)fed with independenarrival processesginputs, flows)
thatareeachconstrainedy arrival curvesareobtainedn [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12] undervariousassumptions.
We saythataflow is regulated or constrainedby anarrival curve o -),
if the numberof bits obsered on theflow duringary time interval of
durationt is atmosta(t). Leaky bucket regulationcorrespondso an
affine function a(+). Existing resultsfocuson work-conservingjueu-
ing systemghat offer a constantservicerate. However, in practice,
the network nodesareoften not work-conservinganddo not offer the
constanservicerateat eachinstantof time. It turnsoutthatmary net-
work nodessatisfya servicecurve property[13], [14], [15], [16], [17].
In adeterministiccontet, a servicecurve property with servicecurve
3, meanghatatary time ¢, thetotal outputtraffic obseredin [0, ¢] is
atleastequalto A(s) + B(t — s) for somes in [0, t], whereA(s) is the
totalinputtraffic in [0, s]. Thus,it is of apracticalimportanceo derive
performancéoundsfor a servicecurve network element.In this note,
on one hand,we extend the resultsby Kesidisand Konstantopoulos
[1], andon the otherhand,the resultsof Chang,Song,and Chiu [2]
to hold for a servicecurve node. As a by-product,we also slightly
improve the boundin [2], evenfor the caseof a constantate sener.
We alsogive a definition of servicecurve which is moreadaptedo a
stochastidramework.

Fromthe methodologicaliewpoint, a novelty of our approachs in
thatwe systematicallyapply the following two steps:(1) we majorize
thebuffer overflow eventwith unionof the eventsthataredeviation of
asumof randomvariablesfrom its mean,(2) underthegivenassump-
tions, theserandomvariablesareindependentwith boundedsupport,
andwe know an upperboundon the summationmean;theseproper
tiesallow usto useHoefding’s inequalitieg[18]. In thefirst step,we
oftenmake useof sample-pathesultsof deterministicnetwork calcu-
lus (e.g. see[5], [17] andthe referencesherein). Combinedwith the
secondstep,wherewe apply Hoeffding's inequalitiesjt turnsout that
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we areableto extendandrecover theresultsof [1] and[2], andobtain
somenew ones.

Kesidisand Konstantopoulo$l], [3] considera work-conserving
constantrate sener, andalsoassumehatarrival curvesarethe com-
bination of two leaky buckets (asis commonplacevith ATM andin
the Internet). In Sectionlll (Theoreml), we extendtheir resultsto
a nodethat offers an arbitrary servicecurve, andto ary arrival curve
constraints.For this, we usea differentproof; it is simpler even for
the original caseconsideredn [1].

Chang,Song,and Chiu [2] considerthe sameproblemas Kesidis
and Konstantopoulosbut allow for arbitrary arrival curves. In Sec-
tion IV (Theorem3), we extend their resultto a nodethat offers a
servicecurve undera mild conditionon the arrival andservicecurve
(assumptiortA6) in SectionlV). Extending2] to servicecurveis sim-
ple. However, by thevirtue of stochasticomparisonsndHoefding’s
inequalitieswe are ableto obtainnew boundsfor the heterogeneous
case,as explainedlater We also slightly improve the boundin [2]
(evenfor the original case)usingan undersamplingargument.Inci-
dentally this makesthe boundvalid in continuoustime, whereaq2]
considerghediscretetime case.

Both [1] and[2] give explicit resultsfor the homogeneousase(all
arrival curves are identical) and leave the heterogeneousaseas an
optimizationproblemto solve. For both caseswe also give simple
formulasthat apply to the heterogeneousase(Theorems2 and 4).
Of course,the boundsfor the heterogeneousasealso apply to the
homogeneousase but they are not astight; this featureis inherited
from Hoeffding’s inequalities.

We alsoderive avariantfor the heterogeneousase(Theoren®t), by
combiningthe proof of Theorem4 with a majorizationsimilar to that
foundin [6]. Theboundin Theorem4 (aswith Theorem2) requires
knowing thearrival curvesof all flows. In contrastTheorenb requires
anincompleteknowledgeaboutthe arrival curves;it sufficesto know
the aggr@ate burstinessand aggre@ate sustainableate. The bound
is lesstight than Theoremd4, but may be more usefulin a contet of
differentiatedserviceswhereonly aggreateinformationis available.

