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Abshoe- This paper proposes a new efficienl mechanism for 
controlling and managing the resources within and around the 
active nodes 1131: routers and switches that have a legacy 
S m  managemat system. Existing system such 8s AXILE 161 
has an out-of-hand management capability, which is 
insufficient for managing data flow as the flow progresses 
through the network. This paper proposes the use of the 

network resource management mechanism on the FAIPJ active 
nodes [7],[12]. It has an in-hand management approach in 
which each data flow will negotiate its next hop before it goes 
there; or it fan ereate IPSec tunnels and modify routing table 
entries for the data flow. 

different YES. Through the extensions the NodeOS' offen 
facilities through the following facilities: 1) Security - The 
security component in the active node is in charge of 

all requests to the node API based on the 
security policies previously set hy an authorised principal; 2) 
Resource Access 
component within the active node receives request for 
allocating node-isolated resources (both computational and 
communication) to different principals; 3) Demullipiexing - 
The demultiplexing component is in charge of forwarding 
active packets to the corresponding EE and VE, based on the 
packet header information (e.g., ANEP header [IO]) and a 
forwarding table used by this component; 4) Acrive Service 

1. OVERVIEW Provisioning - ASP system is in charge of downloading 
The main objective of the EU-IST FAIN (Future Active active services into the active nodes or management stations 
Network) [SI project is to develop the i ~ f r & m x e  for the when necessary; 5 )  Virruol Environmenl Manager (VEMgr) 

and Of new New - Component includes activities that assist the policy-based 
services are implemented by the injection of codes on the management system to enforce its policies, e.g., monitofing 
active nodes. VE Environment) Ican be of resources, event notification, VE instantiation, etc. More 
assigned to a different service provider and each VE is details on the FAIN AN Node architecture are beyond the 
guaranteed to have access to the necessiuy resources. of the scope of this document and can be found in [l2]. Allocation 
active nodes in order to support new services. Thus a RCF of in the FAIN RCF is in the interest of the 
(Resource Control Framework) in the NodeOS is needed for resource consumers i.e. VEs and the active applications, this 
the management and distribution of node resources to is achieved by the application of higher.level policies; 
different VEs:The service provider must negotiate with the whereas both a~~ocation and monitoring of are in 
node opentor for the ~ ~ w U ~ X S  requested by the VEs; the the interest of the network management system [7]. 
RCF will then partition the resources of the node to the VEs 
according to the agreement, and provide the VFs with 11. INTRODUCTION 
guaranteed access to the partitioned resources. As dqicted, This paper describes a new conhol mechanism 
EEs (Execution Environments) are simply treated as using SNMP across a network for controlling and managing 
technologies (e.g.. m) used to implement services that, in the resources within and around the active node: routers and 
mm, may operate entirely in One Ofthe three Planes: I:OntrOI, switches that have a legacy SNMP management system. In 
management, or transport EES, and consequently services our approach, once a VE is given the authority to access the 
are VEs, which if connected together requested network resources, the resources can be obtained 
provide a proper virtual private network ( W N )  on W ofthe from any SMP-enabled network devices. Finite state 
network infrastructure. Tne VE is a necessary abslraction machines are implemented by active packets; these 
that is used only for the purpose of partitioning the resources machines can then program a of S M - e n a b l e d  
of the AN Node. The VE concept is very important for the network devices in a synchnised manner, and provide a 
complete understanding ofthe delegation approach followed for rollback should any request for a network 
within the FAIN management framework. resource fail, then the fulfilled requests made earlier are 
resources and access rights of principals using the active released. using this =tive packet mechanism, it he 
network. Consequently, all interactions of Principals With possible to implement complex network reconfigurations; 
the active network are checked against the access rights of for instance, it can create psec tunnels and modify routing 
their particular VE. VEs are built on top of the node table entries to use it. The system uses the SNAP 
operating system that involves the services of a number of programming language implement the finite sate, 
extensions in the form of active node facilities that are lt offers the facilities to issue ,he following 
required to support the instantiation and operation of SNMP that can be applied to network devices: 

