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Abstract—We consider forward-link power allocation in a wire-
less network with stochastically varying data requests. We assume
a user’s service preferences are specified via a utility function that
depends on the received data rate. The allocation of power across
users is studied, where this allocation may depend on both a user’s
channel and utility. The objective is to maximize the time-averaged
utility rate subject to a stochastic total power constraint at the
transmitter. For a large, heavily loaded network, we introduce a
Gaussian approximation for the total transmitted power, which is
used to decompose the power constraint into three more tractable
constraints. We present a solution to this problem that is a com-
bination of admission control and pricing of power. The optimal
trade-off between these approaches is characterized. Numerical
examples are given to illustrate these ideas.

I. INTRODUCTION

The efficient allocation of radio resources, such as transmis-
sion power, is essential for supporting diverse applications over
wireless networks. This paper investigates resource allocation
for the forward link in a wireless network using a utility-based
approach, where a user’s service preference is specified by a
single quality indicator or utility function. One advantage of
such an approach is that different utility functions can be used
to accommodate a wide range of traffic flows under a single
framework. Also, utility functions can be used to capture many
common definitions of “fairness” within a network [6].

Utility-based resource allocation has recently received atten-
tion both for wire-line [4], [3], [2] and wireless networks[1],
[8], [5]. Related work addressing the forward link in a CDMA
network can be found in [5], where the problem of maximizing
aggregate utility subject to constraints on available transmis-
sion power and spreading codes was studied. The solution to
this problem can be interpreted in a pricing framework, where
prices per unit power and per code are announced, and users
maximize their surplus (utility minus cost). The optimal alloca-
tion of resources can be found by choosing the correct resource
prices. In [5] and much of the other prior work, the focus is
on allocating resources for a static situation, where the num-
ber of users is fixed and each user will fully utilize whatever
resources it is allocated. In this paper, we consider a situation
where traffic is dynamically changing over the time period in
which resources are allocated. In this case, random traffic vari-
ations must be taken into account when allocating resources.

We consider a model where the base station’s transmission
power is allocated among the users. Transmission requests ran-
domly arrive at the base station; each request contains a fixed
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amount of data. The rate at which a request is transmitted, and
hence the time to serve a request, depends only on the power
allocation and the user’s channel. The utility a user derives is
based on how fast the request is served. We study the problem
of allocating transmission power to maximize the time average
utility rate, given a constraint on the total power transmitted by
the base station. Since the traffic is randomly varying, the total
power transmitted by the base-station is a random process. We
consider a stochastic constraint on this process, which limits the
total power to be less than a given value with high probability.
We characterize the solution to this problem for a system with a
large number of users. This solution can be viewed in a pricing
framework as in [5]; however, there are several fundamental dif-
ferences. First, in addition to pricing, explicit admission control
is also needed. Second, the price that is used is not a fixed price
for the constrained resource, the transmission power; the price
instead depends on the product of the transmission power and
energy, resulting in a non-linear price for the required power.

Our focus is on the situation where traffic variations occur
on a much faster time-scale than that over which resource al-
location is done. Specifically, we assume power is allocated
based on the users’ channel gain and utility, and this assign-
ment is fixed over the time period of interest. In particular, the
power allocation does not depend on the instantaneous system
state (e.g., the number of active requests), but only on the long
term statistics of the system. An alternate approach would be
to take into account the current system state and reallocate re-
sources at every arrival and departure. This type of approach
has been studied in [2], via dynamic programming techniques.
Clearly, allocating resources on a faster time-scale may improve
the resulting utility rate. However, such an approach may not
be feasible, due to various system constraints, and will require
a more complicated allocation policy. Also, since the allocation
considered here is not state dependent, a user receives a fixed
utility upon admission. In contrast, with state dependent reallo-
cations, the utility a user receives can vary depending on future
events.

The rest of the paper is organized as follows. In Sect. II,
we introduce a model for the forward link of a single cell.
In Sect. III, we formulate a constrained optimization problem
where the objective is to maximize the time-averaged utility
rate subject to a stochastic constraint on the total power. In
Sect. IV, a solution to this problem based on decomposing the
power constraint into three more tractable constraints is pre-
sented. We then identify the system behavior under optimality.
In Sect. V, we present numerical results illustrating these ideas.
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Fig. 1. Example utility function for data traffic.