Chang, Song, and Chiu shaved numerically that their bound is
tighter than Kesidis and Konstantopoulosbound. We confirm this
alsofor our extensionsby numericalcomputations:Theorems3 and
4 seemto provide tighter boundsthanTheoremsl and 2, andshould
thusbe preferredin practice.SectionV shavs a sampleof numerical
results.Anotheraspectvould be to comparethe boundswith empiri-
cal estimateswhich goesbeyondthe scopeof this paper

The proofsof two lemmasaregivenin Appendix.

II. NOTATION AND ASSUMPTIONS

ConsiderasetZ = {1,2,...,I} of flows inputto a network el-
ement. Let A;, for i € Z, be a Borel countingmeasureon some
probability space(€2, F,P). We interpret A;(s,t] as the number
of bits obsered on input flow ¢ in the interval (s,t]. By corven-
tion, if s > t, Ai(s,1] —A;((t,s]). Likewise, define A; (s, t]
for the output of the ith flow. Let A(s,t] = .1, As(s,t] and
A*(s,t] :== Zle Aj (s, t].



We male thefollowing assumptions:
(A1) A, As,..., A areindependent.
(A2) Foralli € Z, A; hasa; asanarrival curve,i.e. forall s,t € R,

Ai(s,t] < ay(t — s), P—aus.,

where a; is a non-n@ative, wide-senseincreasingfunction
suchthata(t) = 0, for all ¢ < 0. We assumewithout lossof
generalitythata; is sub-additie,i.e. a;(t+s) < a;(t) +ai(s)
for all ¢, s € R [14], [15], [16], [17].

(A3) Foreachi € Z,andary s,t € R,

E[A1(57tﬂ < a; X (t - S), (1)

whered; = lim; . %Y = inf,-o 9. (Thelastequalityis
by sub-additity of «; [20].)
There exists a sequenceof random points (“the construction

points”):

(A4)

<S8 20< S 1<5<0<S <S8 <...

suchthatlim,_, _« Sn = —oo andlim,, .~ S» = oo, andfor

alln € Z, A(Sn, Snt1] = A*(Sn, Snt1], P—a.s..

DefineS(t) = {Sn, n € Z: S, < t}. Thenetwork element
offersthe servicecurve 3 to the aggreateof all flows, if for all

t € R,andary u € S(t),

(A5)

s € [u,t] : A™(u,t] — A(u, s] > B(t — s), P—a.s.,
whereg is a non-ngative wide-senséncreasingunction.

Let Q(t) bethenumberof bitsin thenetwork elementattimet (it is
the unfinishedwork; we call it backlog). We assumehatthe element
hasbuffer capacitythatis sufficientto ensurenolosses.Then,indeed,
Q(t) = A(u,t] — A*(u, t], for ary u € S(t). From(A5), it follows
that,forary t € R,

Q)< sup {A(s,t] -

—oco<s<t

Bt —s)}- @)

In the next two sectionswe give upperboundson P(Q(0) > q),
for an arbitrarytime instant0. Beforethat, in the remainderof this
sectionwefirst introducesomeadditionaldefinitionsandthendiscuss
assumptiongA3)—(A5).

For two functions f and g, we define the vertical and hori-
zontal deviations by v(f,g) = sup,so{f(t) — g(t)}, h(f,9) =
sup;so{inf{u > 0 : f(t) < g(t + u)}} [17]. Notethatv(f,g)
is theworst-casdacklogfor a network elementhatoffersthe service
cune g to theaggreatearrival procesghathas f asanarrival curve.
Similarly, h(f, g) is the worst-casevirtual delay (equalto the worst-
casedelayif the nodewould be FIFO). We alsodefine A\, (t) = at
fort > 0andXa(t) = 0fort < 0,a € R. Leta = >, & and
Q= ZI 1 Qi

We discuss(A3) first. Note that (A3) is true for Aq, As, ..., Ar
stationaryand ergodic in their intensities. Indeed, by stationarity
E[A:(s,t]] = E[A;(0,1]](¢t — s) and by emodicity E[A;(0,1]] =
limy—oo Ai (0, u]/u < limy oo s (u) /u = @.

