
Accommodating Fragmentation in
Deterministic Packet Marking for IP Traceback

Andrey Belenky and Nirwan Ansari
Advanced Networking Laboratory, ECE Department, NJIT, Newark, NJ 07102, USA

Abstract— 1 We propose a modification to the basic Determin-
istic Packet Marking (DPM), a promising IP traceback scheme,
to handle fragmented traffic. The modification introduces no
additional bandwidth overhead, but limited additional memory
requirements and processing overhead on the DPM-enabled
interface.
Index Terms — Security, IP Traceback

I. INTRODUCTION

Fragmented traffic constitutes between 0.25% according
to [1] and 0.5% of the total IP traffic according to [2].
Though the amount of fragmented traffic is small, it does exist.
Deterministic Packet Marking (DPM) [3], a recently proposed
IP traceback scheme, is scalable and capable of tracing back
attacks, which are composed of just a few packets. However,
the basic DPM proposal did not differentiate between frag-
mented and non-fragmented traffic. The Identification (ID)
Field of the IP header was completely replaced with a certain
set of bits of the ingress interface IP address chosen at random.

In this article, we discuss why the basic DPM may not
be the best way to handle fragmented traffic, and present a
modification to DPM to address fragmentation. The rest of
the article is structured in the following way: the basic DPM
algorithm is described in Section II; IP Fragmentation and
associated terminology are discussed in Section III; the differ-
ence between the upstream and the downstream fragmentation
is introduced in Section IV; the limitations of the basic DPM
with respect to the fragmented traffic are discussed in Section
V; two modifications proposed for the basic DPM to alleviate
the problem associated with fragmented traffic are presented in
Section VI; the circumstances which may cause the reassembly
error even with the introduced modification are described and
analyzed in Section VII; finally, we conclude in Section VIII

II. BASIC DETERMINISTIC PACKET MARKING (DPM)

This section provides the general principle behind DPM
and discusses the most basic implementation of the proposed
scheme.

A. DPM Principle

DPM is a packet marking algorithm. The 16-bit Packet ID
field and 1-bit Reserved Flag (RF) in the IP header will be
used to mark packets. Each packet is marked when it enters
the network. This mark remains unchanged for as long as

1This work has been supported in part by the New Jersey Commission
on Higher Education via the NJI-TOWER project, and the New Jersey
Commission on Science and Technology via NJWINS.

the packet traverses the network. The packet is marked by
the interface closest to the source of the packet on an edge
ingress router, as seen in Figure 1. The mark is a partial
address information of this interface, and will be addressed
later in Section II-B. The interface makes a distinction between
incoming and outgoing packets. Incoming packets are marked;
outgoing packets are not marked. This ensures that the egress
router will not overwrite the mark in a packet placed by an
ingress router.

A

V

10.0.15.01

Backbone
Routers

DPM DPM

DPM

DPM

DPM

DPM Enabled
Edge Routers

A

A

A

128.235.104.1

128.235.104.19

128.235.55.6
128.235.55.1

DPM

DPM

Fig. 1. Deterministic packet marking.

For illustrative purposes, assume that the Internet is a net-
work with a single administration. In this case, only interfaces
closest to the customers on the edge routers will participate in
packet marking. The marking will be done deterministically.
Every incoming packet will be marked. Should an attacker
attempt to spoof the mark in order to deceive the victim, this
spoofed mark will be overwritten with a correct mark by the
very first router the packet traverses.

B. Coding of a Mark

A 32-bit IP address needs to be passed to the victim. A total
of 17 bits are available to pass this information: 16-bit ID field
and 1-bit RF. Clearly, a single packet would not be enough to
carry the whole IP address in the available 17 bits. Therefore, it
will take at least two packets to transport the whole IP address.
An IP address will be split into two segments, 16 bits each:
segment 0 – bits 0 through 15, and segment 1 – bits 16 through
31. The marks are prepared in advance in order to decrease

GLOBECOM 2003 - 1374 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

Marking procedure at router R, edge interface A:
for y = 0 to 1

Marks[y].Seg Num := y
Marks[y].A bits := A[y]

for each incoming packet w
let x be a random integer from [0,1]
write Marks[x] into w.Mark