II. SYSTEM MODEL

We describe a model for the forward link within a single cell,
where the base station transmits simultaneously to all active
users, and transmissions to different users are assumed to be
orthogonal. For example, this models a CDMA system with
orthogonal spreading codes. Suppose that a user is allocated
transmission power � . The received Signal-to-Interference
Plus Noise Ratio (SINR) for this user is given by ��������� , where� is the channel gain for that user and � � is the total noise plus
interference level. We assume that the received data rate for a
user is a function of the received power, or equivalently received
SINR; this relationship is given by 	�
���
�����
�����
 , where ��
�� 

is an increasing function.

User requests are modeled as arriving at the base station ac-
cording to a Poisson process with overall rate � . Each request
consists of a unit of data with fixed length � . � Each data unit is
referred to as a packet, however, this could also be a sequence
of packets or a file depending on the situation. We consider a
system with a large number of users, and assume each request
corresponds to a new user. The channel gain of each user is
assumed to be distributed on the interval ����
���� � !#"$���&%(')
 ,
where ��� � !+*-, and ���&%('/.10 , with continuous density func-
tion, 2�3/
���
 . This density can be used to model the users’ geo-
graphic distribution within the cell, and also propagation effects
such as random shadowing. The channel gain corresponding to
each arrival is chosen independently according to this distribu-
tion and stays fixed during the entire transmission of the packet.

A utility function is associated with each request; this reflects
a user’s desired Quality of Service (QoS). We assume that util-
ity depends only on the transmission rate 	 . Since each packet
has a fixed length, this is equivalent to defining utility as a func-
tion of packet transmission time. In this paper, all users are as-
sumed to have the same utility function, 4�
5	6
 ; however, this
formulation can naturally be extended to cases with multiple
utility classes. We assume that 4�
5,7
8�9, and that 4�
5	6
 is in-
creasing, concave and continuously differentiable with respect
to 	 , for 	:*1, . These are common assumptions for so-called
“elastic” traffic, which describes many data applications [7]. An
example utility function is depicted in Fig. 1.

Since all users have the same utility function, the power al-
located to a user depends only on the channel gain � . For each�<;=� , it will be useful to define the function >4�
5�?
���
@
 , which
relates the utility received by a user with channel gain � to the
transmitted power �?
���
 . This function is given by

>4�
5�?
���
@
A�B4�
C��
����?
���
@
@
(D (1)E
The following can be extended to the case where the length of each request

is random, but we will not address this here.

Notice that >4�
5�?
���
@
 will be different for users with different
channel gains even though these users have the same 4�
5	6
 .

III. PROBLEM FORMULATION

Our objective is to allocate transmission power to maxi-
mize the utility rate given a constraint on the total transmis-
sion power. A power allocation is specified by a function�GF��IHJLKNM that indicates the power used to transmit a packet
to a user with channel gain �B;1� . If �?
���
?�O, , the corre-
sponding requests are considered blocked and not transmitted.
If �?
���
QPR, , the corresponding packets are transmitted with a
transmission time given byS 
���
T� ���
����?
���
@
 D
For UV�XW)"$YZ"[D[D[D , let \?� denote the channel gain of the U th ar-
rival, and let ]^
`_@
 denote the number of arrivals in the intervala ,b"@_@
 . For a given power allocation, the time average utility rate
is given by

c d ef�g�h WS
i�j f�kl
� m�n >4/
5�?
5\��o
@
��B�Zpq3Rrs>4 a �?
5\��t
tu@vs"

where the expectation is taken with respect to 2)3/
���
 .
Let wx
`_@
 denote the set of active transmissions at time _ . The

total power transmitted at time _ can then be written as

�Nyoz{��
`_@
A� l
�`|)} j ~`k �?
5\���
(D

This is a stochastic process with statistics dependent on the ar-
rival process, power allocation and channel distribution. We as-
sume that under any power allocation, ��yoz{��
`_@
AJL�Nyoz{� in dis-
tribution as _ J�0 , where �Tyoz{� is a random variable with the
steady-state distribution. We consider a stochastic constraint
on the total power. Specifically, ����
5��yoz{�OP����
/�G��� , where���6P�, is a small constant.