Regarding(A4), it follows from aknown result(seee.g.,Lemmal
in [21]) thatfor (A4) to hold it is sufficientthat
(Ad-a)v(a, B) < o0,

(A4-b) liminf;— o0 {a(t) — B(t)} = —c0

For instance for the rate-lateng servicecurve 3(t) = cmax{t —

e, 0}, ¢, e > 0, thesecondconditionis theintuitive stability condition

Twe saythatfunction a(-) is wide-sensencreasingf s < t alwaysimplies
a(s) < a(t). Thisis alsocalled“non-decreasing”.

a < c. In the generalcase,roughly speaking,conditions(A3) and
(A4) areweakstability conditions.

Next, note that the definition in (A5) is differentthan the classi-
cal servicecurve definition (e.g.,see[17], Sectionl1.3.1),whichis in
the framework of deterministicnetwork calculus;thereit would be
A(—00,0] = A*(—o0,0] = 0. It canbe easily obsered that the
two definitionsare compatible. However, in contrastto the classical
definition,we do notassumehatthe systemis emptyattime 0.

We extend[1] in the following two theoremsthe proofsof which
aregivenattheendof this section.

Theoeml—HomgeneousCase: Assume(Al)—(A5), v(a, 3) <
oo, h(a, B) < oo, anda; = aq, for all ¢ € Z. Then,for ah(a, B) <

q < v(a,B),
v —ah
v—q ) ’
wherefor brevity v = v(«, 3) andh = h(a, 3).
The theoremgivesus a boundfor ¢ € (ah(e, 8),v(a, 8)). Other
wise, for ¢ < ah(a, B8), useP(Q(0) > q) < 1, andfor g > v(«, 3),
P(Q(0) > q) = 0.

We can apply Theorem1 to the original casein [1] by letting
a1(t) = min(mit, @it + o1) andB(t) = ct. It canbe found later
in the proof of Theorem1 that the boundis obtainedby computing
supyso F'(6), wherein this specialcase F (-) readsas

70’
= )

which s exactly theresultin Theoreml of [1]; this shavs thatwe do
have an extensionof thatresult. It hasto be mentionedthat, in fact,
[1] provesatighterboundthanthatof Theoremil [1], but whichis not
expressiblen a closed-form(seediscussionin Sec.llIl [1]).

Next, we provide alooserboundthanin Theoreml, but whichholds
for the heterogeneousase.

TheoemZ—Heteogeneouslase Assume (A1)—(A3) and (A5).
LetG = {(vi,72,---,71) ERL : Vi €T, v, by < o0, Zf:l ¥ <
1}, wherefor brevity v; := v(ai,v:3) andh; = h(a,%ﬂ). As-
sume,in addition,thatfor eachi € Z, (A4) holdsfor avirtual node
thatofferstheservicecurve v; 3 fed with thearrival processA;. Then,

foraryy € G, andz -1 @h(ai,viB) < q <v(a, B),

F(v)) .

EXTENDING KESIDIS AND KONSTANTOPOULOS' BOUND

P(Q(0)>q)§cxp< qln h—|—[<1—%)ln

F(e):eq—11n<1——+% ’
C

P(Q(0) > q) < exp (- ®)

where

F(y) = 24 i @h(es,vi)*
ZiI—l v(o,v:0)?
Proof: [Theoreml] Define,for eachi € 7, andall t € R,

Qi(t) = sup {Ai(s,t] =Bt — )}

—oo<s<t

Now from (2), for ary (y1,72, - - -,vr) € RL suchthatz
wehave,Q(t) < 3°7_, Qs(t), for any t € R. Hence,

1%<1

I
P(Q(0) > q) <P()_Qi(0) > q). @
i=1
We notethefollowing properties.
1) Foraryt € R,

Q1(t), Q2(t), ..., Qr(t) are independent. (5)



2) Foraryt € R, andeachi € Z,

0 < Qi(t) < v(as,v1iB)- (6)