Ingress address reconstruction procedure at V:
for each attack packet w

IngressTbl[w.Mark.Seg Num] := w.Mark.Seg Num

Fig. 2. Pseudo code for the basic DPM algorithm.

the per packet processing. Each mark has two fields: Segment
Number and Address bits. With probability of 0.5, the 17-
bit field comprised of the ID field and RF of each incoming
packet will be populated with either of those two marks. It
is necessary to introduce this randomness into the scheme so
that sophisticated attackers would not send exactly every other
packet to the victim, and by doing that creating a situation
when only one part of the address is available to the victim.

C. Formal Description of Basic DPM

In this section, we introduce the formal pseudo-code for
DPM. As seen in Figure 2, all edge interfaces on all edge
routers will place either the first or the last 16 bits in every
incoming packet in the ID field, and set the reserved flag
to the appropriate value. At the victim, we suggest that the
table matching the source addresses to the ingress addresses
is maintained. The victim would check to see if the table entry
for a given source already exists, and create it if it did not.
Then, it would write appropriate bits, depending on the value
of the reserved flag, into the ingress IP address value.

III. IP FRAGMENTATION BACKGROUND AND

TERMINOLOGY

Terminology used to describe different aspects of fragmen-
tation is largely adopted from [2].

Fragmentation is a feature of Internet Protocol (IP) to
enable transport of packets across the networks with different
Maximum Transfer Unit (MTU). Path MTU is the smallest
MTU of all the links on a path from a source host to a
destination host as described in [4]. When a packet enters
a network, whose MTU is smaller than the packet length, the
packet has to undergo a process of fragmentation.

Figure 3 illustrates this process and introduces several
important terms. The original datagram is an IP datagram
that will be fragmented because its size exceeds the MTU of
the next link. A Packet Fragment, or simply a fragment, refers
to a packet containing a portion of the payload of an original
datagram. While the datagram and packet are synonymous,
the terms, original datagram and packet fragment, will be
used for clarity. A fragment series, or simply a series, is an
ordered collection of fragments resulted from a single original
datagram.

Data
IP

Header

IP
Header

Data
Segment

4

Data
Segment

3

Data
Segment

2

Data
Segment

1

Data
Segment

1

IP
Header

Data
Segment

2

IP
Header

Data
Segment

3

IP
Header

Data
Segment

4

IP
Header

Original Datagram

Fragment 1Fragment 2Fragment 3Fragment 4

Fragment Series

Fig. 3. IP fragmentation.

When fragmentation occurs, each fragment becomes a valid
IP packet. All the fragments have their own IP header. Most
of the fields of the IP header of the fragments are inherited
from the original datagram IP header. The fields of interest
are the ID field, Flags, and Offset. The ID field is copied
from the original datagram to all the fragments. The Source
Address (SA), Destination Address (DA), Protocol (P), and
ID, are used by the destination to distinguish the fragments
of different series [5], [6]. The ID field of all the fragments,
which resulted from a single datagram, must have their ID field
in the IP header set to the same value for proper reassembly.
The More Fragments (MF) flag is set to ‘1’ in every fragment
except the last one. This flag indicates that more fragments to
follow. The last fragment has MF set to ‘0’ to indicate that
it is the last fragment in the series. Finally, the offset field of
the IP header is set to the position of the data in the fragment
with respect to the beginning of data in the original datagram.
The offset is measured in the units of 8 bytes.

For successful reassembly, the destination has to acquire all
of the fragments of the original datagram. A tuple (SA, DA,
P, ID) is used to determine if the fragments belong to the
same original datagram, MF is used to indicate the number of
fragments, and Offset is used to determine the correct order of
reassembly. Notice that the fragments may come out of order
but reassembly will still be successful because the destination
would be able to determine that the fragment belongs to a
given series, and its position relative to other fragments.