The Resource 
combined Ppproa& of SNAP 121 and SNMP 191 

I NodeOS is an OS for active n d c r  and includes facilities for setting up 
and management of communications channels for inter-EEs, manages the 
muter resounes, pmvidcr MIS, and isolates EEs fmm each other. 
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SET - .set and changes their current operational 
configuration; GET - get the current device status; SET 
TRAP - set traps to report changes in device status. The 
system will also be possible to issue an instruction to any 
active extensions available in (or around) the active node; 
this will be used to demonstrate the loading of mobile 
software agents into a JVM (Java Virtual Machine) near the 
active node. These mobile software agents will be used for 
monitoring network conditions and reporting directly to any 
VE or twoot her management systems'. Security will be 
provided for by the standard mechanism used in SNMP: 
usemame, password and community. SNAP packets will be 
transmitted in cleattext, hut the authority to activate the 
SNMP commands will be an active extension provided by 
the VE within the active node. Mobile agents will he loaded 
in a similar manner, the VE will be given the authority to 
load them. The mechanism in this latter case will be that 
available within the Grashopper agency [4]. 

IILSY STEM DESIGN GOALS 
A.  Interceptor Paradigm 
Active network management is the application area for this 
system. Active networking is an interceptor paradigm. It is 
difficult to develop applications that rely upon intercepting 
data packets because the interceptor must decode each data 
packet and its intention must he understood. 

B. ABLE: Active Nehvorking Out-of-Band (61 
The ABLE platform for network management is shown in 
figure 2. The ABLE platform used a routefs packet filtering 
capabilities to supply ANEP UDP packets that contained a 
Java class to the system component "The Activator". The 
Activator reconshucted the Java class from the packet 
stream and forked itself. Its child then performed an 
exec ( )  to launch a JVM (Java Virtual Machine) that could 
run the Java class intercepted it. 

Figure 1 ABLE An Example of the Interceptor Paradigm 

This paper suggests that ABLE is deficient as an active 
networking system. It is useful for loading network monitors 
and managers into routers (or nearby management stations) 
wherever a customer data flow appeared in the network. It is 
not suitable for managing the data flow as it progresses 
through the network. It is, in effect, an out-of-band 
management facility. It did provide a mean to locate flow 
managers more effectively, but it did not provide a means to 
locate the flow itself This is clearly a problem: a data flow 
is most unstable when it is first established. The network bas 
to adapt to the load it presents and consequently the nodes 
through which the flow passes are most likely to change 
when the flow first presents itself to the network. 

In contrast to traditional network management, what is 
needed for effective network management is an in-band 
management capability. Each flow will negotiate its next 
hop before it goes there. It will be seen that SNAP and 
S N M P  can come close to achieving this: the SNAP packet 
will precede the data and go to the next hop, it will then 
establish a route for the data that will follow it. The 
information used by the SNAP packet to choose the route 
will state the intention of the data flow. For example: 

The data flow may be an HTTP request for a large 
resource to be delivered to the requesting machine. 

The data flow may be the start of a large system backup: 
sending large amounts of data to the accepting machine. 

In both cases, the data flow will be asymmetric; in the 
former case, it will require a larger capacity in the reverse 
direction; in the latter, in the forward direction. The 
information that states the requesting machine's intent is 
only available at the edge of the network where the request 
is made - only the local network administration knows the 
capability and priority of its machines for a limited resource. 
The statement of intent is contained in an active packet that 
attempts to match its source with the sink of the data flow. 
The active packet can revise and choose how the source and 
sink impedances are matched. 

C. Active Packets & Active Extension Technology: SNAP & 
SNMP 
SNAP (Safe Network with Active Packets) [Z] is a 
programming language that provides active packets at high 
level of safety. Essentially, SNAP packets are UDP packets 
that are embedded with assembly codes. As a SNAP packet 
traverses through the network, simple compntations' such as 
to add and remove data to a stack within the packet can be 
performed. This is a genuinely active mode of operation. It 
will be seen that the application of SNAP within active 
network management is as a finite state machine that 

It is also planed that thc extension of Grasshopper by IKV for the FAIN 
project can be exploited by the SNAP system. Thc Grasshopper extenion 
allow agents to be wnsponed using ANEP packesls 141. 

