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Abstract—Technology trends are making it more and more dif-
ficult to observe and record the large amount of data generated
by high speed links. Traffic sampling techniques provide a sim-
ple alternative that reduces the volume of data collected. Unfor-
tunately, existing sampling techniques largely hide any temporal
relationship in the recorded data.

Our proposed method, “FastCARS” naturally captures statis-
tics for packets that are 1, 2 or more steps away. It has the fol-
lowing properties: (a) provides accurate measurements of a full
trace’s statistics, (b) is simple and can be easily implemented, (c)
captures correlations between successive packets, as well as pack-
ets that are further apart, (d) generalizes previously proposed
sampling methods and includes them as special cases, and (e) is
scalable and flexible to account for prior knowledge about the
characteristics of traces.

We also propose several new tools for network data mining
that use the information provided by FastCARS. The experimen-
tal results on multiple, real-world datasets (233Mb in total), show
that the proposed FastCARS sampling method and these new data
mining tools are effective. With these tools, we show that the in-
dependence assumption of packet arrival is not correct, and that
packet trains may not be the only cause of dependence among ar-
rivals.

Index Terms—Traffic analysis, sampling

I. INTRODUCTION

The ability to monitor and characterize network traffic has
proven to be critical to the design and operation of today’s net-
works. However, as links have gotten faster and faster, it has
become more difficult to observe key traffic characteristics or
record packet data in real-time. Already, most network mon-
itors rely on sampling techniques [1] [2] to provide measure-
ments of high speed links. The ability of these sampling tech-
niques to preserve data characteristics is necessary for network
data mining applications which aim at revealing patterns and
correlations that are crucial to the understanding and develop-
ment of today’s and future networks.

Today’s sampling techniques are targeted towards enabling
tasks such as usage-based billing, capacity planning and net-
work research. These techniques can typically answer ques-
tions about the traffic such as: What is the distribution of
packet sizes on this link? Which destinations are popular?
or How long are typical connections? However, a signifi-
cant weakness of existing schemes is that they do not answer
questions about the temporal correlation of the traffic. For ex-
ample, some interesting traffic characteristics include: How is
the arrival time of packet � related to that of packet

� ������� or

This material is based upon work supported by the National Science Founda-
tion under Grants No. IRI-9817496, IIS-9988876, IIS-0083148, IIS-0113089,
IIS-0209107 and by the Defense Advanced Research Projects Agency under
Contract No. N66001-00-1-8936.

� ���
	�� ? Is there correlation among arrivals? In the past, anal-
ysis of such packet content characteristics [3] and arrival cor-
relation [4], using full (unsampled) packet traces, have led to
the discovery of important phenomena such as “packet trains”,
which is defined as a set of sequential packets that have the
same source/destination IP addresses and port numbers, and
self-similar traffic pattern. Clearly, such traffic characteristics
are critical to the design of routers, routing algorithms and
caching techniques. It is necessary that this kind of analysis
should be possible on sampled data, rather than on full trace.

We would like a sampling method that is informative and
efficient. It should provide sufficient information for accurate
estimates of both average and temporally correlated statistics.
It should also be simple and require low computation when
implemented on routers. To achieve these objectives, we pro-
pose a new method, Fast, Correlation-Aware Sampling (Fast-
CARS), to do sampling and data mining on router traffic. We
show that our method can support the traditional uses of net-
work sampling (provide interarrival time distribution), as well
as statistics about packets separated at different steps, which
can be used for further data mining on the sampled traffic. In
particular, we use FastCARS to explore the independence of
interarrival time. We show that packet interarrival times are
not independent and packet trains may not be the only cause of
dependence among arrivals.

This paper is organized as follows. We summarize previous
work in Section II. Section III describes our sampling method.
Section IV presents results from using our sampling technique.
Finally, we present our conclusions in Section V.

II. RELATED WORK

Network sampling has played an important role in network
measurements for the past decade. In order to describe the de-
sirable properties of a sampling technique, we begin by defin-
ing the term step.