Since DPM uses the Identification field for its purposes, it
may create a situation where reassembly will fail. We first
examine the effect of the basic DPM on reassembly and then
introduce a technique to deal with the undesirable effects.
Finally, we analyze the performance of the techniques in terms
of the probability of reassembly error.

IV. UPSTREAM VS. DOWNSTREAM FRAGMENTATION

Fragmentation can happen upstream or downstream from
the point of marking according to [1]. These two situations
have to be considered separately.

Upstream fragmentation is known to the DPM-enabled
interface. The DPM-enabled interface can identify a packet
to be a fragment by examining its MF and Offset. DPM

GLOBECOM 2003 - 1375 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

can employ a different strategy for marking these packets.
Downstream fragmentation is unknown to DPM. The DPM-
enabled interface has no knowledge if the datagrams, marked
by DPM, are being fragmented anywhere along the path.

V. SHORTCOMINGS OF THE BASIC DPM

Recall that the DPM-enabled interface, running the basic
DPM randomly inserts either the first or second 16 bits of its
address in the ID field, and sets the reserved flag (RF) to ‘0’
or ‘1’ to indicate which group of bits the ID field contains.

Fragmentation downstream from the DPM-enabled interface
causes few problems for reassembly. The router, which is
going to perform fragmentation, will simply insert the content
of the ID field of the original datagram into every fragment. At
the destination, reassembly will be successful since the ID field
will be the same for every fragment in the series. The fact that
the ID field (set by the originating host) was replaced/marked
by DPM is not known to the destination, and is thus irrelevant
for the purpose of reassembly. The only problem, which
may occur for the datagrams fragmented downstream, is the
problem of interlacing, defined and explained in Section VII.

Upstream fragmentation will cause more problems for the
reassembly at the destination. In the case of upstream frag-
mentation, a datagram is fragmented by a router or a host
before it reaches the DPM-enabled interface. In this case,
a series of fragments of the original datagram will reach
the DPM-enabled interface. Since the basic DPM does not
distinguish between fragments and non-fragments, the scheme
will randomly replace the ID field of all the fragments with
either the first or second 16 bits of the interface address. This
will cause fragments to have different ID fields when they
arrive to the destination. Fragments with different ID fields
will be considered to be parts of different datagrams. The
reassembly will eventually “timeout” since the destination will
never get all the fragments necessary for the reassembly of
what it considers to be two separate series. The probability of
all fragments in a series of two fragments having the same ID
field after marking is 0.5. For a series of three fragments, 0.25,
etc. Clearly, the rate of reassembly errors caused by upstream
fragmentation is unacceptable. To avoid this situation, the
modification to the basic DPM is introduced.

VI. FRAGMENT-PERSISTENT DPM

It is essential for proper reassembly that all of the frag-
ments of the original datagram have the same ID field. The
basic DPM marks packets probabilistically, randomly choosing
between the first and the last 16 bits of the ingress IP address.
This random behavior must be suspended when processing
fragments. In order to accomplish this task, DPM has to
keep track of the fragments, which pass through. If the first
fragment which DPM encounters (which does not have to be
the fragment with offset 0) is marked with the first or last 16
bits, then the rest of the fragments of this datagram must be
marked with the same bits. This information has to be stored
as a table at the DPM enabled interface and checked every
time a new fragment arrives. To identify fragments belonging

to the same original datagram, DPM should check if the tuple
of the four fields utilized by the reassembly function (SA, DA,
P, ID) is the same as any other it marked within the maximum
reassembly timeout of 120 seconds.

Marking procedure at router R, edge interface A:
for y = 0 to 1

Marks[y].Seg Num := y
Marks[y].A bits := A[y]

for each incoming packet w
let x be a random integer from [0,1]

if w.MF == ‘1’ OR w.offset �= 0 then
if FragTbl[SA,DA,P, ID] == NIL then

create FragTbl[SA,DA,P, ID]
FragTbl[SA,DA,P, ID] := x

else
x := FragTbl[SA,DA,P, ID]

write Marks[x] into w.Mark

Fig. 4. Pseudo code for the fragment-persistent DPM.