3) Foraryt € R,
E[Q(t)] < ah(a, B). ™

Thefirst propertyis olbvious from (A1); the secondrom (A2) and
the definition of the vertical deviation. We prove the third property
next. To thatend,definefor ary ¢t € R,

V(t) = inf{v € [0, s] :

s € S(t)a A*(Sst} > A(57t_ ’U]}

NotethatV (t) is thevirtual delay(sojourntime) of abit thatdepartsat

timet. If thesystemwouldbeFIFO,thenV (t) is thedelayof abit that

departsatt. It caneasilybeshavnthatforary ¢ € R, V(t) < h(a, 3).
Next, note,forary t € R, s € S(t),

Qt)=A(s,t] —
< A(S, t] -

A*(s,8] < A(s,t] — A(s, t — V(1)]
A(s,t — h(a, B)] = A(t — h(a, B), ).

Taking expectationin the above displayandcombiningwith (A3) we
recover (7).

Lety; = 1/I. By (4)-(7)andusing(4.5)in theproofof Hoeffding’s
inequality(Theoreml, [18]), we obtainthatfor any 6 > 0,

EQi(0)] | E[Qi(0)
v(ar /1) " (. /1)

Theright-handsidein thelastinequalityis increasingwith E[Q1(0)].
Now, by (7) appliedto Q;, we obtainE[Q;:(0)] < @:h(as, v:8) =
airh(a1,B/I). It is simpleto obsere h(a1,3/I) = h(a, 3), and
v(a1,B/I) = v(a, 3)/I. We shaved

I
P(Q(0) >q) <e ™ <1 - 60v(a1,ﬁ/1)>

Q) > ) < exp (—sup F10)).

where
— g B) | (@ B) gve
F(0)=qb Iln<1 au(a,ﬂ)+a @, ,3) . (8
Computingsupy.,, F'(¢) yieldsthedesiredresult. |

Notethatwe couldimmediatelyapply Hoeffding's inequality(The-
orem1,[18]) to (4)-(7). However, thelastpartof the proofis givenfor
thesale of acomparisorwith [1] madeearlier

Proof: [Theorem?2] The proof builds uponthe proof of Theo-
rem 1. Given (4)-(7), the problemis equialentto deriving an up-
per boundon the complementarydistribution (4) of a sum of inde-
pendennon-uniformlyboundedandomvariables.From Hoeffding’'s
inequality (Theorem2, [18]) it follows that, for ary v € G, and

q> > E[Qi(0)],

|

Theright-handsideis increasingwith >°i_1 E[Q:(0)], hencewe can
replaceit with its upperboundz _1 @ih(ai,v:3) andstill have a
bound.This recorerstheinequalityin (3), which completeghe proof.

|

IV. EXTENDING CHANG, SONG, AND CHIU’ S BOUND
We extend[2] in threetheoremsthe proofsof which are given at
theendof this section.
Assumein additionto (A1)—(A5);
(A6) ThereexistsT < oo suchthatfor all s > 7, B(s) > a(s).

(AB) is astrongeiform of (A4-b), which holdsin practice(for exam-
ple, but notonly, whenca is concae and3 is corvex) whenthenatural
stability conditionsare met. Notice that replacesjn the context of
servicecune, theconcepiof anupperboundonthedurationof a busy
period,whichis usefulonly for work-conservingeners.

Forary K € N, andary ¢t > 0, let 7k (t) bethesetof partitionsof
[0,¢] in K intenvals,in otherwords

T (t) = {(to,t1, ey tE) :

(if time would be discrete we requirethatthe partition 7 (¢) is uni-

form,i.e.t, = kt/K,k=0,..., K).
Theoem3—HomgeneousCase: Assume (Al)—(A6) and a; =

aq,foralli € Z. Then,forary K € Nandary ¢t € Tx(7),

O0=to<t:1 < ..StKZt}.