SNAP programrmng language is an aJsembly language and it -01 
perform any computations that BR comparable in complexity lo that of a C 
or lava program; nor can it suppon the wide range of data lyp$s hat arc 
available in the^ languages. 
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follows the progression of a reconfiguration of a network. 
Finite state machines do not need a complex runtime 
environment and SNAP will prove to he sufficient. SNMP 
(Simple Network Management Protocol) has been chosen as 
the active extension technology to work with SNAP for a 
number of reasons: 
i It is the de-facto language of network management. 

SNMP v.3 provides cryptographically strong role-based 
access control. 

An extensible MIB and programmable SNMP v.3 agent 
have become available for conventional operating systems. 

Machines that run conventional OS are now capahlc to act 
as network routers as well. 

The extensible MIB allows complex operations to be 
simplified to one macro instruction. In SNMP, the GET and 
SET commands can be thought of as operation codes for a 
programming language: LOAD and STORE. One could think 
of the object identifiers in the extensible MIB as memory 
locations. Simple programs can be written in SNAP to test 
the operational state and branch to different operation 
sequences. 

N. SYSTEM DESIGN, 
A. Injectors 
Injectors inject programs into the network to reconfigure it. 
An injector will decide to inject code, because it has 
intercepted a request for a data flow from its own network. 
An injector intercepts and interprets some part of an 
application protocol. For example, the injector may intercept 
NFS (Network File System) requests, obtain the user 
identification contained within the NFS request and use that 
to priorities the use of bandwidth to deliver the data. It can 
also make use of the MAC address, the IP address, and the 
current network topology in its own administrative iiomain. 
In effect, it monitors the state of its own network and its 
connection with external networks. 
When a new network condition develops, an injector will 
attach control information to the data flows it hopes to 
control: 

Appearingflows ~ A new network condition is engendered 
by a new data flow and the control information will be 
attachcd to the new flow. 

Disappearingflows -An injector may know that a flow, or 
a set of flows has finished: a machine or user or another 
network may have disappeared from the network. 

An injector was demonstrated in the FAIN project: the 
ABLE platform used a packet filter to trigger the inje:ction of 
code that constructed an IPSec tunnel [7], (111. For the 
SNMP SNAP approach proposed here, a more sophisticated 
packet filter will be used. This will be a PromethOI, system 
[3]. PromethOS is preferred means of providing node 
operating system plug-ins for active nodes. It is an e:rtension 
of the Netfilter [IO], a standard part of the Linux kernel. 

PromethOS packet filters will have a degree of feedback; 
they will be programmed by SNAP packets to wait for 
particular network events. The SNMP SNAP packets will 
inject code. These will be sent to the same host as the data 
that triggered the network event. All active SNAP-enabled 
routers will intercept these packets as they traverse the 
network. The SNAP packets should precede the data packets 
in the network, so that the data packets will not be able to 
traverse the network until the SNAP packets have a created 
a route for them. If this was the case, it would be desirable 
to implement another PromethOS module that performs 
packet spooling. The difficulty with operating injectors is to 
decide what code to inject. 

B. Interceptors 
Intercepting SNAP packets is more complicated than 
injecting them. These are the constraints: I )  The code has to 
be executed as quickly as possible, so that the packet can be 
quickly forwarded and minimise latency during the 
establishment of the data flow; 2) The functionality required 
will need to make use of active extensions on the node; 3) 
Active extensions require blocked I/O; 4) Blocked U0 
cannot be performed in the same thread as the execution of 
the SNAP packet, because it would add too much latency. 
Because of this a new invocation model is proposed. 

