
BECN for Congestion Control in TCP/IP Networks:
Study and Comparative Evaluation

Frank Akujobi, Ioannis Lambadaris, Rupinder Makkar Nabil Seddigh, Biswajit Nandy
Department of Systems and Computer Engineering Tropic Networks

Carleton University, Ottawa, ON, Canada Kanata, ON, Canada
fakujobi, ioannis, rup@sce.carleton.ca nseddigh, bnandy@tropicnetworks.com

Abstract— This paper evaluates the suitability of Backward
Explicit Congestion Notification (BECN) for IP networks. The
BECN mechanism has previously been used in non-IP networks,
but there has been limited experimental investigation into the ap-
plication of the BECN scheme as congestion control mechanism
in IP networks. In this paper, we consider an enhanced algo-
rithm for BECN which uses Internet Control Message Protocol
(ICMP) Source Quenches for backward congestion notification in
IP networks and undertake comparative performance evaluation
of Random Early Detection (RED), Explicit Congestion Notifica-
tion (ECN) and our enhanced BECN mechanism using both long-
lived TCP bulk transfers and short-lived webtraffic workloads.
Our results show that for webtraffic workloads, BECN offers only
slight improvement in transfer delay while average goodput for
bulk transfers is no worse than that of ECN. For paths that have a
high bandwidth delay product our results show that not only can
BECN offer significant improvement in average goodput for bulk
transfers over the ECN mechanism, but packet drops and transfer
delay for short-lived webtraffic connections are also comparatively
reduced. Additional observations show that on such paths TCP
(NewReno) with RED can offer higher goodput for bulk transfers
compared to ECN.

We investigate the overhead due to Source Quenches in a BECN
capable network and find that for scenarios considered in this pa-
per it does not significantly impact performance of BECN.

Keywords – BECN, ECN, RED, goodput, transfer delay.

I. INTRODUCTION

Over the years, the Internet has evolved into a global het-
erogeneous network that is used for mission-critical and leisure
purposes. Its successful evolution is in part due to flow and con-
gestion control mechanisms that aim to avoid “congestion col-
lapse” [8]. Sender flow control is achieved with TCP conserva-
tively injecting packets into the network based on feedback of
the congestion state of the network.

Recently, RED [6] has been recommended [13] as the ac-
tive queue management scheme for use on the Internet. More
recently, ECN was proposed for TCP/IP networks as a means of
explicitly notifying end-hosts of network congestion by mark-
ing, instead of dropping packets [11]. Recent studies show that
RED with ECN support gives definite improvement in time de-
lays for interactive traffic over packet drop schemes [9] [17].

In this paper, we examine use of a Backward Explicit Con-
gestion Notification (BECN) mechanism to inform the sender

This research was funded by grants from Communications and Information
Technology Ontario (CITO) and Mathematics of Information Technology and
Complex Systems (MITACS).

of the congestion situation in the network. This mechanism
uses ICMP Source Quenches (ISQs) for backward notifica-
tion. The ICMP Source Quench (ISQ) messaging was origi-
nally standardized as the mechanism of choice for notifying an
end host of network congestion [1]. However, while the mes-
saging for ICMP Source Quenches was defined, the conditions
for ISQ generation at the router and the appropriate reaction at
the end host were not implemented in a standardized way nor
could they be considered mature algorithms. RFC 1812 [3]
deprecates generation of ISQ messages from a router but spec-
ifies that a router that originates ISQs must be able to limit the
rate at which they are generated. Floyd in [9], gives due consid-
eration to ISQs as a mechanism for explicitly notifying the TCP
sender about congestion. However, for a number of reasons ex-
plained in the next section, ISQs were considered unsuitable for
congestion notification. Nevertheless, we believe that in partic-
ular network scenarios BECN might have an advantage over
other congestion notification schemes.

We provide in this paper a modification to an originally pro-
posed BECN algorithm [7], and evaluate performance implica-
tion of using the modified BECN with FTP bulk transfers and
HTTP-like workloads.