K—-1
P(Q(0) > q) < Y exp (—Ig(tr, th+1)) ©)
k=0

where for ¢ > a(v)

—B(u), g(u,v) = +o0, elsefor ¢ < av — B(u),
g(u,v) =0, else

g(u,v) = (u)+q ﬁ(u)+q+(17ﬂ(u)+q> In a(v)—ﬂ(u)—q.

a(v) av a(v) a(v) — av

If time would be discrete,andwe let 3(s) = c(s + 1), K = t,

tr = k, thenthetheoremgivesthe sameboundas[2]. However, even

for the original scenarian [2], we have a slightimprovement:if 7 is
large (which may happersimply becaus@ur time unit is very small),
we expectthe boundin [2] to be large, becausét relieson the union
bound.We expectto have a betterboundby allowing K to besmaller
thanr (undersampling). This is verifiedin SectionV. Notethatthe
theoremimpliesthatfor ary K € N andt € 7k (7), theright hand-
sidein (9) is a bound; hence,we cantake infimum over all possible
partitionsof [0, 7].

Next, we provide alooserboundthanin Theoren, butwhichholds
for the heterogeneousase.

Theoem4—HeteogeneousCase: Assume(Al)—-(A6). Then, for
ary K € Nandary ¢t € 7Tx (1), for ¢ < v(«a, 3),

K—-1

<> exp (—g(testrin))

k=0

P(Q(0) > q) (10)

where
2((g + Blu) —av)*)*
Yia@?

g(uv U) =

and(-)* = max{-,0}.

We canderive an additionalboundfor the heterogeneousasethat
requiresonly aggregateinformationaboutthe arrival curves. We ob-
tain this by usinga majorizationsimilar to [6] for leaky-bucket con-
strainedprocessesNote thatthis result(andthis resultonly) is stated
underastrongerassumptiorthan(A3), namely
(A3bis) A1, Aa, ..., Ar arestationaryandergodic.

Theoem5—HeteogeneouCase: Assume (Al), (A2), (A3bis),
(A4)—(A6). Then,thesameboundasin (10) holds,with

— N2
g(u’ ’U) — ((q +I/B(u) - av) ) i
23 v(ag, Mg, )?
The proofs of the abose theoremsrequiretwo lemmas,proved in
appendix.
Lemmal: Under(A2), (A5), and(A6), for ary ¢ > 0, it holds

—B(s)} > ).

P(Q(0) > ¢q) < P(Oiug {A(=s,0]



Lemma2: Wehave,forary K € N,

IS

€ Tk (1), andg > 0,

=

—1

P(A(—tk+1,0] > q+B(tx))-

) an)
Proof: [Theorem3] By the hypothesisof the theorem,for ary
s,t € R,andary i € Z, A;(s, t] is uniformly boundedwith o1 (t — s)
((A2)). Thus, the kth summationterm in (11) is the complemen-
tary distribution of a sum of independenuniformly boundedran-
dom variables. By Hoeffding’s inequality (Theorem1, [18]), and
E[A:;(—tr+1,0]] < @itp+1 ((A3)), the kth summationtermin (11)
is upperboundedby exp(—Ig(tk,tk+1)), for g > atp+1 — B(tx).
This provestheresult. |
Proof: [Theorem4] By Hoeffding'sinequality(Theoren?,[18]),
the kth summatiortermin (11) is upperboundedvith

exp 20+ Bltx) — EA(=tis, 01)* )
D ey @ (trt1)
For ¢ > E[A(—tr+1,0]] — B(tx), the lastdisplayis wide-sensen-

creasingwith E[A(—tx+1,0]]. From (1), E[A(—tx+1,0]] < ati1,
thusfor ¢ > atr+1 — B(tr) we canreplaceE[A(—txy1,0]] with

P( sup {A(—s,0]-f(s)} > q) <

0<s<T

b
Il

atr+1 andstill have anupperbound. |
Proof: [Theorem5] Define,forarny t € R, e > 0,
Qi(t) = sup {Ai(s,t] — (1 +e)ai(t —s)},

—oo<s<t

let, also, Z¢ (t) == Q5 (0) — Q5(—1).

Note, by (A3bis) and(A2), E[4:(0, 1]] < (1 + €)a, andthusQs,
is stable.Thelastimpliesthatfor ary ¢ € R, E[Z; (t)] = 0. Note,also
from (A2), —v(ai, Aa;) < Zi(t) < v(au, Aa;), t € R.

Now, obsere,forary s,t € R, s < t,

Qi () — Qi (s) = Als.t] — (L +e)ault — s).