Figure 4 illustrates the required modifications to DPM to
support fragmentation. If the packet is not a fragment, then
it would be treated as in the basic scheme. If, however, the
packet is a fragment, then DPM determines if it is the first
fragment in the series that it sees. If it is the first one, then
the process is identical to a non-fragment case, but, in addition,
DPM stores the value to which it assigned the RF. This would
allow to set the ID field and reserved flag of all the remaining
fragments in this series to the same values as the first fragment.
Reconstruction procedure at the victim will not change and
will be identical to the reconstruction procedure of the basic
DPM.

A. Expected number of packets required for reconstruction

The attacker can send even infinitely many packets with the
same ID field, thus making DPM believe that they belong
to the same series. This is called an infinite series. The
invalid traffic would be noticed only by the destination at
the reassembly, but for (D)DoS attacks it would be enough
that invalid packets occupy the resources of the victim. In this
situation, the victim will never recover the full ingress address.

To remedy this situation, another simple modification in
addition to fragment persistence must be introduced. The
modification is based on the findings in [2], where it was
determined from the real traffic traces that the longest series
on the Internet is 44 fragments. DPM should recognize the fact
that if the number of fragments in the series exceeds 44, it is,
in all likelihood, an attack, or a result of some errors. In either
case, such traffic is not expected to be properly reassembled.
So, after DPM has persistently marked 44 fragments of a
single series with the same 16 bits, any following fragments
from the same series will be marked randomly by either the
first or the second 16 bits of the address of the DPM-enabled
interface.

In order to implement this modification, the table, which
DPM has to keep for fragments, where the value of RF

GLOBECOM 2003 - 1376 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

corresponding to (SA, DA, P, ID) is kept should also keep a
counter, which should be incremented every time a fragment
with a given tuple is encountered. Once this counter exceeds
44, marking persistence should be suspended and randomness
is reinstated. Figure 5 illustrates this concept with a pseudo
code.

Marking procedure at router R, edge interface A:
for y = 0 to 1

Marks[y].Seg Num := y
Marks[y].A bits := A[y]

for each incoming packet w
let x be a random integer from [0,1]

if w.MF == ‘1’ OR w.offset �= 0 then
if FragTbl[SA,DA,P, ID] == NIL then

create FragTbl[SA,DA,P, ID]
FragTbl[SA,DA,P, ID].Mark num := x
FragTbl[SA,DA,P, ID].counter := 1

else
if FragTbl[SA,DA,P, ID].counter < 45 then

x := FragTbl[SA,DA,P, ID].Mark num
FragTbl[SA,DA,P, ID].counter++

write Marks[x] into w.Mark

Fig. 5. Pseudo code for the fragment-persistent DPM with fragment counter.

With this modification, in the worst case, if the attacker will
be sending the offending traffic in series of 44 fragments each,
the DPM will be fragment-persistent, and the victim will get
one part of the address in 44 packets. According to the solution
to the Coupon Collector Problem, the expected number of
datagrams required to reconstruct the address, E[D] is given
by k(ln(k) + 0.577), where k is the number of segments that
the address is split into. Since k = 2, E[D] ≈ 2.54. Rounding
this number up to the nearest integer yields 3. Consequently,
the expected number of packets, E[P], to obtain the whole
ingress address will be 89. This number is derived from
the fact that all of the fragments of the first two datagrams
would have to be collected, and a single packet from the third
datagram in order for the destination to be able to assemble
the whole ingress address.

VII. FRAGMENT INTERLACING

Interlacing is a result of out of order arrivals, which occurs
in the Internet. It would also be a sole cause of reassembly
errors for the DPM modifications introduced in Section VI. In
this section, we define interlacing and analyze the probability
of its occurrence.