The rest of this paper is organized as follows: Section II dis-
cusses the arguments in favor and against use of the BECN
mechanism for congestion control. Section III gives a brief
overview of previous related work on BECN. Section IV pro-
vides our modification to the original BECN algorithm. In Sec-
tion V and VI, we describe simulation setup, test scenarios and
explain the observed results. Finally, section VII concludes this
paper and points to future work.

II. ISSUES WITH USE OF BECN FOR TCP/IP NETWORKS

In this section, we discuss issues that have been raised con-
cerning the use of the BECN mechanism for congestion control
in TCP/IP networks.

A. Concerns with use of BECN

i) There is concern that no standard algorithm exists for re-
sponse of a TCP source to an ISQ nor are the conditions for
ISQ generation well defined. BECN algorithm in [7] addresses
this by defining conditions for ISQ generation and TCP source
response. More details are given in subsequent sections.

ii) There is the issue of how network stability would be af-
fected when BECN ISQ messages are lost on the reverse path
[10]. We point out that during persistent congestion this con-
dition is no worse than loss of an ECN-Echo ACK [11] in the
case of ECN since ISQs continues to be generated irrespective
of whether a previous one was sent. The BECN sender only
responds once per window. For very temporal congestion situ-
ations more work is required to evaluate the impact of loss of
an ISQ message.

iii) In [10], the amount of extra reverse network traffic gen-
erated by the BECN ISQ messages was a concern. This was a
valid concern that existed with drop-tail buffer management as
during times of congestion lots of ISQs are generated. How-
ever in the BECN proposal [7], BECN ISQs are generated only
when the computed RED probability requires a packet dropping
or marking. We show in our results that for the scenarios con-
sidered in this paper the contribution of ISQs to reverse traffic
in a BECN capable network does not significantly impact per-
formance of BECN.

iv) It has been argued that BECN is non-generic for mul-
ticasting as there can be receiver or sender based congestion
control [10]. However, it has also been pointed out that with
sender-based multicast congestion control, the BECN feedback
mechanism is more scalable than earlier proposals for feedback
control in multicast environments since it is provided by the
router not by all the recievers in a multicast session [12].

The concerns with IP BECN need further investigation to
better understand them.

B. Benefits of using BECN

i) BECN enjoys all the advantages of ECN over TCP with
RED. This stems from the fact that for both ECN and BECN,
packets are marked probabilistically and not dropped. Such
advantages include lower loss rates, reduction in number of
TCP timeouts and retransmissions, faster congestion notifica-
tion, and lower packet delay.

ii) BECN uses existing network layer signalling and does not
require the use of any transport layer protocol for congestion
notification. It is therefore protocol independent and can be
used by other transport protocols such as UDP. Also, there may
be value in providing a common mechanism for notifying all
transport protocols about congestion.

iii) BECN provides faster congestion notification compared
to the ECN mechanism. This could be particularly useful in
networks with large delay such as satellite networks. There is
a clear need to investigate the possibility of a BECN advantage
in this scenario.

iv) Finally, the BECN scheme allows the development in the
future of multi-level congestion feedback schemes. Till now,
this has not been possible since both the duplicate ACKs and
ECN schemes cannot carry multi-level congestion feedback no-
tification. However, with use of ISQs there is possibility of such
a mechanism.

III. RELATED WORK

The ISQ message format was originally defined in [1]. In
[2] it is documented that a disadvantage of the ISQ mechanism
is that its details are discretionary stating that it is impossible
for the end-system user to be sure about the conditions un-
der which the ISQ was generated. RFC 896 [4] discusses in
general terms approaches for generating ISQs and reacting to
them. Among the approaches is one that considers generating
ISQs adaptively before the queue is full. RFC 1016 [5] de-
scribed Source Quench Introduced Delay (SQuID) where ISQs
were to be generated based on threshold levels of the physical
queue in the router. Packets are clocked by the sender based on
inter-arrival times adjusted in response to the ISQ arrival rate.
More recently, [14] explored the the use of Source Quenches
for controlling unresponsive sources that inject more than their
fair share bandwidth into the network.