C. Active Extensions 
SNAP provides a facility to access services within the 
SNAPS: CALLS (call service). A service is a C function. 
This will he used to dispatch the SNMP commands 
embedded in the SNAP program (figure 3). SNAP also 
provides a facility to read variables maintained by the 
SNAPD: SVCV (service variable collect). This will be used 
to return the state of SNMP variables. In this way, an SNMP 
command can be issued on one thread and the result can be 
retumed, stored within the SNAPD and dispatched as the 
result in a subsequent SNAP packet. To illustrate, figure 3 
shows an simplified example of the assembly codes that can 
be embedded in a SNAP packet to perform a SNMP SET: 
here : push cu~rent node address 
push 6 ; puah the  6" stack value 
push I(addresrl1. (addrerr21l 

: push the  addresses  onto the 
stack 

Push ii\"set\"l, l \ " o m \ " ~ l  
; push a SNMP command onCO t h e  
stack 

mktup 4 i create a t u p l e  
push bar : push result returned by t h e  

baz: 
isrup i is it a tuple 
bne 1 ; branch to "barl"  i f  y e s  
b a r l :  
calls \"te3ts"c\" 

i calls t h e  service " tes tsvc"  
$"CY \-rerL"al\" 

; pusher t h e  variable * t e s t V a l "  
push 4 4 5 5  i purher a p o r t  number 
demux : Iendo a string (on 2"' TSVI  to 

rsrvice ^bar" 

the por t  10" TSV) 

Figure 3 Assembly codes for SNMP SNAP SET 
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The first four instructions push the current node address; the 
6'" stack value e.g. authority in our example; the source and 
destination addresses; and the SNMP SET command onto 
the stack respectively. The fifth instruction creates a tuple, 
which holds the top four popped stack values and returns a 
value, which is an offset into the heap. bar checks whether 
it is a tuple; if true, then branches to b a r l .  barl is a 
service in the service table that formats the tuple as a string 
and puts it into a registered variable testVal - this 
variable now holds the "stringnified" SNMP command. The 
desire port number is then pusho nto the stack, and the 
SNMP command is then delivered to the desire port. 

D. Invocation Model 
A kernel-based SNAP packet processor is currently under 
development at the University of Pennsylvania [2]. This will 
he a node OS plug-in. This will be unable to invoke any 
active extensions outside of the kernel. Their proposed 
invocation model is for two SNAP-enabled nodes: A and B. 
1. A: Execute SNAP instructions that do not invoke active 
extensions. 
2. A: On reaching an instruction that does invoke an active 
extension: 

A Stop executing in the kernel and forward.the packet to 
the next hop amving at B. 

A: Continue executing the packet program in user space. 
Invoke the active extension, wait for the result and, when it 
arrives, send it onto the next hop as a SNAP packet that only 
contains the result. 
3. B: the SNAP packet sent by A is now executed. Two 
conditions may arise: 

The result of the invocation of the active extension at the 
previous active node is required to progress the 
computation. 

The result at the precious active node is not needed. 
4. B: If the latter is the case, the packet can continue to 
execute. 
5. B: If the former is the case, then apply 2. 

In this way, SNAP packets can proceed very quickly 
through the network. A SNAP program will be in place at 
each active node waiting for the 110 to unblock at preceding 
nodes in the network. Diagrammatically, the situation is as 
given in the figure 4. At time interval, 1, packet p arrives, 
denoted pI. Its blocking commands are invoked 
asynchronously and the packet is passed on. At time period 
p. the result is ready. 

Other packets arrive, p2 though to p,.~.. They may be 
forwarded or spooled. SNAP packets will almost certainly 
be dispatched, but it would be desirable to spool data 
packets. Eventually time period r arrives and the result of 
the SNAP operation invoked at time period 1 is available 
and it is dispatched immediately. If the data packet flow is 
being spooled, a release indication would be sent by the next 
hop, presumably after it has received and processed the 
result of the operation of plarr iving after period r. A more 
sophisticated analysis than this would show that the 
synchronisation of the operation invocation and the arrival 
of the result form a self-organising protocol - similar to 
Djikstra's leader election protocol for communications bus 
synchronisation. 