Definition 1: We call the separation between samples,
steps. A n-step histogram is a histogram of measurements
obtained from pairs of sampled packets that are � steps away
(separated by ( �
��� ) packets). Histograms of different steps
provide aggregated statistics which reveal short and long term
correlations (i.e. temporal correlation).

Statistics of samples � steps apart are prefixed by the term n-
step. For example, the interarrival time between a pair of back-
to-back packets is an instance of 1-step interarrival time. We
will show in the following sections that � -step histograms give
us information about the traffic characteristics, and reveal tem-
poral correlation between packets. For example, the � -step his-
togram is used to estimate packet interarrival time distribution,
and the 	 -step histogram is used to explore the independence
of interarrival times. One important property for a sampling



technique is that it be correlation-aware, i.e., it should pro-
vide statistics for � -step histograms for arbitrary � .

We classify past techniques into four categories: event-
driven sampling, random sampling, configured run-length
sampling and back-to-back sampling. Each of the existing
sampling methods has its merits. However, none of them suc-
cessfully satisfies all the favorable requirements.The following
definitions describe these techniques.

Definition 2: The deterministic event-driven sampling
method with sampling period � (Event(� )) samples events
numbered � , � , 	�� and so on. In the case of network traffic,
events are packet arrivals.

Definition 3: The random sampling method is a variant of
the event-driven sampling method where its sampling interval
is a random variable following a specific distribution.

Definition 4: The configured run-length sampling
method (Conf(� , � )) with sampling period � and run length �
samples a sequence of � events in every sampling cycle. If the
sampling starts on packet � , then in the

��� � � � -th sampling
cycle (

��� � ), Conf(� , � ) will sample packets numbered
� � ,��� ��� ��� , 	
	�	 , ��� ��� � � ��� .

Definition 5: The back-to-back sampling method (back-
to-back(� )) with sampling period � samples packets numbered� , � , � ,

� � � ��� , 	�� ,
� 	�� � ��� and so on. Note that back-to-

back(� ) is equivalent to Conf(� , 	 ). In general, a back-to-back
sampling with sampling period � and step 
 (back-to-back(� ,
 )) samples packets numbered � , 
 , � ,

� � � 
 � , 	�� ,
� 	�� � 
 � and

so on.
These different techniques have been evaluated in past work.

Claffy et al. [5] compared several sampling methods by their
errors on estimating packet interarrival times and packet sizes.
This study concluded that the event-driven sampling method
performs better than other methods and that the performance
differences between sample selection patterns are small. To-
day’s routers incorporate sampling techniques similar to those
described in [5]. Cisco’s NetFlow monitoring system supports
1 out of � packets, i.e., Event(� ) [1]. Juniper’s routers provide
some additional flexibility. They allow administrators to ap-
ply packet filters before the sampling is done and to request
that a configured run length of packets be collected with each
sampling event [2], i.e., Conf(.,.). The ability to collect a set
of packets with each sample enables the evaluation of tempo-
ral correlations between transmissions. However, this ability
comes at the cost of recording significantly more data.

Event-driven sampling methods have great difficulty in mea-
suring traffic characteristics such as packet interarrival time.
The problem is that the sampling only gives information about
the interarrival time between samples, rather than that between
back-to-back packet pairs. In [6], interarrival times of the pack-
ets between two adjacent packet samples were assumed to be
the same, and were estimated by dividing the sampled interar-
rival time by the number of gaps in between (naive averaging
estimation). The estimated distribution is biased toward the
overall mean of the interarrival time and does not give enough
emphasis at the extreme values as we will show later in Fig. 3.

Back-to-back sampling can provide a good estimate of in-
terarrival times. However, it only gives us information about
packets 1-step away and does not give information about pack-
ets separated by more steps which is important if sequential

packet arrivals are correlated.
Random sampling and configured run-length sampling

could provide � -step histograms. However, their computation
overhead can be high, and for random sampling, the size (num-
ber of samples) of the collected histograms is not predictable.