There has also been proposals for using BECN within ATM
networks [15]. In [16] it was affirmed that though the indis-
criminate use of BECN can cause problems in ATM networks,
BECN may help reduce the feedback time for paths with large
delays.

The proposal for BECN in IP networks [7] provided guide-
lines for generating ISQs and responding to them in a TCP/IP
network. According to [7], a BECN TCP sender responds to
ISQ congestion notification by halving its TCP window. We
observed that with this proposal the BECN sender also starts in-
creasing its window upon receipt of the next ACK after a win-
dow reduction. The immediate reaction of increasing rate of
injecting packets into the network makes the proposed BECN
algorithm unduly aggressive. We suggest a modification to the
BECN algorithm and evaluate its performance.

IV. ENHANCED BECN ALGORITHM

In this section, we describe our improved BECN algorithm
explaining the guidelines for the behavior of all hosts in a
BECN-capable TCP/IP network.

A. Behavior of a BECN-capable router.

If (arriving packet causes the average queue size to go above
maxth)
f
check IP header of packet and drop the packet just like an
ECN packet;
if (ECT1 bit was marked in the IP header)
f
send an ISQ due to a dropped packet back to the source;
g

g else if (arriving packet causes average queue to go between
minth and maxth)f
if (RED rules chooses this packet for marking and ECT bit
is set) and if (packet is not already marked)

1The ECN-Capable Transport (ECT) bit is set in the IP header of an ECN or
BECN IP packet [11] for identification at the router.

f
mark the packet (CE2 bit) and send an ISQ due to a
marked packet back to the source;
g

else if (RED chooses this packet and ECT bit is not set)
drop the packet;

g

B. Behavior of BECN-capable TCP end hosts

BECN TCP end hosts do not need initial end-to-end negoti-
tiations to establish BECN capability as the TCP receiver is not
involved in the congestion notification mechanism. The TCP
sender on receipt of an ISQ due to a marked packet sets its
congestion window and ssthresh to one-half of current conges-
tion window and waits an RTT before it starts increasing the
window. An ISQ due to a dropped packet causes the sender to
set its congestion window and ssthresh to one-half of current
congestion window and follows the TCP congestion control al-
gorithm thereafter. The sender does not react to ISQs more than
once per RTT.

Our suggested algorithm introduces some modifications to
the original BECN algorithm [7]. It ensures that the BECN
sender is not unduly aggressive by creating a delay of one RTT
before sender starts to increase its congestion window after a
window reduction. This gives the network time to alleviate the
state of congestion before packet injection rate is increased.

The modified algorithm requires the use of a single bit to dif-
ferentiate between an ISQ due to a marked packet and an ISQ
due to a dropped packet. An ISQ due to a marked packet would
have this bit set so that the sender on receipt of the ISQ detects it
should wait an RTT before increasing its window according to
the TCP algorithm. When the bit is unset, the sender assumes
the ISQ was generated due to a dropped packet. It halves its
congestion window and starts increasing the window according
to the TCP algorithm similar to ECN. Experimental investiga-
tion showed that this response due to a dropped packet gave
optimum results for BECN. It was observed that the option of
waiting an RTT before increasing the window in this case de-
graded TCP throughput for BECN and so was not followed.
The advantage for BECN here is early notification of packet
drops since it does not wait for duplicate acknowledgements
before responding to congestion.

We propose the use of a single bit in the 32 bit unused field
in the ICMP source quench packet header for the ISQ differen-
tiation. A bit within the fifth octet of the header can be used.

V. SIMULATION SETUP

Study and comparative evaluation of the modified BECN and
ECN mechanisms is done using the Network Simulator (ver
2.1b8a) [19]. In this section, we describe the network sce-
narios, simulation parameters and performance metrics used in
evaluating the algorithms.
2The Congestion Experienced (CE) bit is set in the IP header of an ECN or

BECN IP packet [11] as an indication of congestion.