In effect, the interaction between the kernel and user space 
SNAP interpreters requires two new primitives within 
SNAP: FORK and J O I N  [SI. These will be implicit in the 
calls to the active extensions: CALLS and SVCV. The design 
of the FORK and J O I N  primitives is common to many OS. 
An identifier will be needed to specify the thread to join. 
The usual problem of finding a unique identifier in an open 
distributed system will be faced. Also SNAP will require 
two stacks: a supervisor stack used for synchronisation and a 
user stack used for the SNAP program. The operation of the 
kernel SNAP interpreter will he an atomic copy, increment 
the program counter and forward. 

E. Implementarion 
The kernel space SNAP interpreter is not currently 
available, but the proposed invocation model (FORK and 
J O I N )  can be proved using the current USR space overlay 
network architecture of SNAP. Interceptors will be SNAPD 
running on active routers. They will listen on several SNAP 
control ports. At the time of writing, the SNAP interpreters 
are not part of a system that has packet spooling, which is 
still an experimental of the Linux kemel [ 111. 

V.TH E ShfNP-SNAP APPLICATION SCENARIO 
The below collaboration diagram shows how a SNAP packet 
implementing a finite state machine could be used to create 
an ad-hoc network. There are four routers in this system: I, 
s, t, U. Each of which must move to its respective operational 
state: SI, s2, s3, s4. The network to be constructed is a sub 
network that passes all of its traffic through an ATM switch. 
The traffic must be conditioned so that the bit-rate limited 
virtual channel carrying the traffic does not arbitrarily drop 
cells and conupt the IP packets. To simplify the 
management of the traffic conditioning, the traffic is carried 
in an IP in IF' tunnel and it is conditioned. It is then 
unencapsulated and given to the ATM switch's IP interface. 
Typically, this network might be used to support ADSL 
access for a neighbourhood. 

Figure 4 The invocation model 
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Figure 6 The network diagram for the S N M P  Sh AP 
Application Semario 

-+ 
Figure 7 SNAP Program: ad-hoe network construction 

The progression of the states of construction is this: 
SI - The router I, supporting DHCP, RIP version 2 and, 

say, two IOOBaseTx interfaces offers a sub-network to client 
machines. It creates an interface for that sub-network on one 
of its IOOBaseTx interfaces and announces a route to the 
sub-network with RIP version 2 on the other interface. It 
injects the SNAP packet. 

S2 - An upstream router, s, receives the SNAP packet and 
is told to wait for a RIP version 2 event- the announcement. 
of the new sub-network. In response it will create an IP in IP 
tunnel endpoint for it. It passes the SNAP packet on. 

S3 -The next upstream router, t, receives the SNAP packet 
and is told to construct the other IP in IP tunnel endpoint and 
to apply a traffic conditioner to the tunnel and to route the 
traffic to an ATM switch. 

S4 - The router with the ATM interface creates a route for 
the unencapsulated traffic of the sub-network. 

This is the son of network construction task that many 
system administrators must perform. SNAP is used to carry 
the instructions and to record the changes of state of the 
network. The instructions can be at conceptually a high 
level, the extensible SNMP agent allows many simple 
instructions to be grouped together. The states correspond 
exactly to the construction of the system. Clearly, this task 
could be automated, the only variables are: IP sulmetwork 
to be supported; IP tunnel endpoints addresscs; traffic 

conditioning parameters: ATM interface IP address. A set of 
each of these could easily be embedded into a number of 
SNAP programs. The DHCP routers would be given at least 
one each to inject into the network when a client machine 
starts to use the network they manage the addresses for. 

VI. CONCLUSION 
This paper describes a new mechanism using SNAP 
language for controlling and managing the resources within 
and around the active nodes: routers and switches that have 
a legacy SNMP management system. The SNAP system 
propagates S N M P  command execution through a network 
lends itself to mass production of SNAP programs to 
construct large numbers of network. It exploits active 
networking by having control information move with the 
data it must support. This is an efficient mechanism for 
invocation of any active extensions outside of the kernel. It 
provides synchronised changes in state, thus disruption 
caused by transient operational states will be minimised. 
The effect of the latter could be entirely eliminated with the 
use of packet spooling. This would be synchronised to an 
acknowledgement message that the network has attained its 
new state. 
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