Henceforaryt € R, Z{ (t) > Ai(—t,0] — (1 + €)ast, andthus

P(C,1 Zi(1) > 2)

P(A(—t,0] — (1 +e)at > 2z) <
< exp(

2 (12)
*2z{:1v(ai,xai>2) ’

wherethe lastinequalityis by applyingHoeffding’s inequality (The-
orem 2, [18]) for a sum of independentzero-meannon-uniformly
boundedrandomvariables. Finally, from (12) and a simple variable
substitutionwe have, for ary u,v > 0, ¢ > (1 + ¢)a(v) — B(u),

P(A(=v,0] > ¢+ fB(u)) < exp (— (q+ 6w = (1+ e)av)2> .

2 Zz‘lzl v(ai, Aa,; )?

By continuity of theright-handside,we canlets — 0, andthencom-
bining with Lemmasl and2, we completethe proof. |

V. NUMERICAL COMPARISON OF BOUNDS

We give numericalresultsfor leaky-bucket constrainednput flows,
a;(t) = a;t + o;, wherea; is the sustainableate, and o; is the
burstinesof the ith flow. We assumepacletsof fixed-lengthequalto
L = 1500 bytes. We considerthe rate-lateng servicecurve 3(t) =
cmax{t — e, 0}, with ratec = 150 Mbps,andlateny e = L/c.

We considerboth homogeneouéTheoremsl and3) andheteroge-
neouscase(Theorem® and4), andTheoremb5 later. For the bounds
of Theorems3, 4, and5, we uniformly partitiontheinterval [0, 7], such
thatt, = k7/K, for k = 0,1,..., K, andthenfind K € N thatat-
tainsthe minimum. In thehomogeneousasewe seta; = pc/I and

— Theorem 1
\ — Theorem 3
\ — - Theorem 3, fix K

L L L L L L L
0 50 100 150 200 250 300 350 400

P(Q(0)>q)
5,

— Theorem 1
— Theorem 3
— - Theorem 3, fix K

m”“o 1(;0 260 380 > Aéo 5&0 680 760 880

q (packets)
Fig. 1. Boundsof Theoremsl and3 for the homogeneousaseof I = 100
input flows. The graphsare given for the loads(uppergraph)a = 0.2, and
(lowergraph)a = 0.8. Boundof Theorem3 is computedor uniform partition
of [0, ]; for theoptimum K and K fixedto [7/e].
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Fig.2. Boundsof Theorems and4 for the heterogeneousaseof two classes
of the input flows eachconsistingof 50 flows. The graphsarefor the loads
(uppergraph)a = 0.2 and(lower graph)a. = 0.8. Boundof Theoremé is for

uniform partitionof [0, 7|; for theoptimumK and K fixedto [7/e].

o1 = 8L; herep € (0, 1) is theload. We shov numericalresultsin
Figurel for I = 100, p = 0.2 and0.8. In the heterogeneousase,
we supposeawo classe®f theinputflows eachconsistingof I; and I
flows, respectiely. We seta; = 2a2, 01 = 8L, andoz = 5L. (Here
the subscriptl (2) refersto thefirst (second)classflow.) Theresults
areshawvn in Figure2, for I, = I, = 50, p = 0.2 and0.8.

We malke afew mainobsenations.First,we find thattheextensions
of Chang,Song,and Chiu’s bound (excluding Theorem5, which is
handledseparatelyater)is substantiallytighterthanthe extensionsof
KesidisandKonstantopoulosbound(seeFigure 1 and?2). This con-
firms a similar obsenationin [2]. Secondthe boundin Theorem3
becomedighter as we optimize with respectto K; this slightly im-
provesupon[2]. We notethattheboundof Theoren? readsas

((g—1/e(Xiy v@iai)Q)Jr)Q.
Zz‘lzl(ai + &ie)?

We next compareour exact boundswith the boundsobtainedby ne-
glectingthelateny paramete(this would correspondf we would ap-
proximatethe systemwith a constantrate sener). In Figure 3, we
shav the boundof Theorem3 for the lateny parameter equalto 0,
4,and8 L/c. We obserethattheboundsobtainedor e = 0 (constant
rate sener) are over-optimistic. This is not negligible andis empha-
sizedfor lighterload;for p = 0.2, thediscrepang is aboutoneorder
of magnitudegor somebacklogvalues.