10Mbps

100Mbps
 2ms

100Mbps
 2ms

40ms

Direction of traffic flow

Fs(1)

Fs(n)

Ws(1)

Ws(m)

Fc(1)

Fc(n)

Wc(1)

Wc(m)

RED: MINth = 15KB, MAXth = 45KB, Qsize = 90KB

Fig. 1. Network Topology

A. Simulation Topology

Fig. 1 illustrates a single bottleneck topology that we used
in most of our simulations. The bottleneck bandwidth is
10Mbps with a propagation delay of 40ms. All other links
have 100Mbps capacity with 2ms propagation delay. Nodes
Fc(1)..Fc(n) serve as FTP clients with nodes Fs(1)..Fs(n) as
corresponding FTP servers. Hosts Wc(1)..Wc(m) serve as web
clients with corresponding Ws(1)..Ws(m) hosts serving as web
servers. RED queue management was used in all simulations
with or without support for ECN or BECN. We follow guide-
lines by Floyd [6] in setting the RED parameters as follows:
minth = 15KB, maxth = 3*minth, buffer size = 2*maxth, maxp
= 0.1, wq = 0.002. We used byte-based dropping for RED.

In our experiments two types of traffic sources were used:
1) Long-lived TCP traffic sources: FTP traffic model in the

Network Simulator (NS) was used with an infinite amount of
data to send. TCP type was NewReno with a data packet size
of 1000 bytes and ACK packet size of 40 bytes. The TCP clock
granularity was set to 100ms while the maximum TCP conges-
tion window was 100KB.

2) Short-lived web-traffic sources: Here we used the built-
in web-traffic model in NS with parameters in Table 1.

TABLE I
WEB TRAFFIC PARAMETERS

Parameter value Distribution Mean Shape
Intersession time Exponential 0.5s -
Session size Constant 10 pages -
Inter-page time ParetoII 10s 2
Pagesize ParetoII 3 objects 1.5
Inter-object time ParetoII 0.1s 1.5
Object size ParetoII 12 packets 1.2
Number of sessions Constant 1000 -

B. Performance Metrics

We use the following performance metrics for evaluation:
1) Goodput for a TCP flow: computed based on the number

of data packets received by the receiver. The number of ACKs
received by the sender within simulation time is used for the
computation. For a number of TCP flows average goodput is
the average of their individual goodputs.

5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

Total number of FTP flows

G
ai

n
in

 g
oo

dp
ut

(%
)

ECN gain over plain TCP
BECN gain over plain TCP

Fig. 2. Goodput gain over TCP

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

Total number of FTP flows

Lo
ss

(%
)

an
d

Lo
ss

(%
)*

10

Plain TCP competing with ECN
Plain TCP competing with BECN
ECN
BECN

Loss(%)

Loss(%) *10

Fig. 3. Percentage loss

10 15 20 25 30 35 40 45
100

200

300

400

500

600

700

800

Number of FTP flows

A
ve

ra
ge

 g
oo

dp
ut

 (
kb

/s
)

Plain TCP
ECN
BECN

Fig. 4. Goodput - Homogeneous flows

10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of FTP flows

Lo
ss

(%
)

Plain TCP
ECN
BECN

Fig. 5. Loss - Homogeneous flows

2) Web object transfer delay: For a transfered web object,
this is the interval between the time a web client makes an ini-
tial request (GET message) and the time the server receives the
ACK to the last data packet for the object requested by client.

3) Percentage loss: Measures the ratio of the number of
packets dropped at the bottleneck link to the total number of
packets injected into the bottleneck link for a particular flow or
set of flows.

VI. EXPERIMENTS AND RESULTS

In this section, we describe five sets of experiments and
present explanations for the observed behavior of the algo-
rithms (RED, ECN and the modified BECN). Simulations are
run for 500s and data for results were collected after a period
of 100s to avoid bias due to initial conditions. For each of the
algorithms, the same seed was used in all random number gen-
erators to ensure they are tested based on same input variables.