III. PROPOSED METHOD

Unlike previous work, our main goal is to provide a sam-
pling method that provides accurate statistical estimation, and
is also simple, predictable and capable of capturing temporal
correlation. To achieve these objectives, we propose a fast,
correlation-aware sampling method (FastCARS).

We propose to use a combination of multiple determinis-
tic event-driven sampling processes with sampling intervals
that are relatively prime numbers. For every sampled packet,
its header information, such as time stamp on arrival, packet
size, source/destination addresses, source/destination ports,
and protocol, is stored for subsequent processing.

Definition 6: FastCARS
� ����������� 	
	�	 ����� � sampling method

consists of � event-driven sampling processes, where� � � 	�	
	 ��� � are relatively prime numbers. The � -th process has
sampling period ��� , which takes one sample every ��� events.

Definition 7: FastCARS
� ����������� 	�	
	 ����� � starts all � sam-

pling processes at the same time. We can further gen-
eralize FastCARS by specifying the start times of the� processes. We denoted the generalized FastCARS by
GFastCARS

� ����������� 	�	
	 ������� 
 ��� 
 ��� 	
	�	 � 
 � � , where packet 
 �
is the first packet sampled by the � -th process.

The next lemma shows that GFastCARS reinforces previous
sampling methods and includes them as special cases.

Lemma 1: GFastCARS GFastCARS
� � � � 	�	�	 ��� � � 
 � � 	
	�	 � 
 � �

includes other deterministic sampling methods as special
cases:�

Event(� ) = GFastCARS(��� � )�
back-to-back(��� 
 ) = GFastCARS(������� � � 
 )�
Conf(��� � ) = GFastCARS(��� 	�	
	 ����  �! "#

� � � �$� 	�	
	 � � � � � � )
Fig. 1 shows how FastCARS works. As shown, the Fast-

CARS(3,4) method samples at periods of 3 and 4 packet ar-
rivals. The figure also shows that the samples collected are ei-
ther 1-step, 2-steps, or 3-steps away from each other, allowing
the corresponding � -step histograms.

In general, when the sampling periods (�%��� 	�	
	 ����� )
are chosen to be relative primes, ��& � � = '(� ��*) �,+-+-+ � � � and.

= /�0�' � � � � 	
	�	 ��� � � , FastCARS guarantees us samples of steps
ranging from � to � & � � every

.
packet arrivals. This creates

a more predictable sampling result, which random sampling
can not give us. FastCARS is also tunable in the sense that the
sampling intervals can be chosen such that samples of particu-
lar steps which are of special interests will occur more often.

FastCARS is a simple generalization of the event-driven
sampling which can be efficiently implemented. Event-driven
sampling of sampling interval � can be implemented using a
counter to keep track of how many packets to be skipped be-
fore taking the next sample. FastCARS could be implemented
similarly with one counter per sampling process.

Fig. 2 compares FastCARS with other sampling methods,
namely, event-driven, back-to-back, and configured run-
length sampling. Configured run-length sampling (Conf(� , � ))
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Fig. 1. How FastCARS works FastCARS(3,4) has two processes with sam-
pling intervals 3 and 4. The top two lines indicate the packet numbers sampled
by the two processes. The bottom line shows the steps among samples. In this
case, we collect interarrival times of 1, 2, and 3 steps, each of them twice, in
every 12 packet arrivals.

Event−Driven

Back−to−Back Sampling

Configured Run−Length Sampling

FastCARS

Fig. 2. Comparison of Different Sampling Methods Each bin contains �
packets (not shown). Sampling methods compared are FastCARS( � , ����� ),
event-driven, back-to-back, and the configured run-length (with run-length � )
sampling. Each ball shown (either filled or empty) indicates a sample taken.
For FastCARS , filled balls are samples of the sampling process of sampling
interval � , and empty balls are those of interval � �����
	 .

and random sampling also give us � -step histograms. How-
ever, FastCARS has important advantages over these tech-
niques. FastCARS is computationally simpler than random
sampling. In addition, random sampling does not provide guar-
antees about the sampling rate for different � -step histograms.
FastCARS includes Conf(� , � ) as a special case. The major
problem of Conf(� , � ) is that it requires bursts of recording ac-
tivity (no action for (� - � ) events, frenetic action for the next� events). FastCARS spreads the recording activity evenly
(Fig. 2). To collect an � -step histogram, Conf(� , � ) must be
configured to collect � =( � + � ) packets at a time, which implies
if histograms of large � (

� � - � ) are needed, Conf(� , � ) must col-
lect every packet.