We first define an out of order arrival as an arrival of a
packet to the destination, ahead of another packet from the
same source to the same destination, which was sent earlier.
In [7], the rate of out of order arrivals was measured by TCP
sequence numbers, and thus is valid only for TCP traffic.
However, since reordering in any protocol is a result of IP
reordering, we conclude that reordering of packets for other
protocols (i.e., UDP, ICMP, etc.) will have the same rate as

the TCP traffic, namely 0.3% according to [7]. Interlacing is
defined by an out of order arrival, when a fragment of a series,
which originated at a later time, arrives before one or more
fragments of another series, which originated at an earlier
time, and the two series have the same tuple (SA, DA, P, ID).
We are only concerned with the datagrams going between the
same pair of hosts and with the same protocol, that undergo
fragmentation. While ordinarily, the ID field would distinguish
between fragments of different series, DPM replaces the ID
field, and may eventually cause reassembly errors for those
series.

Series 1Series 2

n2-2 2 1 0n2-1 n1-2 2 1 0n1-1

A. Original Order of packets; In Order Arrival

n2-2 2 1n2-1 n1-2 2 1 0n1-1 0

B. Out of Order Arrival; Interlacing

C. Out of Order Arrival; No Interlacing

n2-2 2 0 1n2-1 n1-2 2 1 0n1-1

D. Out of Order Arrival; No Interlacing

1 2 n2-2 n2-10 1 2 n1-2 n1-10

Fig. 6. Fragment interlacing.

Clearly not every out of order packet arrival, even frag-
ments, will cause interlacing. Refer to Figure 6.A, which
illustrates the case when fragments of two series arrive without
any reordering to the destination. This is an ideal situation,
and will not cause any reassembly errors for the downstream
fragmentation. Figure 6.B illustrates the situation when a
single out of order arrival occurs. If these two fragment series
were traveling from the same source to the same destination,
the protocol for both series was the same, and the ID fields
were the same, the reassembly at the destination would fail.
Let us examine closely what would happen at the destination.
When fragment 0 of Series 1 arrives to the destination, the
destination allocates the memory for the maximum possible
IP packet, which is 64KByte, since at the receipt of the
first fragment, the destination does not know how large the
original datagram is. Next, fragment 1, 2, and all the fragments
including n1 − 2 arrive. Next, fragment 0, of Series 2, with
the same ID field arrives to the destination. Destination will
treat this packet as a retransmission, and replace the original
fragment 0 of Series 1. Assuming that the size of fragment
0 from Series 1 and fragment 0 from Series 2 are the same,
the destination will expect to complete the series to finish
reassembly. When fragment n1 − 1 arrives, the destination
will reassemble the whole original datagram of Series 1, but
with fragment 0 coming from the wrong series. IP reassembly
function will not notice this error and will pass this corrupted
datagram to the protocols up the stack. Depending on the
protocols involved, this error will be noticed on some higher
layer, and appropriate actions will be taken.

GLOBECOM 2003 - 1377 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

When reassembly finishes, the memory allocated is released.
Next, fragment 1 of Series 2 will arrive. The destination
will go through the process of allocating memory for the
datagram, and will wait for all the fragments to arrive to
complete reassembly. Since fragment 0 has already arrived
to the destination and was processed as a part of Series 1,
the destination never receives it again. After some time, 60 to
120 seconds as specified in [8], the destination will “timeout”
and release the resources allocated for fragments of Series 2.
Thus, a single out of order arrival, with interlacing, causes
errors in two datagrams. It is necessary to point out that
the reassembly function may be implemented differently on
different operating systems. There is only a limited set of rules,
which are specified in [8] and recommended in [6]. However,
in general, a single interlacing of fragments, which are parts of
the series with the same ID, will cause errors in both original
IP datagrams.

Figure 6.C shows a case of out of order arrival when
no interlacing happens. Such reordering will not cause any
errors at reassembly. Finally, Figure 6.D shows a special
case of reordering, called reverse ordering. Some routers,
when fragmenting an original datagram, reverse the order
of fragments when sending them to the destination. Such
reordering does not cause interlacing unless packets arrive out
of order in addition to the reverse ordering.

In order to analyze the effects of interlacing, we make a
simplified assumption that out of order arrivals can only affect
two series. We also assume that for a pair of affected series
only one fragment arrives out of order, and causes errors
in both series. Making this assumption ensures that every
interlacing causes errors.