A. Competing long-lived BECN/ECN flows with plain TCP
flows - [Fig. 2 and Fig. 3]

This experiment captures the scenario where some Internet
users decide to use either the BECN or ECN algorithm for con-
gestion control in an Internet where RED is widely deployed.
We describe flows as “plain TCP” if they are treated based on
pure RED algorithm at the routers. ECN and BECN flows are
treated based on the ECN and enhanced BECN algorithms re-
spectively. In this experiment, a number of either BECN or
ECN FTP flows compete with an equal number of plain TCP
FTP flows. The total number of competing flows is varied us-
ing 8, 12, 16, 18, 20, 26, 30, 36 and 40 flows while start time
for all flows is uniformly distributed between 0s and 5s.

Fig. 2 shows that the BECN algorithm offers upto 43%
gain in average goodput under high congestion over plain TCP
flows. Recall that unlike plain TCP packets, the BECN packets
are not dropped probabilistically but marked. Under high con-
gestion while BECN suffers a 0.07% packet loss, plain TCP
flows suffer 5.21% loss (Fig. 3) - thus, higher goodput for
BECN. For same reasons, ECN offers upto 31.5% gain in av-
erage goodput during high congestion with a loss of 0.18%.
BECN therefore offers greater gain over plain TCP during high
congestion as it suffers less losses due to early notification com-
pared to ECN.

However, during very low congestion we observe that ECN
offers higher gain over plain TCP compared to BECN. The rea-
son is that during low congestion, the dropping and marking
probability is small, therefore plain TCP flows not only expe-
rience less drops but also do not respond to packet drop notifi-
cation early since they have to wait for duplicate acknowledge-
ments. On the other hand, BECN senders are quenched quickly
and this reduces their average goodput in this case. ECN
senders in this scenario are also quenched but not as early as
the BECN senders since they have to wait more than half RTT
before responding to congestion notification due to a marked
packet. The advantage of BECN’s early notification become
more obvious under higher congestion as explained above.

B. Homogeneous long-lived flows - [Fig. 4 - Fig. 8]

In this experiment, we call the flows “homogeneous” as all
flows in a particular experiment are either plain TCP, ECN ca-
pable or BECN capable. Three sets of simulations are done in
the experiment. In each simulation, FTP flows are either all
plain TCP, all ECN-capable or all BECN-capable. The FTP
flows start randomly within the initial 5s of simulation. The
number of FTP connections is varied using 10, 15, 25, 30, 35,
40, and 45 flows. We noted that though plain TCP homoge-
neous flows experience higher losses - 4.6% (Fig. 5), their av-
erage queue size (31392 bytes) remains less than that of BECN
(39247 bytes) or ECN (40034 bytes) under high congestion (45
background flows). This is because arriving plain TCP pack-
ets are dropped probabilistically not marked as with BECN and
ECN packets. However, the plain TCP flows achieve between
97.44% and 99.7% utilization on the bottleneck link (Fig. 6),
and their average goodput remain comparable to that of ho-
mogeneous BECN and ECN flows (Fig. 4). This is due not
only to the improved TCP NewReno fast recovery mechanism
which ensures that when multiple packets are lost from a sin-
gle window of data, TCP can recover without a retransmission
timeout [18], but also because all flows in individual sets of
simulations are same type and therefore equally competing for
available bandwidth.

However, we observe that due to earlier notification BECN
flows have lower average and instantaneous queue size with
15 background flows (Fig. 7 and Fig. 8) compared to ECN
flows. In this case, even though packets are not dropped for
either BECN or ECN flows (Fig. 5), the BECN flows achieve

10 15 20 25 30 35 40 45
96.5

97

97.5

98

98.5

99

99.5

100

Number of FTP flows

U
til

iz
at

io
n(

%
) Plain TCP

ECN
BECN

Fig. 6. Bottlebeck utilization

300 305 310 315 320 325 330
0

1

2

3

4

5

6

7

8

9

10
x 10

4

time (seconds)

Q
ue

ue
 (b

yt
es

)