Thanks to the flexibility of FastCARS, we can tailor its pa-
rameters to the application. For example, if samples of � con-
secutive packets are needed, we can run FastCARS with � sam-
pling processes. The sampling rate of each process could be
tuned to meet the data storage limitation using the following
lemma of data reduction rate.

Lemma 2: Data Reduction Rate FastCARS(� � � 	�	
	 ��� � ),
where gcd(��� ����� )=1 for ��
 ������ 
�� , takes samples at an aver-
age rate of

���������� � � ��� � � � .

IV. EXPERIMENTAL RESULTS

We present experimental results showing that information
collected by FastCARS can be used for typical measurement
applications as well as novel data mining applications. In par-
ticular, we show that FastCARS gives accurate estimation of in-
terarrival time distribution and provides � -step histograms for

TABLE I
SUMMARY OF TRACES

Trace Location Collected Time (GMT) Link Speed

AIX AIX/MAE-West Inter-
connection

Sunday June 10 2001
15:55:50 OC12c PoS

COS Colorado State Uni-
versity

Monday August 20
2001 00:47:57 OC-3

IND QuestPOP at IUPUI
(Indianapolis)

Tuesday August 21
2001 22:47:04

OC12c
ATM

inspecting correlation at multiple aggregation levels. Results
on other data mining tasks such as finding relations between
packet size and interarrival time can be found in [7].

Our experiments are done on the packet header traces ob-
tained from the National Laboratory for Applied Network
Research (NLANR1). Traces are 90-secs long. A previous
study [8] suggests that the network is relatively stable within
time spans shorter than �"! minutes. We, therefore, assume the
measured packet arrivals form a stationary process. Experi-
ments are done mainly on three traces, which we name AIX,
COS and IND. Table I summarizes the details of these traces.
The trace collectors are located at aggregation points within
HPC networks, the vBNS and Internet2 Abilene. Therefore,
the network traffic considered in this paper is traffic in which
many independently originated flows are multiplexed.

A. Accuracy of FastCARS: Interarrival Time Distribution

In this section, we show that FastCARS can give an accurate
estimation of the interarrival time distribution.

Fig. 3 compares our estimation with the actual interarrival
time distribution collected from the full trace (AIX), and also
with the results from the event-driven sampling method. Re-
sults on traces COS and IND are similar and not shown here.

We use the 1-step histogram collected by FastCARS to esti-
mate the interarrival time distribution. As mentioned in Sec-
tion III, relatively prime sampling intervals guarantee col-
lections of 1-step histograms. We investigate the effects of
different numbers of processes and different sampling in-
tervals on FastCARS, and choose sampling intervals (10,11)
and (100,101,111) as examples to demonstrate how FastCARS
works. The estimation of interarrival time using samples from
event-driven sampling is done by the naive averaging estima-
tion (Section II). Our comparison of the quality of the esti-
mation from different sampling methods is fair, allowing for a
similar number of samples for all methods. For example, Fast-
CARS(10,11) takes 713,435 samples on trace AIX, and it is
compared with Event(5), which takes 747,407 samples. Even
with slightly more samples, Event(5) still performs badly. Es-
timates from FastCARS samples are very close to the actual
distribution, while, those from event-driven sampling are bi-
ased towards the distribution mean.