Our next objective is to demonstratéow the boundof Theorem4
(which holdsfor the heterogeneousase)comparewith the boundof
Theorem3 (which holds only for the homogeneousase)in the ho-
mogeneousetting. We alsocomparewith the boundof Theorem5.
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Fig.3. Boundof Theorens for thehomogeneousaseof I = 100 inputflows
andthelatencies = {0, 4, 8} L/c. Thegraphsaregivenfor theloads(upper
graph)p = 0.3, (middlegraph)p = 0.5, and(lower graph)p = 0.8.
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Fig.4. Boundsof Theorems3, 4, and5, for thehomogeneousase.Thegraphs
aregivenfor theloadsp = 0.2, 0.5,and0.8,topto bottomgraphsyespectiely.

We obsenre thatfor alight to moderatdoad the boundof Theorem4
is substantiallyconserative with respecto the boundof Theorem3.
For high load, the boundof Theoremd is fairly closeto the boundof
Theorem3, exceptfor thebuffer beyondcertainvaluewhenit deviates
in a conserative direction. Onecancombinethe boundsobtainedin

the derivation of Thébrep@NGHdNGORENEATM R rbound[22].

Note thatall the boundsin this paper andthusthe original bounds
in [1] and[2], areapplicationsof Hoeffding's inequalities[18]. The
methodusedin this paperconsistsof stochasticomparisonandHo-
effding’s inequalities;the methodalsoextendsto boundingprobabili-
tiesof othereventsof interest,e.g.for delayandloss[22], [23].

REFERENCES

[1] G.KesidisandT. Konstantopoulos,Worst-caseerformancef a buffer
with independenshapedarrival processe’, [IEEE Communicationg et-
ters, vol. 4, no. 1, January2000.

[2] C.-S.ChangW. Song,andY. Ming Chiu, “On the performancef multi-
plexing independentegulatedinputs; in Proc. of Sigmetric2001, Mas-
sachusettdJSA, May 2001.

[3] G.KesidisandT. Konstantopoulos;Extremaltraffic andworst-caseer
formancefor queueswith shapedarrivals; Fields Institute Communica-
tions/AMS JSBN0-8218-1991-72000.

[4] G. Kesidisand T. Konstantopoulos,“Extremal shape-controlledraffic
patterndn high-speedhetworks; IEEE Trans.on Communicationsvol.
48,n0.5, pp.813-819May 2000.

[5] C.-S.Chang, PerformanceGuaranteesin communicationnetworks
SpringerVerlag,2000.

[6] L. Massoule and A. Busson, “Stochastic majorization of ag-
gregates of leaky bucket-constrainedtraffic streams, preprint,
http://www.research.microsoft.com/users/Imass®0Q0.

[7] A. Elwalid, D. Mitra, andR. H. Wentworth, “A new approactor allocat-
ing buffersandbandwidthto heterogeneousegulatedtraffic in anATM
node; IEEE Journal on SelectedAreasin Communicationsvol. 13, no.
6,pp.1115-11271995.

[8] F. Lo Presti,Z. Zhang,D. Towsley, andJ. Kurose, “Sourcetime scale
optimalbuffer/bandwidthtrade-of for regulatedtraffic in anATM node’
IEEE Trans.on Networking vol. 7, no. 4, pp.490-501 August1999.

[9] D.BotvichandN. Duffield, “Largedeviations,theshapeof thelosscurve,

andeconomie®f scalein largemultiplexers; QueueingSystemsvol. 20,

pp.293-320,1995.

S. Rajagopal M. Reisslein,andK. W. Ross, “Packet multiplexerswith

adwersarialregulatedtraffic,” in Proc. of IEEE INFOCOM 1998 1998,

pp.347-355.

R. Boorstyn,A. Burchard,J. Liebeherr and C. Ootamalorn, “Statisti-

cal serviceassurancefor traffic schedulingalgorithms) IEEE Journal

of SelectedAreasin Communicationsvol. 18, no. 12, pp. 26512664,

Decembe2000.