The resource allocation problem can be formally stated as

Problem MAXU:
maximize��� � �g���� �Zp�3��A>4 a �?
���
tu�� (2)

subject to ����
5�Tyoz{�GP����
 �-���)D (3)

IV. UTILITY BASED POWER ALLOCATION

A. Power Constraint Decomposition
Let ��� be a small constant such that ���&%('s����� � !�������� ,

for some integer � . For UT��,b"[D[D[D#"�� , define �����1��� � !q�sUo��� .
For UT��,b"[D[D[D#"��:��W , let ]^
`U�
 be a random variable represent-
ing the number of active users in steady-state with channel gain
in
a ����"$��� M n[
 . The steady-state total power, ��yoz{� , can then be

approximated as:

�Nyoz{�R�1 V¡ nl
� m#� �?
�����
�]^
`U�
(D

Since arrivals are Poisson with overall rate � , then ]^
`U�
 is
approximately the occupancy of an ¢1��£s�)0 queue with ar-
rival rate ��2�3/
����t
���� and service time

S 
����5
 . Therefore,]^
`U�
 is approximately Poisson distributed, and so pA
5]^
`U�
@
?�
Var 
5]^
`U�
@
/�I��2�3/
�����
���� S 
�����
/�¤�]^
�����
���� , where �]^
����t
s�
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��2�3/
����t
 S 
�����
(D Taking expected values, and letting ��� J , ,
we have px
��Nyoz{�6
�� � �?
���
 �]^
���
�� ��D (4)

Likewise, assuming ]^
`U�
("@UV�:,b"[D[D[D#"����1W are independent,
the variance of �Tyoz{� is given by:

Var 
5�Nyoz{�6
�� � � � 
���
��]^
���
�� ��D (5)

For a large number of active users, we approximate �Ayoz{� by
a Gaussian random variable, yielding,

�������Nyoz{��P�������	��
� ��B��
/�?
���
 �]^
���
�� �� 
 � � 
���
 �]^
���
�� � ��
�����)"

where �?
���
��	
 h' n� ��������� 
�� ~��� 
��)_ is the complementary cu-
mulative distribution function (c.d.f.) of the standard Gaussian
random variable.

This can be simplified to� �?
���
 �]^
���
�� �/��� n � � � � 
���
��]^
���
�� �=�����" (6)

where � n&�	� ¡ n 
5����
 .Since �]^
���
��B��2�3/
���
 S 
���
 , we have:� �?
���
 �]^
���
�� ���B�Zpq3=
"!x
���
@
 (7)

and � � � 
���
��]^
���
�� ���B�Zpq3=
5�?
���
#!x
���
@
 (8)

where !x
���
A���?
���
 S 
���
 is the energy allocated to a user with
channel gain � . An inactive user uses zero energy.

Substituting (7) and (8) into (6), constraint (3) can be approx-
imated by:

�Zpq3=
"!x
���
@
���� n%$ �Zpq3=
5�?
���
#!x
���
@
 ���� (9)

Finally, this can be further decomposed into three parts:&' ( �Zp�3=
"!x
���
@
&��) average energyp�3=
5�?
���
#!x
���
@
 ��£ average power * energy)���� n,+ ��£:���� tradeoff between ) and £ (10)

We will refer to Problem MAXU when (3) is replaced with
(10) as Problem MAXUA. A solution to Problem MAXUA
is provided next. We proceed in two steps. First, the utility
maximizing power assignment is found subject to the first two
constraints in (10) for given values of ) and £ . Next, the com-
bination of ) and £ that yields the highest utility rate is derived.