Consider two series of packets with the same ID, sent back
to back. The first series has n1 packets and the second series
has n2 packets. If a position of any fragment changes with
respect to other fragments, out of order arrival has occurred.
A fragment from any series can arrive out of order in n1 +
n2 − 1 positions. If a fragment from the first series arrives
out of order, then there are n2 possible positions to cause
a reassembly error, and if there is a single reordering, the
probability that the packet from Series 1 arrived out of order
is n1

n1+n2
. Similarly, a packet from the second series would

cause a reassembly error in n1 cases, and the probability of
fragment from the second series arriving out of order would be

n2
n1+n2

. Let event I denote “Interlacing”, and let event POO
denote “Packet Out of Order”. Therefore the probability of
Interlacing given an out of order packet is:

P [I|POO] =
n2 × n1

n1+n2

n1 + n2 − 1
+

n1 × n2
n1+n2

n1 + n2 − 1

=
2n1n2

(n1 + n2)(n1 + n2 − 1)
.

P [I|POO] will be the highest when n1 ≈ n2, reaching its
highest value of 0.6 when n1 and n2 have the value of either
2 or 3. According to statistics in [2], series comprised of two

and three fragments constitute more than 99% of all series,
so we can assume for practical purpose, the series consists of
two packets.

P [I|POO] =
P [I ∩ POO]

P [POO]
Interlacing of fragments can only occur as a result of out of

order arrivals. In other words, out of order arrivals are the only
cause for the reassembly error. Therefore, P [I∩POO] = P [I].

P [I|POO] =
P [I]

P [POO]

P [I] = P [I|POO] × P [POO]

P [POO] is 0.3% according to [7]; therefore, if the largest
value of P [I|POO] = 0.6 is considered, the probability of
interlacing of fragments P [I] is 0.18%, given the fragmented
traffic. We must keep in mind that every instance of fragment
interlacing will affect not one but two packets.

Introducing marking persistence for fragments will result in
all fragments of a datagram having the same ID field. The
fact that the ID field was not set by the host is irrelevant
for the reassembly. For this modification, the upstream and
the downstream fragmentation would have exactly the same
effect on the reassembly error rate. The only condition which
would result in reassembly error would be fragment interlacing
discussed in this section. It was derived that in the worst case,
under the least favorable circumstances, the probability of
interlacing for the fragmented traffic is 0.18%. Multiplying this
probability by the probability of fragmentation, which is 0.5%
according to [2], results in probability of interlacing caused by
DPM for all traffic be 0.0009%. Also, taking into consideration
that two packets are affected by each instance of interlacing,
the probability of reassembly error due to DPM is 0.0018%.

VIII. CONCLUSIONS

In this article we have presented the modification to the
basic DPM scheme described in [3]. While this modification
does not totally eliminate reassembly errors due to fragmenta-
tion, it drastically decreases the probability of the reassembly
error caused by DPM. The modification is easy to implement,
and requires little additional processing and memory.

REFERENCES

[1] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Network support
for IP traceback,” IEEE/ACM Trans. Networking, vol. 9, no. 3, pp. 226–
237, June 2001.

[2] C. Shannon, D. Moore, and K. C. Claffy, “Beyond folklore: observations
on fragmented traffic,” IEEE/ACM Trans. Networking, vol. 10, no. 6, pp.
709–720, Dec. 2002.

[3] A. Belenky and N. Ansari, “IP traceback with deterministic packet
marking,” IEEE Commun. Lett., vol. 7, no. 4, pp. 162–164, Apr. 2003.

[4] J. Mogul and S. Deering, “Path MTU discovery,” RFC 1191, Nov. 1990.
[5] J. Postel, “Internet protocol,” RFC 791, Sept. 1981.
[6] D. D. Clark, “IP datagram reassembly algorithms,” RFC 815, July 1982.
[7] Y. Zhang, V. Paxson, and S. Shenker, “The stationarity of internet path

properties: Routing, loss and througput,” Aciri technical report, AT&T
Center for Internet Research, May 2000.

[8] R. Braden, “Requirements for internet hosts – communication layers,”
RFC 1122, Oct. 1989.

GLOBECOM 2003 - 1378 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