B. Testing the Independence Hypothesis of Packet Arrivals

The hypothesis that packet arrivals are independent facili-
tates tasks such as traffic analysis and modelling. However, is#

http://moat.nlanr.net/Traces/Traces/



0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
5 Interarrival Time Distribution Estimation

Interarrival time (µsec)

C
ou

nt

Actual Data
FastCARS(10,11)
Event(5)

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
5 Interarrival Time Distribution Estimation

Interarrival time (µsec)

C
ou

nt

Actual Data
FastCARS(100,101,111)
Event(30)

(a) FastCARS(10,11) - Event(5) (b) FastCARS(100,101,111) - Event(30)

Fig. 3. Estimating Interarrival Time Distribution (Trace AIX) FastCARS
gives better estimation that event-driven sampling does. (a) FastCARS(10,11)
VS Event(5) sampling, (b)FastCARS(100,101,111) VS Event(30) sampling.

this assumption realistic? A connection usually sends a flow of
packets and the transmission times and contents of these pack-
ets are not independent. Do these packets make the indepen-
dence hypothesis false? Are there other dependences among
packets? In this section, we show how the histograms gathered
from FastCARS can answer these questions.

We use the 1-step and 2-step histograms collected by Fast-
CARS to check the independence hypothesis of packet arrivals.
The idea is as follows. The distribution (histogram) of the 2-
step interarrival time will be similar to the convolution of the
1-step interarrival time distribution (histogram), if the (1-step)
packet interarrival time is independent. In the remainder of
this paper, we refer to this test of independence as convolution
test.

More formally, let
� � � 	 � be the probability mass function of

the � -step interarrival time distribution (time is discretized into
micro-seconds). For 3 consecutive packet arrivals ( � � , � � , ��� ),
let � � ( � � ) be the random variable of the interarrival time be-
tween � � and � � ( � � and � � ). � � and � � follows

� � � 	 � . Let �
be the random variable of the 2-step interarrival time between� � and ��� , and � follows

� � � 	 � .
Definition 8: Convolution Test If the packets’ (1-step) in-

terarrival times are independent and identical distributed, then
the probability distribution of 2-step interarrival time (

� � ) is
the convolution of the 1-step interarrival time distribution (

� � ).
This is due to

�	��
 ��
 ��� 
�� 	 
���
 ��� #�� � ��
�� 	 
���� ��� ��
 ��� # 
��! � �"
�� � � 	

 ��� �#� ��
 ��� # 
�� 	 ��
 ��� � 
�� � � 	 
$� #�% � #  

where &(' �*) � denotes the probability of an event
)

, and + is
the convolution.

Fig. 4 compares the 2-step histogram and the convolution
of the 1-step histogram, both obtained from FastCARS(10,11),
with the actual 2-step histogram collected from full trace AIX.
Results on traces COS and IND are similar and not shown here.
The histograms are normalized before doing convolution and
comparison. We use the quantile-quantile plot (QQ-plot) [9] of
the two histograms as a visualization of the similarity between
two histograms, which is actually related to the Kolmogorov-
Smirnov test of similarity of two distributions [10]. The fit of
the QQ-plot to the 45-degree line demonstrates the goodness
of fit between two histograms.
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(b.1) Interarrival Time Histogram (b.2) QQ-plot
(b) Actual 2-Step & Convoluted Sampled 1-Step Histograms

Fig. 4. Dependence of Interarrival Time (Trace AIX) Histograms are
collected by FastCARS(10,11). Compares actual 2-step interarrival time his-
togram to (a) the sampled 2-step interarrival time histogram, and (b) the con-
voluted 1-step interarrival time histogram. Correlation coefficients of the QQ-
plots: (a.2) 0.99994, (b.2) 0.99368.

The QQ-plot in Fig. 4(a.2) goes along the , !.- line indicates
that FastCARS gives accurate 2-step interarrival time distribu-
tions. The big deviation from the , !.- line shown in Fig. 4(b.2)
indicates that the actual 2-step histogram is different from the
convolution of the 1-step histogram. Therefore, by the convo-
lution test, successive interarrival times are not independent.

As the number of steps increases, packet arrivals should be
less dependent on each other. For example, packets 3 steps
away are expected to be more independent of one another and,
as a result, the sum of two 3-step interarrival times should be
a good estimation of a 6-step interarrival time. This suggests
that the convolution of 3-step histogram should be similar to
the 6-step histogram.