Avg. queue
Inst. queue

RED maximum threshold

RED minimum threshold

Fig. 7. Queue - 15 ECN FTP

300 305 310 315 320 325 330
0

1

2

3

4

5

6

7

8

9

10
x 10

4

time (seconds)

Q
ue

ue
 (b

yt
es

)

Avg. queue
Inst. queue

Fig. 8. Queue - 15 BECN FTP

5 10 15 20 25 30 35
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of backgound FTP flows

A
ve

ra
ge

 tr
an

sf
er

 d
el

ay
 (

se
co

nd
s)

ECN
BECN

Fig. 9. Average object transfer delay

higher bottleneck link utilization (Fig. 6) since the probabil-
ity of quenching BECN flows due to marked packets (which is
proportional to average queue size) is less than that of ECN.
With higher congestion (45 background flows), BECN flows
suffer slightly lower losses - 0.99% compared to the ECN flows
- 1.19% (Fig. 5).

C. Short-lived web transfers - [Fig. 9 - Fig. 10]

This test case assesses the performance of BECN and ECN
with short-lived web-traffic workloads. In this experiment,
there are either 10 BECN or ECN capable web servers and 10
BECN or ECN capable web clients, while homogeneous BECN
or ECN background FTP connections are varied using 5, 10, 15,

5 10 15 20 25 30 35
0

1

2

3

4

5

6

Number of backgound FTP flows

Lo
ss

(%
)

ECN HTTP packets
BECN HTTP packets

Fig. 10. HTTP data packet loss

10 15 20 25 30 35 40 45
100

200

300

400

500

600

700

800

Number of FTP flows

A
ve

ra
ge

 g
oo

dp
ut

 (
kb

/s
)

Plain TCP with large RTT
ECN with large RTT
BECN with large RTT

Fig. 11. Goodput - Homogeneous flows

10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of FTP flows

Lo
ss

(%
)

Plain TCP with large RTT
ECN with large RTT
BECN with large RTT

Fig. 12. Loss - Homogeneous flows

10 15 20 25 30 35 40 45
78

80

82

84

86

88

90

92

94

96

98

Number of FTP flows

U
til

iz
at

io
n(

%
)

Plain TCP with large RTT
ECN with large RTT
BECN with large RTT

Fig. 13. Bottlebeck utilization

300 305 310 315 320 325 330
0

1

2

3

4

5

6

7

8

9

10
x 10

4

time (seconds)

Q
ue

ue
 (b

yt
es

)

Avg. queue
Inst. queue

Fig. 14. 45 Plain TCP FTP (large RTT)

300 305 310 315 320 325 330
0

1

2

3

4

5

6

7

8

9

10
x 10

4

time (seconds)

Q
ue

ue
 (b

yt
es

)

Avg. queue with large RTT
Inst. queue with large RTT

Fig. 15. 45 ECN FTP (large RTT)

300 305 310 315 320 325 330
0

1

2

3

4

5

6

7

8

9

10
x 10

4

time (seconds)

Q
ue

ue
 (

by
te

s)

Avg. queue with large RTT
Inst. queue with large RTT

Fig. 16. 45 BECN FTP (large RTT)

5 10 15 20 25 30 35
1.8

1.85

1.9

1.95

2

2.05

Number of backgound FTP flows

A
ve

ra
ge

 tr
an

sf
er

 d
el

ay
 (

se
co

nd
s)

ECN with large RTT
BECN with large RTT

Fig. 17. Average object transfer delay

20, 25, 30, and 35 flows. The FTP flows start randomly within
the initial 5s of simulation while the web-traffic connections
start after 50s. Fig. 10 shows that the burstiness of the web-
traffic workloads causes packet loss for both BECN and ECN
connections especially during high congestion. Contributors to
transfer delay (Fig. 9) include queue size (delay), packet send-
ing rate, and packet loss which leads to TCP timeout and re-
transmission. For short-lived connections, the BECN advantage
of early notification would be enjoyed only if the BECN ISQ
reaches the sender while there are still a good number of out-
standing packets to be sent. The occurrence of such a situation
clearly depends on the all the factors that determine the network
condition at that particular time. We observe that while ECN
suffers 5.09% loss with 35 background flows, BECN suffers
3.76% loss (Fig. 10). BECN also offers upto 8.1% reduction
in the average web object transfer time (with 10 background
flows) compared to ECN (Fig. 9).