K. Kumaranand M. Mandjes, “Multiplexing regulatedtraffic streams:

Designand performancé, in Proc. of IEEE INFOCOM 2001, March

2001.

A. K. ParekhandR. G. Gallager “A generalizedorocessosharingap-

proachto flow controlin integratedservicesnetworks: The singlenode

cas€, IEEE/ACM Trans.on Networking vol. 1-3, pp. 344-357,June

1993.

J.-Y. Le Boudec,“Application of network calculusto guaranteedervice

network,” |EEE Trans.on Information Theory vol. 44, pp. 1087-1096,

May 1998.

C. S.Chang, “On deterministictraffic regulationandserviceguarantee:

A systematiapproachoy filtering,” IEEE/ACM Trans.on Networking

vol. 44,pp.1096-1107August1998.

R. Agrawal, R. L. Cruz, C. Okino, andR. Rajan, “Performancebounds

for flow controlprotocols; IEEE/ACM Trans.on Networking vol. 7, no.

3, pp-310-323,Junel999.

J.-Y. Le BoudecandP. Thiran, NetworkCalculus SpringerVerlag,2001.

W. Hoefding, “Probabilityinequalitiesor sumsof boundedandonwvari-

ables; AmericanStatisticalAssociationJournal, pp.13-30,March1963.

F. BaccelliandP. Bremaud, Elementof QueueingTheory vol. 26, Ap-

plicationsof MathematicsSpringerVerlag,1991.

J.F. C. Kingman, “Subadditve processes,in Ecoled’éte de probabilite

de Saint-Flour, vol. LectureNotesin Mathematicg539), pp. 165-223.

SpringerVerlag,1976.

T. KonstantopoulogndG. Last, “On the dynamicsandperformanceof

stochastidfluid systems, Journal of Applied Probability, vol. 37, pp.

652-6672000.

M. Vojnovi¢ andJ.-Y. Le Boudec,“Stochasticanalysisof someexpedited

forwardingnetworks; in Proc. of IEEE INFOCOM 2002 vol. 2, New-

York, NY, June2002,pp.1004-1013.

M. Vojnovic and J.-Y. Le Boudec, “Elementsof probabilisticnetwork

calculusfor paclet scalerateguaranteaodes, in Proc. of MTNS2002

SouthBend,IN, August2002.

[10]

[11]

(12]

(23]

[14]
[15]
(16]
[17]
(18]

[19]

[20]
[21]
[22]

(23]

APPENDIX

Proof: From(2), forary t € R, Q(t) < max{X(t),Y(t)},
where X (t) := sup_ . ,<;_,{A(s,t] — B(t — s)}, andY (¢t) :=
sup,_,.<i{A(s,1] — B(t — 5)}. By (A2), forary ¢ € R, X(t) <
SUP_ oo <ot {(t — s) — B(t — s)}. Now assumer satisfieg(A6),
thenwe concludeX (t) < 0, for ary t € R. It follows, for ary ¢ € R,
Q(t) < max{0,Y(¢t)}. Henceforary ¢ > 0, andt € R,

P(Q(t) > ¢q) < P(max{0,Y (1)} > q) = P(Y(?) > q),

which by definitionof Y recoversthe statedclaim. |
Proof: Fixarny K €¢ Nandary0 =tg <t <...<tg = .
Note,for ary s suchthatty, < s < tg41,

A(—T, _5} 2 A(—T, _tk+l} and /6(5) 2> ﬁ(tk)

Hencesupy. <, {A(—s,0] — B(s)} =
= maxXye(o,..., K—l}{S‘lptkgsgtk+1{A(_S’ 0] — B(s)}}
< maxpeqo,...,k 131 A(—tk+1,0] — B(tr)}.



For brevity, let E := {supy<;<,{A(—5,0] = 8(s)} > ¢}, ¢ > 0. By
theinequalityabove, we obtain,for any ¢ > 0,

..... k-13{A(=tr41,0] = B(tk)} > q)
PUkeqo,.... k13 {A(=trs1,0] > g + B(tr)})
Yico P(A(—tri1,0] > q + B(tx)).
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Sincethe latter inequality holds for ary partition0 < t; < ... <
tx = 7, weobtain(11). This completeghe proof. |