B. Solution with Fixed ) and £
Given values of ) and £ , consider the following problem:

Problem P1:
maximize��� � �g���� �Zpq3��A>4 a �?
���
tu��
subject to �Zp�3=
"!x
���
@
 ��) (11)p�3=
5�?
���
#!x
���
@
&�-£�D (12)

To gain insight into this problem, we first consider each of
the constraints separately. First, we examine the problem with
only the energy constraint, i.e.,

Problem P2:
maximize��� � �g���� �Zpq3��A>4 a 
5�?
���
tu��
subject to �Zp�3=
"!x
���
@
 �-)�D

From (4) and (7), p�
��Tyoz��?
��B�Zp�3=
"!x
���
@
 , so that Problem P2
is equivalent to constraining the average sum power.

To continue, we assume that the transmission rate is propor-
tional to the received power, i.e.,

��
����?
���
@
��	���{���?
���
(" (13)

where ��� is a given constant. . It follows directly from (13)
that the energy consumed by a user depends only on whether
a user’s transmission power is nonzero, and not on the specific
power level, i.e.,!x
���
A�0/ �?
���
 S 
���
���� � ���{��" for �?
���
 P-,,b" for �?
���
A��,bD (14)

Since utility is strictly increasing in received power, it follows
from (14) that the solution to Problem P2 is for each packet to
be either denied transmission (blocked) or transmitted with in-
finite power. If no users are blocked and the energy constraint
(11) is violated, then admission control is required to block
some users. The choice of which users are blocked depends
on whether 4�
5	6
 is bounded as 	9J�0 . If 4�
5	6
 is bounded,
the users requiring the highest energy should be blocked until
(11) is satisfied. In this way the fewest users are blocked, and
therefore (2) is maximized. If 4�
5	6
 is unbounded, the maximal
utility rate is also unbounded, and which users are blocked is ar-
bitrary as long as (11) is satisfied. In either case, �Ayoz{��
`_@
&�R,
with probability W and �Tyoz{��
`_@
V� 0 whenever a new request
arrives. Of course, this is not realistic. This behavior is elimi-
nated by adding constraint (12).

Next consider Problem P1 with only constraint (12):
Problem P3:

maximize��� � �g���� �Zp�3��A>4 a �?
���
tu��
subject to pq3=
5�?
���
#!x
���
@
 ��£�D

This is mathematically equivalent to the problem studied in
[5]; as in [5], the solution can be attained via a pricing scheme.

Theorem 1: Consider the following pricing scheme: a chan-
nel dependent price per unit transmit power of the form132 
���
 � 1 !x
���
 is announced; users respond by requesting
power to maximize their surplus (utility minus cost), i.e.,

� � 
���
A�54���6 e 4 �� j87�k �A>4 a �?
���
tu�� 1 !x
���
��?
���
$�7D (15)

If 1 is set such that (12) is satisfied with equality, this pricing
scheme provides a power allocation that solves Problem P3.

This theorem can be easily proven using the Kuhn-Tucker
optimality conditions. The set of active users and the assigned9

A linear relationship between rate and power is a reasonable approximation
for many practical systems. For large enough rates, capacity considerations
imply that this is optimistic.
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power levels are determined by 1 , which can be interpreted as
a fixed unit price on the product of power and energy. For
each active user, the marginal utility with respect to power

equals the price per unit power: � ��qj � j87�k`k� � j87�k � 132 
���
 . Inac-
tive users have lower marginal utility at zero than the price,

i.e., � ��qj � j87�k`k� � j87�k�� � j87�k m#� . 132 
���
 . Since >4�
5�?
���
@
 is concave,

� ��qj � j87�k`k� � j87�k is decreasing with �?
���
 . In other words, for inactive
users, operating at any positive power gives a utility that is less
than the cost (negative surplus). We call those inactive users
intimidated due to a combination of high price and small initial
slope of >4�
5��
 .