D. Large round-trip times (RTT) - [Fig. 11 - Fig. 18]

In this section, the experiments in section 6B and section 6C
are repeated using plain TCP, ECN and BECN test flows with
propagation delay on the bottleneck link increased to 250ms.
Roundtrip delays of 500ms are common with geostationary
satellite links.

For homogeneous long-lived flows, we observe that due to
early notification, the BECN flows are able to maintain their
queue size below maxth (Fig. 16), resulting in a 0% packet loss
with 45 background flows (Fig. 12). The ECN flows wait more
than half RTT before responding to congestion thus we observe
that their queue size occassionally exceeds maxth (Fig. 15) re-
sulting in 0.77% loss (Fig. 12). In this scenario, the BECN al-
gorithm therefore offers better network utilization (Fig. 13) and
20% gain in average goodput over ECN (Fig. 11) under high

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of backgound FTP flows

Lo
ss

(%
)

ECN HTTP packets with large RTT
BECN HTTP packets with large RTT

Fig. 18. HTTP data packet loss

10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

Number of FTP flows

IS
Q

 tr
af

fic
(%

 o
f p

ac
ke

ts
)

ISQ reverse traffic
ISQ reverse traffic with large RTT

Fig. 19. ISQ reverse traffic

congestion (45 background flows). Recall that packet marking
probability is proportional to average queue size and halving
the congestion window reduces packet injection rate which di-
rectly affects utilization of the bottleneck link. We also observe
in this scenario that plain TCP NewReno flows have lower aver-
age and instantaneous queues compared to ECN flows (Fig. 14
and Fig. 15) and achieve higher utilization on the bottleneck
link (Fig. 13). Though plain TCP flows experience slightly
greater packet drops - only 0.86% (Fig. 12), they achieve av-
erage goodput 6.6% higher than that of ECN flows (Fig. 11)
with 45 background flows.

For experiments with short-lived web transfers, we observe
that for same reasons as explained above BECN flows suffer
packet losses 88.3% less than ECN flows (Fig. 18). The BECN
algorithm in this case offers an average transfer delay 6.4% less
than that of ECN with 25 background flows (Fig. 17).

E. ISQ reverse traffic analysis - [Fig. 19]

In this section, the experiments in section 6B with only ho-
mogeneous FTP flows are repeated using 40ms and 250ms
propagation delay on the bottleneck link. The ratio of the num-
ber of ISQs generated to the total number of packets received in
the reverse direction of traffic is computed in each case. Fig. 19
shows that with 40ms bottleneck link propagation delay the ra-
tio of number of ISQs generated under high congestion is only
5.4% of total number of packets in reverse direction. ICMP
sourcequench packets are 56 bytes in size (including the IP
header) for IPV4 and would therefore consume even less per-
centage of reverse bandwidth compared to much larger TCP
packets in a real life network. Fig. 19 also shows that with
larger RTT the computed ratio of number of generated ISQs
under high congestion is much less - only 0.64%. This is be-
cause with an increase in bandwidth delay product, the bottle-
neck utilization and average queue size reduces, and this di-
rectly impacts probability of marking packets. Our network
topology is by no mean representative of the Internet and so
further work with more realistic network scenarios is required
to better understand the impact of ISQ reverse traffic on BECN
performance.

VII. CONCLUSION AND FUTURE WORK

We have suggested modifications to a proposed BECN al-
gorithm for IP [7] and used simulations to explore the perfor-
mance of our modified BECN algorithm. The results in this

paper suggest that the BECN mechanisn for congestion con-
trol in TCP/IP networks can offer improved performance over
the ECN mechanism for both long-lived and short-lived TCP
transactions. On links that have a high bandwidth delay prod-
uct, BECN offers significant improvement over the ECN mech-
anism in terms of average goodput for long-lived traffic and
packet loss, transfer delay for short-lived workloads.