Fig. 5 shows the results on comparing the actual 6-step his-
togram from full trace (AIX) to (a) the sampled 6-step his-
togram and (b) the convolution of the sampled 3-step his-
togram. The / -step interarrival time histogram from FastCARS
is still a good estimation for the actual 6-step interarrival time
distribution (Fig. 5(a)). In Fig. 5(b.2), the actual 6-step his-
togram fits well with the convolution of the 3-step histogram
and is better than the fit in Fig. 4(b.2). That is, the correla-
tion coefficient of the QQ-plot in this case, 0.99949, is much
closer to 1 than the case of Fig. 4(b.2), which is 0.99368. This
shows that, as expected, the dependence of packet arrival time
diminishes as the separation between packets increases.

C. Dependence Assumption and “Packet Train” Phenomenon

A sequence of packets with same source, destination IP ad-
dresses and port numbers form a “packet train”. It is known
that the packet train phenomenon exists in network traffic [3].
Packets within a packet train are not expected to act indepen-
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(a) Actual 6-Step & FastCARS Sampled 6-Step Histograms
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Fig. 5. Dependence of Interarrival Time (Trace AIX) Histograms are
collected by FastCARS(10,11). Compares the actual 6-step interarrival time
histogram to (a) the sampled 6-step interarrival time histogram, and (b) the
convoluted 3-step interarrival time histogram. Correlation coefficient of the
QQ-plot in (b.2): 0.99949.
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Actual 2-Step & Convoluted Sampled 1-Step Histograms

Fig. 6. Packet Train and Dependence of Interarrival Time (Trace AIX,
with packet trains removed) Histograms are collected by FastCARS(10,11).
The number of packets removed is 155863, out of the total 3737038 packets.
Correlation coefficient of the QQ-plot in (b.2): 0.99683.

dently, and may affect traffic characteristics. It may cause the
independence hypothesis of packet arrivals to be incorrect.

Is it true that packet trains are the main reason that the inde-
pendence assumption of packet arrivals is false? We test this
hypothesis by removing consecutive packets in the same flow
(packet trains) from the full trace, and then check whether (1-
step) interarrival time histogram of the resulting trace set has
the independence property. The independence check is done
using our convolution test.

Fig. 6 shows the result of the convolution test on trace AIX,
after packet trains are removed. Since the discrepancy in the
QQ-plot in Fig. 6 remains significant (compared to Fig. 4(b.2)),
the removal of packet trains does not make packet arrivals inde-
pendent. This suggests that packet trains might not be the sole
cause of the failure of the independence hypothesis of packet
arrival.

V. CONCLUSIONS

In this paper, we present FastCARS, a fast, correlation-aware
sampling method for network data mining, which is (1) accu-
rate in providing traffic statistics, (2) simple and scalable for
implementation, (3) correlation-aware in the sense that it eas-
ily captures information about � -step histograms and, there-
fore, reveals short and long term correlations among packet
arrivals, (4) non-bursty since it evenly spreads the sampling
efforts over time, and (5) general since it includes other deter-
ministic sampling methods as special cases.

Using the information obtained from FastCARS, we also
provide several new tools for network data mining, namely, the� -step histograms (Section II, definition 1), and the convolu-
tion test (Section IV-B, definition 8).

In addition, FastCARS and our tools enable the following
observations on real-world traffic traces:

1) FastCARS preserves traffic characteristics and accurately
estimates the interarrival time distribution (Section IV-
A).

2) The assumption of independent arrivals is not correct
(Section IV-B).

3) Packet trains are not the sole cause of the failure of the
independence hypothesis of packet arrival (Section IV-
C).

FastCARS can also be used in other areas that demand accu-
rate, efficient, and correlation-aware sampling techniques. For
example, FastCARS could be used to compare synthetic traces
from traffic generators to real-world data. This would ensure
that the traffic generators create traces that have the appropriate
temporal correlations as well as the normally tested long-term
aggregate distributions.
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