Assuming all users have the same 4�
5	6
 and that (13) holds,
the set of users that are intimidated can be characterized as fol-
lows:

Theorem 2: There exists a threshold ��� P , such that�?
���
�P�, if and only if �=P���� . The threshold ��� satisfies:�Z4�
5	6
�7	 � � m#��� 132 
����t
���{���
The theorem follows easily from the fact that � �qj � k� � �

� ��qj � k� � � �� � and that 132 
���
 is decreasing in � . This theorem im-
plies that a user with a low channel gain is penalized twice.
First, this user requires more transmission power to achieve the
same ���7]�	 ; second, the user is charged a higher unit price per
power. Notice that as £ increases, 1 becomes smaller and �?
���

increases for all active users. This in turn increases the utility
for each active user and hence results in a higher utility rate.
Also notice that the constraint in Problem P3 does not depend
on the traffic intensity � , but only on the channel distribution,2�3/
���
 . It follows that changes in the arrival rate, for a fixed2�3/
���
 , will not effect the optimal price in Theorem 1.

Now we return to Problem P1. The solution to this prob-
lem will be a combination of admission control, as in Problem
P2, and the pricing approach from Theorem 1. The optimal
combination of these approaches can be found in the following
sequence:

1) Assume �?
���
�P , for any � . Given 2�3s
���
 and (14),
check the energy constraint (11). If it is violated, block
users with channel gains �:�L�
	 where ��	 is selected
such that constraint (11) is tight. Otherwise, admit all
users. By convention, if (11) is satisfied with equality, we
set ��	?�X��� � ! . If (11) is loose, we set �
	 equal to any
arbitrary value less than ��� � ! .

2) Find 1 so that (12) is binding for the set of active users.
The optimal power allocation is given by (15) for the ac-
tive users. Blocked users are assigned zero power.

The reason users with the lowest channel gains are blocked is
that with the same 4�
5	6
 , these users always derive the lowest
utility for any given 1 . Therefore, there exists an energy in-
duced cutoff threshold �
	 such that only users with �<�B��	 are
blocked via admission control. We note that at the optimum,
(12) is always binding, whereas (11) may not be binding.

By formulating the problem with both constraints, the re-
source allocation is accomplished in two steps. The combina-
tion of the energy constraint and the arrival rate � may require
admission control, i.e., some users may be blocked to satisfy
the energy constraint. Among the remaining users, power levels

are determined via pricing. Some users may also be intimidated
depending on the price.

Admission control and intimidation are characterized by the
channel gain thresholds, �
	 and ��� , respectively. We distinguish
the following 3 cases.
C1: ��	V*B��� � ! and ��	Q*B��� . (Active users are determined by��	 .)
C2: ��� � !�P���	 and ��� � !�*���� . (All users are active.)
C3: ���AP ��	 and ���AP ��� � ! . (Active users are determined by��� .)
C. Optimal Admission Control/Pricing Trade-off

Given ) and £ , we have shown that the optimal solution to
Problem P1 consists of a combination of admission control and
pricing. Returning to Problem MAXUA, notice that any pair of
values ) and £ that satisfy)+��� n + ��£:���� (16)

results in a solution to Problem P1 that is also a feasible power
allocation for Problem MAXUA. To solve Problem MAXUA,
we want to find the combination that maximizes the utility rate.
It is sufficient to consider values of ) and £ such that (16) is
tight. Since if )<�-�Zn,+ ��£X.��� , we can always increase £ to
the point where (16) is binding. A larger £ allows a lower 1 ,
and therefore a higher utility rate.

Theorem 3: Consider P1 with constraints 
�)�"�£ �n
����� ¡
������ � 
 . As ) increases from , to �� , the optimal

solution transitions through the cases C1, C2, C3 in one of the
following sequences: C1 J C2 J C3 or C1 J C3.

Proof: Let A1 denote the set of values of ) for which the
optimal solution to P1 is in C1. Define A2 and A3 similarly.
At ) �X, , ��	x�I���&%(' and ���Q�X, ; therefore , ; A1. As )
increases, £ decreases; this results in ��	 decreasing with ) and��� increasing. This implies that if )�; A1 then )���; A1 for all)��A� ) and likewise, if )1; A3 then )���; A3 for all )���* ) .
When )�� �� , £X�:, , in which case ��� � 0 , thus, �� ; A3.
Therefore, the only possible sequences are C1 J C2 J C3 or
C1 J C3, which of these occurs depends on ��� � ! .