Therefore, we conclude that the BECN mechanisn is a viable
scheme for congestion control in TCP/IP networks and can be
used to offer improved quality of service on links with a high
bandwidth delay product.

For future work, we are interested in further examing the per-
formance of our modified BECN in the presence of multiple
congested gateways and two-way bulk TCP transfers. We are
also interested in evaluating multiple-level BECN (MECN) un-
der a variety of scenarios and workloads. Investigating a mech-
anism that combines both the ECN and BECN mechanism to
give a more robust scheme for congestion control is also under
consideration.

REFERENCES

[1] J. Postel, “Internet Control Message Protocol”, RFC 792, September
1981.

[2] A. Mankin, K. Ramakrishnan, “Gateway Congestion Control Survey”,
RFC 1254, August 1991.

[3] F. Baker, “Requirements for IP Version 4 Routers”, Internet RFC 1812,
June 1995.

[4] J. Nagle,“Congestion Control in IP/TCP Internetworks”, RFC 896, Jan-
uary 1984.

[5] W. Prue, J. Postel, “Something a Host Could do with Source Quench:
The Source Quench Introduced Delay (SQuID)”, Internet RFC 1016, July
1987.

[6] S. Floyd, V. Jacobson, “Random Early Detection Gateways for Conges-
tion Avoidance”, IEEE/ACM Transactions on Networking, V.1, N.4, Au-
gust 1993.

[7] J. Hadi Salim, B. Nandy, N. Seddigh, “A proposal for Back-
ward ECN for the Internet Protocol (Ipv4/Ipv6)”, Internet
Draft <draft-salim-jhsbnns-ecn00.txt> July 1998. Available at
http://www.sce.carleton.ca/�seddigh/publications/draft-salim-jhsbnns-
ecn-00.txt.

[8] V. Jacobson, M. J. Karels, “Congestion Avoidance and Control”, In Pro-
ceedings of ACM SIGCOMM ’88, Stanford, CA, August 1988.

[9] S. Floyd, “TCP and Explicit Congestion Notification”, ACM Computer
Communication review, V.24, N.5, p.10-23, October 1994.

[10] ftp://ftp.ee.lbl.gov/email/sf.98may7.txt
[11] S. Floyd, Ramakrishnan K, “A proposal to add Explicit Congestion Noti-

fication to IP”, RFC 2481, January 1999.
[12] A. Matrawy, I. Lambadaris, C. Huang, “Multicasting of Adaptively-

encoded MPEG4 on a QoS-aware IP Networks” In Proc. of IEEE ICC
2002.

[13] B. Braden et al, “Recommendations on Queue Management and Conges-
tion Avoidance in the Internet”, RFC 2309, April 1998.

[14] A. Rangarajan, A. Acharya,“Early Regulation of Unresponsive Best-
Effort Traffic”, ICNP 99, October 1999.

[15] P. Newman,“Traffic Management for ATM Local Area Networks”, IEEE
Communications Magazine, Vol. 32, No. 8, pp. 44-50 August 1994.

[16] R. Jain, S. Kalyanaraman, R. Viswanathan, “The OSU Scheme for Con-
gestion Avoidance in ATM Networks: Lessons Learnt and Extensions”,
Issue on Traffic Control in ATM Networks, Vol. 31, November 1997.

[17] S. J. Hadi, U. Ahmed, “Performance Evaluation of Explicit Congestion
Notification (ECN) in IP Networks”, RFC 2884, July 2000.

[18] K. Fall, S. Floyd, “Simulation-based Comparisons of Tahoe, Reno, and
SACK TCP”, Computer Communications Review, July 1996.

[19] UCB/LBNL/VINT Network Simulator (NS). Available at
http://www.isi.edu/nsnam/ns