As noted previously, the constraint (12) is tight under an op-
timal power allocation. If the energy constraint (11) is loose,
then ) can be decreased, allowing for a larger £ without violat-
ing (16). This results in a higher utility rate. Therefore we have
the following:

Theorem 4: The power allocation which solves Problem
MAXUA satisfies both (11) and (12) with equality.

Corollary: The optimal ) � ; A1, and £ � � n
 � �� ¡
������ � � .
A1 is the only region where both constraints are tight. In A2

or A3, the energy constraint is always loose.

V. NUMERICAL RESULTS

In this section, we present numerical results to illustrate the
ideas from the previous section. Throughout this section, users
are assumed to have the same utility function:4�
5	6
��9W&��� ¡ � " (17)

and the channel distribution is assumed to be given by:

2�3/
���
�� W��� ¡! " " for �=; 
�W)"(0�
(D (18)
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This is based on a distance-based attenuation formula �q
���
/�
� ¡

�
where users are distributed uniformly along the radius

within a cell, i.e., 2�	�
���
x� W)"
�^;:
5,b"[W{
 . We assume the file
length is normalized so that ��� �7� , which is the linear scaling
factor between transmission rate and received power. In other
words, one unit of received power results in one unit completion
time.

Fig. 2 shows how the average utility per user varies with �
and ) (and therefore £ ) when ����LW�, and ��� � ,bD ,bW . The
classification of the resulting allocation is indicated on the fig-
ure. Notice that the maximum point is always in A1 as pre-
dicted. Also observe that as ) increases, the solution transi-
tions from C1 J C2 J C3 when � is small ( ���9W)"[W�,b"$Y�, ). As� increases, the allocation transitions directly from C1 to C3
( ��� � ,b"��), ).

Fig. 3 shows how �
	 and ��� vary with ) under differ-
ent arrival rates, � . The minimum channel gain ��� � ! ��W
is also shown. For �
	 . ��� � ! , we choose �
	 to satisfy� 
 7�
��
�7�� n� � ¡  "������7 � ��� ) so that the curve is extended con-
tinuously from where �
	�* ��� � ! . Observe that, as expected,��	 decreases with ) and ��� increases. When � �XW�, , the sys-
tem transitions from C1 to C2 when ��	 falls below ��� � ! , and
from C2 to C3 when ��� increases above ��� � ! . When � � � , ,
the intersection point of ��	 and ��� is larger than ��� � ! ; in this
case the solution transitions directly from C1 to C3.

Fig. 4 shows the maximum average utility per user,p�3��A>4 a �?
���
tu�� versus the threshold �[� for different arrival rates.
As � increases, the average utility per user decreases; however,
the overall utility rate �Zpq3��A>4 a �?
���
tu�� increases. A smaller �[� ,
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Fig. 4. Maximum ��������! "!# ��$&%&' vs. threshold (
) for different � ’s.

or equivalently a tighter power constraint, results in a lower util-
ity per user. Notice the average utility per user is insensitive to��� when � is small ( .�W�, ). This is because the utility function
we use ( 4�
5	6
T�9W�� � ¡ � ) is relatively flat (close to 1) when 	
becomes large. When � is small, the optimal power allocation
lets users operate in the range of 	 where the utility function is
relatively flat.

VI. CONCLUSIONS

We have studied forward link power allocation for stochasti-
cally varying traffic within a single cell. We use a stochastic to-
tal power constraint in order to allocate resources at a slow rate
relative to the dynamics of the traffic. Specifically, power as-
signments depend only on the users’ channel state, utility func-
tion and the long-range traffic statistics. We give an approx-
imation for the power constraint that results in three tractable
constraints, and show that a combination of admission control
and pricing of power maximizes time-averaged utility rate. We
categorize the tradeoff between admission control and pricing
induced intimidation into three cases and show that the solution
is always in case 1. Numerical results illustrate the tradeoff and
show that for small � , the derived utility rate is insensitive to
the choice of ) over a wide region.
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